Ward identities and relations between conductivities and viscosities in holography

David Rodríguez Fernández

based on C. Hoyos and D. Rodríguez Fernández arXiv: 1511.01002

IV Postgraduate meeting on theoretical physics. IFT, Universidad Autónoma de Madrid.

18-th November 2015

Summary

Introduction Gauge/Gravity duality Motivation

Shear identity in a CFT

Conserved current Ward identities

3 Bulk viscosity in a non-CFT

Conserved current Auxiliary fields Ward identities

4 Conclusions

Introduction

Shear identity in a CFT Bulk viscosity in a non-CFT Conclusions Gauge/Gravity duality Motivation

Table of Contents

Introduction Gauge/Gravity duality Motivation

Shear identity in a CFT Conserved current

Ward identities

Bulk viscosity in a non-CFT Conserved current Auxiliary fields Ward identities

Occusion

Gauge/Gravity duality Motivation

Gauge/Gravity duality

- The Gauge/Gravity duality relates gravity theories on asymptotically Anti-de Sitter manifolds in d dimensions to quantum field theories in d 1 dimensions.
- Starts from a conjecture that leads to a map between the free parameters on the gravity theory (length of the string *I_s* and radius of curvature *L*) and the QFT (number of colors *N* and Yang-Mills coupling *g_{YM}*)

$$L^4/I_s^4 \approx \lambda = g_{YM}^2 N$$

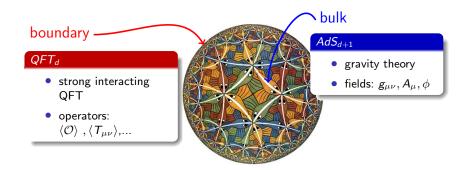
Gauge/Gravity duality Motivation

	Gauge theory	Gravity theory
Weak form	$N ightarrow\infty$, λ large	Classical supergravity,
		$I_s/L ightarrow 0$
	↓	\Downarrow
	Strongly coupled	Weakly coupled

• Certain questions of strongly coupled theories will become clearer and tractable on the gravity side.

Introduction

Shear identity in a CFT Bulk viscosity in a non-CFT Conclusions Gauge/Gravity duality Motivation



$$e^{-W[\phi,g]} = \left\langle e^{-\int \phi \langle \mathcal{O} \rangle + g^{\mu\nu} \langle T_{\mu\nu} \rangle} \right\rangle_{QFT} = e^{-S_{AdS}[g,\phi]} \Big|_{\mathcal{B}},$$

energy scale in QFT ⇔ radial coordinate in the gravity dual

< □ > < 同 > < 三 >

Gauge/Gravity duality Motivation

Gauge/Gravity duality

However, in many cases, these objects are not directly calculable since we cannot apply perturbation theory if the theory is strongly coupled

With holography, we can deal with it

We are interested in the fluid properties associated to transport of conserved currents for strongly coupled systems

Gauge/Gravity duality Motivation

Gauge/Gravity duality

• Near the boundary \mathcal{B} ,

$$ds^2 \sim rac{L^2}{z^2} \left[dz^2 + \left(g^{(0)}_{\mu
u} + z^2 g^{(2)}_{\mu
u} + \cdots
ight) dx^{\mu} dx^{
u}
ight] \, ,$$

For pure AdS
$$ightarrow g^{(0)}_{\mu
u}=\eta_{\mu
u}\,, g^{(n)}_{\mu
u}=0\,, n>0$$

In holography,

$$\left.\frac{-2}{\sqrt{g^{(0)}}}\frac{\delta^n \mathcal{S}}{\delta g^{(0)}_{\mu_1\nu_1}\cdots\delta g^{(0)}_{\mu_n\nu_n}}\right|_{\mathcal{B}} = \langle T^{\mu_1\nu_1}\cdots T^{\mu_n\nu_n}\rangle,$$

QFT is at finite temperature \Leftrightarrow Black hole gravity dual

Gauge/Gravity duality Motivation

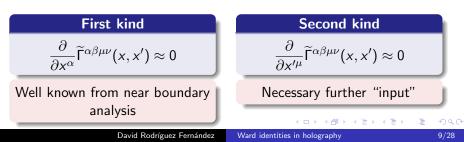
Motivation

The **Ward identities** are relations between the correlation functions that follow from the global symmetries of the theory.

