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Aim 

• Our aim is to construct a UV-finite theory of 
quantum gravity that is not plagued by 
pathologies such as ghosts 

• Towards that end, we consider a scalar field 
theory toy model 

• Based on that, can we formulate a complete 
theory of quantum gravity? 



Degree of Divergence in GR 

• The superficial degree of divergence in d 
dimensions is  

• L is the number of loops, V is the number of 
vertices and I is the number of internal 
propagators 

• Use the topological relation  

• In four dimensions, we get 

• The superficial degree of divergence keeps 
increasing as L increases  



Renormalizability of GR  

 

• Einstein-Hilbert action: 

 

 

• Pure gravity is renormalizable at 1-loop order 

• 1 new counterterm required at 2-loop order 



Renormalizability of GR  

• Stelle (1977) has shown that fourth-order pure 
gravity is renormalizable! 

 

 

• We do not have to include  

because of the Gauss-Bonnet topological invariance 
in four dimensions: 

 

vanishes in Minkowski spacetime 

 

 

 

 



Ghosts 

• Unfortunately, Stelle’s theory, as higher-
derivative theories generically do, contains 
ghosts (poles in the propagator with negative 
residue); specifically, a massive spin-2 ghost 

 

 

• Unitarity is violated 

• We want to get rid of the ghost 

 



Non-local Higher-derivative Gravity 

• The most general covariant action up to             (Biswas, 
Gerwick, Koivisto, Mazumdar, Phys. Rev. Lett. 108 (2012) 
031101) is 

 

•       is a differential operator containing covariant 
derivatives and 

• The quadratic curvature part of the action up to     
can be written, after many simplifications, as 

 

 

• Non-local means that we consider an infinite series 
of higher-derivative terms in the action 

 since the covariant derivatives take on the Minkowski values 



Non-local Higher-derivative Gravity 

• As we shall see later, if we choose 

   &                                              we obtain the 
ghost-free action (Biswas, Gerwick, Koivisto, 
Mazumdar, Phys. Rev. Lett. 108 (2012) 031101)  



Linearized Action 

• We want to obtain the            part of the action 

• If we perturb the metric fluctuations around the 
Minkowski background, we get (Biswas, Gerwick, 
Koivisto, Mazumdar, Phys. Rev. Lett. 108 (2012) 
031101)  

   

• We perturb the metric fluctuations around the 
Minkowski background   



Linearized Action 

• We have the relations (Biswas, Gerwick, Koivisto, 
Mazumdar, Phys. Rev. Lett. 108 (2012) 031101)  

 

 

 

 

 

• If                                        , then we observe   



Propagator in Non-local Higher-
derivative Gravity 

• As a consequence of the generalized Bianchi identities, we have 
 

 
 
 
 

   
• The field equations can be written in the form 
 

 
 

•                    is the  inverse propagator 
 
 

• The propagator is 
 
 

• To recover GR in the IR, we must have 
 

         As                         ,we obtain the physical graviton propagator    
 
 
 
 



Ghosts in Non-local Higher-derivative 
Gravity 

• If we apply the assumption                                 , then the propagator 
becomes  
 
 

• We are left with a single arbitrary function 
    since   
•  Provided             has no zeroes, only the graviton propagator is 

modified and ghosts are avoided (Biswas, Gerwick, Koivisto, 
Mazumdar, Phys. Rev. Lett. 108 (2012) 031101) 

• Choosing                  to be a suitable entire function, the ultraviolet 
behavior of the gravitons can be tamed 

• One such choice is                          
•         is a mass scale at which the non-local modifications become 

important 



Symmetries 

• Field equations of GR satisfy the global scaling symmetry  
 
 
 

• Quadratic curvature actions of the form  
       
 
                                        
 
        where the                   ‘s are analytic functions  of            , 
 
         are invariant under the aforementioned symmetry 
      
• When we expand the action around Minkowski space, the symmetry for                becomes, infinitesimally, 
      

 
• Relates the free and interaction parts of the action (not a fundamental symmetry); it is useful to have a theory 

with propagators and vertices having opposing momentum dependence, which is a key feature of gauge theories 
• We arrive at the shift-scaling symmetry 
  
 
•  We can formulate scalar toy model  whose quantum behavior resembles that of the full gravitational  theory 



Degree of Divergence in Non-local 
Gravity 

• Our modified superficial degree of divergence 
counting exponents is 

• Use again the topological relation 

• We obtain  

• For         ,     is negative, implying superficially 
convergent loop amplitudes 

