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Cosmology

Cosmology studies the evolution of the universe at scales much
larger than the size of a galaxy. And thus, it will be mainly
dominated by gravitational interaction.

Gµν = 8πG Tµν

General relativity describes the observations properly, however
there are some problems with the evolution.

• Dark matter: WIMPs, etc

• Accelerated expansion: modification of GR or a fluid such
that p/ρ < −1/3

• Termalized causally unconnected regions and flatness
problem ⇒ Inflation?
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Coherent scalars

Coherent scalar fields are ubiquitous in cosmology,

• Standard description of inflation.

• Dark matter: axions or ALPs.

• Dark Energy: quintessence, k-essence, etc

Its success is not only supported by its simplicity, but mainly in
the fact that intrinsically respects the large degree of isotropy
observed in the universe: CMB, distribution of matter.
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Coherent scalar fields are ubiquitous in cosmology,

• Standard description of inflation.
• Dark matter: axions or ALPs.
• Dark Energy: quintessence, k-essence, etc

Its success is not only supported by its simplicity, but mainly in
the fact that intrinsically respects the large degree of isotropy
observed in the universe: CMB, distribution of matter.

Coherent fast oscillating scalar

The general analysis for a minimally coupled scalar under a
power-law potential was made by M. S. Turner1,

L =
1

2
∂µφ∂

µφ− λ

n
φn ⇒ 〈p〉 =

n− 2

n+ 2
〈ρ〉

1Phys. Rev. D28 (1983) 1243
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Vector fields in cosmology

On the other hand, for vector fields the evolution is clearly
anisotropic. However, there have been proposals in order to
deal with this problem,

1. Particular solutions: Triads of orthogonal vectors

2. Large number, N, of randomly oriented fields,

T ij
pk
∼ 1√

N

3. Average isotropy for abelian massive fields linearly
polarized.
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3. Average isotropy for abelian massive fields linearly
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2Dimopoulos; Phys. Rev. D 74, 083502 (2006)
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Coherent vector field evolution

Let us assume a plain FLRW metric,

ds2 = dt2 − a(t)2d~x2.

the action of a minimally coupled vector field reads,

L =
1

4
FµνF

µν − V (A2)

The homogeneous solution evolves following the equation,

A0 = 0

Äi +HȦi − 2V ′(A2)Ai = 0
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Coherent vector field evolution
And the energy momentum tensor results,

Tµν =
1

4
FρλF

ρλgµν − F ρµFρν + V (A2)gµν − 2V ′(A2)AµAν

By components,

ρ ≡ T 0
0 =

1

2

ȦiȦjδ
ij

a2
+ V (A2)

pk ≡ −T kk =
1

2

ȦiȦj
a2

δij−ȦkȦk
a2
−V (A2)−2V ′(A2)

AkAk
a2

, k = 1, 2, 3

T ij =
ȦiȦj
a2

+ 2V ′(A2)
AiAj
a2

; T i0 = 0

As it can be seen the EMT is anisotropic, in general.



Introduction Osc. Vector Is. theorem Conclusions

Coherent vector field evolution
If we consider fast oscillations Ȧi ∼ O (ωeffAi)� O ((ȧ/a)Ai)
and redefine ri ≡ Ai/a

r̈i +
(
2V ′(−r2) +O

(
H2
))
ri = 0

we can neglect the terms order O
(
H2
)
. Thus, the field behaves

analogously to a point particle in a potential and we can exploit
classical mechanics results,
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From a generalization of the virial theorem,

∂t (riṙj) = ṙiṙj + 2V ′(−r2)rirj

If we make a temporal average, H−1 � T � ω−1
eff ,

〈∂t (riṙj)〉 =
1

T

∫ t

t+T
dt′∂t (riṙj) =

ri(t+ T )ṙj(t+ T )− ri(t)ṙj(t)
T

If the system is bounded and fast oscillating,

Generalized virial theorem

〈∂t (riṙj)〉 = 0 +O (Hωeff rirj)⇒
〈
ṙiṙj + 2V ′(−r2)rirj

〉
≈ 0
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Using the generalized virial theorem, we reach two important
results,

• The energy momentum tensor is diagonal and isotropic,

〈Tµν 〉 = Diag (〈ρ〉 , 〈p〉 , 〈p〉 , 〈p〉)

• For power-law potentials, V = λ(AµA
µ)n, the behaviour of

the equation of state results,

ω =
〈p〉
〈ρ〉

=
n− 1

n+ 1

equivalent to the scalar case!
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Non-abelian vector fields
The same results are found for non-abelian vector fields,