For the two point correlator

$$\widetilde{\mathsf{\Gamma}}_{lphaeta\mu
u}(x,x')=\langle \, \mathsf{T}_{lphaeta}(x)\,\mathsf{T}_{\mu
u}(x')
angle$$

the Ward identities are



Introduction Shear identity in a CFT

Bulk viscosity in a non-CFT

Gauge/Gravity duality Motivation

Motivation

In momentum space,

Kubo formulas

Momentum conductivity
$$\Rightarrow \kappa_{ij} = -\frac{1}{\omega} \operatorname{Im} \Gamma_{0i0j}(\omega, k),$$

Shear viscosity $\Rightarrow \eta = -\frac{1}{\omega} \operatorname{Im} \Gamma_{xyxy}(\omega, k),$
Bulk viscosity and shear viscosity $\Rightarrow \eta + \frac{\zeta}{2} = -\frac{1}{\omega} \operatorname{Im} \Gamma_{xxxx}(\omega, k).$

We will examine the relations that arise between ζ,η,κ according to holography

Introduction

Shear identity in a CFT Bulk viscosity in a non-CFT Conclusions Gauge/Gravity duality Motivation

boundary	bulk
QFT _d	AdS_{d+1}
 strong interacting QFT 	 Einstein gravity
• 2+1 dimensions	• 3+1 dimensions
 Finite temperature 	 Black hole
 Rotational invariance 	 Rotational invariance
 Parity symmetry 	 Parity symmetry
• With conformal invariance	• Without scalar field in ${\mathcal S}$
• Without conformal invariance	• With scalar field in ${\cal S}$
Correlators	Linearized fluctuations

æ

Conserved current Nard identities

Table of Contents

 Introduction Gauge/Gravity duality Motivation

Shear identity in a CFT Conserved current Ward identities

8 Bulk viscosity in a non-CFT Conserved current Auxiliary fields Ward identities

4 Conclusions

Conserved current Ward identities

We will consider the

Bulk line element

$$ds^2 = rac{dz^2}{f(z)} + \left(-f(z)dt^2 + dx^2 + dy^2
ight), \quad f(z) = 1 - \left(rac{z}{z_h}
ight)^3,$$

together with the

Bulk Lagrangian density \mathcal{L}

$$\mathcal{L} = \mathcal{R} - 2\Lambda, \qquad \Lambda = -3.$$

We make linear fluctuations $g \rightarrow g + h$. For the shear viscosity, we turn on the h_{0y} , h_{xy} components.

< □ > < 同 > < 三 >

Conserved current Ward identities

Conserved current

Through the change of variables

$$h_{0y} = z\psi_0, \quad h_{xy} = \frac{z}{\sqrt{f}}\psi_1.$$

we get the coupled Schroedinger equations

$$0 = \psi_1'' - \mathcal{V}_1 \psi_1 + \left(\frac{\omega k}{f^{3/2}} \psi_0 \right), \quad 0 = \psi_0'' - \mathcal{V}_0 \psi_0 - \left(\frac{\omega k}{f^{3/2}} \psi_1 \right).$$

A.

Conserved current Ward identities

Conserved current

If we define the "currents"

$$j_{0,1} = \overline{\psi}_{0,1} \psi_{0,1}' - \overline{\psi}_{0,1}' \psi_{0,1}.$$

we can read off a conserved "Schroedinger" current $\mathcal J,$

$$\mathcal{J}=j_0-j_1\,,\quad \mathcal{J}_{\text{on-shell}}'=0\,,$$

k parity odd and even split

Given a field \mathcal{A} , we define

- Parity odd component: $\mathcal{A}_{\mathrm{odd}}(k) = -\mathcal{A}_{\mathrm{odd}}(-k)$
- Parity even component: $\mathcal{A}_{even}(k) = \mathcal{A}_{even}(-k)$

$$\mathcal{A}(k) = \mathcal{A}_{\text{odd}}(k) + \mathcal{A}_{\text{even}}(k)$$

Conserved current Ward identities

Shear viscosity in a CFT

From computing the current at the horizon $\mathcal{J}|_{Horizon} = \mathcal{J}(z_h)$, we see that is parity invariant. Since it is conserved,

$$[\mathcal{J}|_{\mathcal{B}}]_{\mathsf{odd}} = 0$$
 ,

With this "ingredient" we will be able to retrieve some information about the second kind W.i.

Conserved current Ward identities

Combining

Ward identities from $[\mathcal{J}_B]_{odd} = 0$

$$\left(\Gamma_{xyxy} - \overline{\Gamma}_{xyxy} \right)_{\text{odd}} = 0 \,, \quad \omega \Gamma_{xy0y\text{odd}} - k \overline{\Gamma}_{xyxy\text{even}} = 0 \,,$$

+

Ward identities from $\partial_{\mu} \langle T^{\mu\nu} \rangle$

$$\omega\Gamma_{0yxy} + k\Gamma_{xyxy} = 0, \quad \omega\Gamma_{0y0y} + k\Gamma_{xy0y} = 0,$$

we obtain the

1st generalized Ward identity

$$\left[\omega^2\Gamma_{0y0y}+k^2\overline{\Gamma}_{xyxy}\right]_{\rm even}=0\,,$$

< □ > < 同 >

∃ >

Conserved current Auxiliary fields Nard identities

Table of Contents

Introduction

Gauge/Gravity duality Motivation

Shear identity in a CFT Conserved current Ward identities

 Bulk viscosity in a non-CFT Conserved current Auxiliary fields Ward identities

Occusion

Conserved current Auxiliary fields Vard identities

Bulk viscosity in a non-CFT

Now, since $\zeta \neq 0 \implies$

$$\mathcal{L} = \mathcal{R} - 2\Lambda + (\partial \phi)^2 - V(\phi), \quad \phi = \phi(z),$$

and

$$ds^2 = dz^2 + e^{2A(z)} \left(-e^{2B(z)} dt^2 + dx^2 + dy^2 \right) \,,$$

This time, we will turn on 5 fluctuations $y_{1,\dots,5}$. Each of them have well-defined momentum parity.