• Clear contrast with GR 

   



Scalar Field Theory Toy Model Action 

• Our scalar field theory toy model action is 
 
 
 
 
 

• M is a mass scale at which the nonlocal modifications become 
important 

• Every propagator comes with an exponential suppression and every 
vertex comes with an exponential enhancement 

• The superficial degree of divergence argument for non-local 
theories of gravity also holds true for the scalar field theory toy 
model 



Propagator 

• Our propagator in Euclidean space is  

 

 

• The propagator is exponentially suppressed 

• As             , we obtain the         momentum 
dependence of the propagator in GR, as it 
should be in the IR 



Vertex Factors 

• We have that 

 

 

 

• The momenta are assumed to be incoming 
and satisfy the conservation law  

 

 

 

 



1-loop, 2-point diagram with external 
momenta 

• Here is the 1-loop, 2-point Feynman diagram 
with external momenta p, -p: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1-loop, 2-point diagram with external 
momenta 

• There are three types of terms in       : 

• i) With no exponential. It leads to a divergence         

   (      pole) when dimensionally regulated. 

• ii)With an exponential damping factor. They 
give rise to convergent results. 

• iii)Terms involving        . When dimensionally 
regulated, they give rise to no poles. 



1-loop, 2-point diagram with external 
momenta 

• We have that 

     

 

 

 

 

 and                &    

The       pole in DR is equivalent to a         divergence if we employ a hard 
cutoff    



2-loop, 2-point diagram with zero 
external momenta 

For simplicity, we have set the external momenta equal to zero. 

 where  



2-loop, 2-point diagram with zero 
external momenta 

• We can write the exponential part of             as 
                                              ,where the      ‘s are quadratic      
 
polynomials of              and      ‘s are constants taking on the values  

 
• We can write                                         (             are linear combinations 

of                 ) 
 

• If both                are negative, we get convergent integrals; if one is 
negative and the other is positive, we get a divergence after 
analytic continuation; if one is negative and the other is zero, we 
obtain a divergence   

                                     



The other 2-loop, 2-point diagram                              

Upon redefinition of the momenta, the two 2-loop 
diagrams give exactly the same result. 



2-loop, 2-point diagrams with zero 
external momenta 

• Using a hard cutoff     , we obtain a       
divergence 

• We observe that 

• The degree of divergence stays the same    



Summary of Feynman diagram 
computations 

• At 1-loop, the degree of divergence is       
(hard cutoff) 

• At 2-loop, the degree of divergence also stays 

 

• Hence, we do not get higher divergences as 
we proceed from 1-loop to 2-loop 

• Gives hope towards renormalizability 

 

 



Dressed Propagators 
• If we sum the infinite geometric series of loop corrections to 

the propagator, we obtain the dressed propagator 

 

 

 

• We have that  

 where                  is the renormalized  1-loop, 2-
point function 

• We have that                                                in the UV 

 

 

 



Dressed Propagators 

• We observe that the dressed propagator is more 
exponentially suppressed than the bare one 

• If we replace the bare propagators with the 
dressed propagators, convergence of Feynman 
integrals is improved 

• Higher-point 1-loop graphs & 2-loop graphs 
become finite in the UV 

• Only 1-loop, 2-point function diverges 
• Once we remove the aforementioned divergence, 

the theory at the 1-loop level is renormalized 
• We believe that higher loops remain finite     

 



Heuristic argument for 2-point & 3-
point diagrams 

• We consider 2-point & 3-point diagrams which 
can be constructed out of lower-loop 2-point & 3-
point ones 

• Since                              & 

  where         is the 3-point function & 

 we have that the most divergent UV part of the 2-
point diagram for zero external momenta is      

  

                               



Heuristic argument for 2-point & 3-
point diagrams 

  
• Similarly, for the 3-point diagram,   

 
 
 

• We observe that both the 2- & 3-point diagrams become finite if 
 

• Even when one includes non-zero external momenta, finiteness is 
assured     

• One can recursively check that                               for higher loops, 
which is as would be expected since the exponential suppression 
coming from the propagators is now stronger than the exponential 
enhancement originating from the vertices                    



Conclusions 

• Nonlocal gravity possesses many novel features 
• Ghosts are avoided 
• The degree of divergence stays the same as we 

proceed from 1-loop to 2-loop 
• Dressed propagators improve the convergence at 

all loop orders 
• Once we renormalize the 1-loop graphs, higher-

loop graphs do not produce new divergences 
• A renormalizable & ghost-free theory of quantum 

gravity may be within reach 