L =
1

4
F aµνF

a µν − V (A2), Dµ ≡ ∂µ − igAaµT a

n = 1

n = 1.5

n = 2

n = 2.5
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Phys. Rev. D 87, 043523 (2013)
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Non-abelian vector fields + gauge fixing term

And also if we give momentum to the zero component,

L =
1

4
F aµνF

a µν +
ξ

2
(∇µAa µ)2 − V (A2),

Nothing makes those cases special
. . . maybe the average isotropy is a

general feature ?!
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Belinfante-Rosenfeld EMT

Considering a Minkowski space-time and a lagrangian

L = L
[
φA, ∂µφ

A
]

Under an infinitesimal translation: xµ −→ xµ + δaµ

0 = δ

∫
d4xL = −

∫
d4xδaν∂µΘµν −→ ∂µΘµν = 0

Which is the Noether current associated to the symmetry under
space-time translations, the canonical energy-momentum tensor

Θµν = −ηµνL+
∂L

∂ (∂µφA)
∂νφA



Introduction Osc. Vector Is. theorem Conclusions

Belinfante-Rosenfeld EMT

This tensor is not unique, a new piece ∂ρΘ̃
ρµν antisymmetric in

the first two indexes can always be added. However, as the
energy momentum tensor must be symmetric this extra term is
fixed

Tµν = Θµν − 1

2
∂ρ (Sρµν + Sµνρ − Sνρµ)

where
Sµνρ ≡ Πµ

AΣνρφA

Πµ
A ≡

∂L
∂ (∂µφA)

, Σνρ ≡ Lorentz group generators

The Belinfante-Rosenfeld EMT can be written in a curved
space-time in a straightforward way by using minimal coupling

Tµν = Θµν − 1

2
∇ρ (Sρµν + Sµνρ − Sνρµ)
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Averaging anisotropy
Let us consider a Friedmann-Lemâıtre-Robertson-Walker metric
and a homogeneous field. The responsible of the anisotropies is
the non-canonical piece of the EMT.

∇0Θ̃0µν = ∂0Θ̃0µν +
(

ΓρργΘ̃γµν + ΓµργΘ̃ργν + ΓνργΘ̃ρµγ
)

∇0Θ̃0µν = ∂0Θ̃0µν +
(

ΓρργΘ̃γµν + ΓµργΘ̃ργν + ΓνργΘ̃ρµγ
)

If the field oscillates with a frequency much higher than the
expansion rate, we can neglect the scale factor derivatives.
As the leading term is a total derivative vanishes in average,〈

∇γΘ̃γµν
〉
≈
〈
∂0Θ̃0µν

〉
=

Θ̃0µν(t+ T )− Θ̃0µν(t)

T〈
∇γΘ̃γµν

〉
〈T 00〉

∼ O
(
H

ωeff

)
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Results

• The average energy momentum tensor becomes diagonal
and isotropic〈
T 00
〉

=
〈
Π0
A∂0φ

A − L
〉

;
〈
T ii
〉

=
〈
−giiL

〉
;
〈
T 0i
〉

=
〈
T jk
〉

= 0

• Using these results we can also express the average
equation of state in this suggestive form

ω =
〈p〉
〈ρ〉

=
〈L〉〈

Π0
A∂0φA − L

〉 =
〈L〉
〈H〉

• For theories with H =
(
λABg00Π0

AΠ0
B

)nT +
(
MABφAφB

)nv

ω =
2nV

1 + nV
nT

− 1; if nT = 1⇒ ω =
nV − 1

nV + 1
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Isotropy theorem of cosmological fields

Theorem

For an inertial observer, the metric in Riemann normal
coordinates

gµν = ηµν +
1

3
Rµανβ x

αxβ + . . .

If the following conditions holds, the energy momentum is
diagonal and isotropic in average.

• The lagrangian depends only on the fields and their
gradients which are minimally coupled with gravity.

• The field evolves rapidly,

|Rγλµν | � ω2
eff, A and |∂iSµνρ| � |∂0S

µνρ|

• φA and Π0
A are bounded during its evolution.

JCAP 1403 (2014) 042
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Conclusions

• We have state the conditions under which the EMT of an
arbitrary-spin field results isotropic in average.

• As a matter of fact, by using a generalization the virial theorem
a sugestive expression for the behaviour of the equation of state
was given, as well as a simplification for power-law hamiltonians.

ω =
〈p〉
〈ρ〉

=
〈L〉
〈H〉

ω =
2nV

1 + nV

nT

− 1

Thanks for your attention!
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