The EOMS will not enable to find a conserved quantity that easily \downarrow In order to get it, it will be necessary to add further fields (η) that do not form part of our initial problem.

Conserved current Auxiliary fields Ward identities

Conserved current

From the general expression for the linearized EOMS,

$$y_i'' + a_{ij}y_j' + b_{ij}y^j = 0$$
, or $K^{-1}(Ky')' + by = 0$, $K' = Ka$,

one can consider an

effective Lagrangian

$$L = (\eta^{\dagger})' K y' - \eta^{\dagger} K b y + (y^{\dagger})' K^{\dagger} \eta' - y^{\dagger} b^{\dagger} K^{\dagger} \eta$$

which is invariant under U(1) gauge and parity transformations

< □ > < 同 >

Conserved current Auxiliary fields Ward identities

Auxiliary fields

With this, now we have so the wanted conserved current

Noether current

$$J = (\eta^{\dagger})' K y - \eta^{\dagger} K y' + (y^{\dagger})' K^{\dagger} \eta - y^{\dagger} K^{\dagger} \eta' \,, \quad J_{\text{on-shell}}' = 0 \,,$$

The presence of the auxiliary fields η ensure that we get the equations of motion for y_i .

∜

Boundary conditions for η ? \rightarrow Multiple choices

< 口 > < 同 >

Conserved current Auxiliary fields Ward identities

Ward identities

Unlike it happened when studying the CFT, the current at the horizon has a term odd under momentum reflection,

$$[J|_{\text{Horizon}}]_{\text{odd}} \neq 0 \implies [J|_{\text{Boundary}}]_{\text{odd}} \neq 0$$

However, we can still draw useful information. For example: if only parity odd source $y_5^{(0)} \neq 0$

$$\left[\Gamma_{0 \times 0 x} - \overline{\Gamma}_{0 \times 0 x}\right]_{odd} = 0\,,$$

< 67 ▶

Conserved current Auxiliary fields Ward identities

Ward identity

On the other hand, if we turn on parity even-odd terms, we get the desired

2nd generalized Ward identity

$$\left[\omega^{2}\Gamma_{0\times0x}+k^{2}\overline{\Gamma}_{xxxx}\right]_{\rm even}=\left(\omega^{2}+k^{2}\right)P+k\omega W_{\rm odd}$$

- which relates the momentum conductivity and the bulk viscosity, but it depends on an "ambiguous" term W_{odd}.
- Because of $W_{odd} \neq 0$, we cannot completely determine the relation without first solving the equations for the fluctuations.

Table of Contents

Introduction

Gauge/Gravity duality Motivation

Shear identity in a CFT Conserved current Ward identities

Bulk viscosity in a non-CFT Conserved current Auxiliary fields Ward identities

4 Conclusions

Conclusions

For k < < $\kappa_{ij} \simeq \kappa_{ii}^{(0)} + (k^2 \delta^{ij} - k^i k^j) \kappa_T^{(2)} + k^i k^j \kappa_I^{(2)} + \cdots,$ $\eta \simeq \eta^{(0)} + O(k^2), \quad \zeta = \zeta^{(0)} + O(k^2).$ Kubo formulas +generalized W.ids. $\left[\omega^2 \Gamma_{0 v 0 v} + k^2 \overline{\Gamma}_{x v x v}\right]_{\text{over}} = 0,$ $\left[\omega^{2}\Gamma_{0\times0x}+k^{2}\overline{\Gamma}_{XXX}\right]_{\text{over}}=\left(\omega^{2}+k^{2}\right)P+k\omega W_{\text{odd}}$

relations between $\zeta \Leftrightarrow \eta \Leftrightarrow \kappa$

Conclusions

Expanding
$$W_{\mathsf{odd}} \simeq k \mathcal{W}_{\mathsf{odd}}^{(1)} + \cdots$$
 . we get

$$\kappa_{yy}^{(2)} = \frac{1}{\omega^2} \eta^{(0)}, \qquad \qquad \kappa_{xx}^{(2)} = \frac{1}{\omega^2} \left(\eta^{(0)} + \frac{\zeta^{(0)}}{2} - \operatorname{Im} W_{\text{odd}}^{(1)} \right).$$

Agrees with field theory

∜

Has the right structure, but we do not know from general arguments what is the contribution from W_{odd} .

∜

Conclusions

 $W_{\rm odd}$ contains two kind of contributions,

- One kind comes from J_{Boundary} because it depends on the boundary conditions of the auxiliary fields, which can be fixed in various ways.
- The **second kind** depends on $J|_{\text{Horizon}}$ and it cannot be determined without explicitly solving the EOMS.

Still, we have gained useful information about the W.ids in holography.

THANK YOU!

æ

< 一型

< ∃ >