—
AD
C=

3.
)
AJ 4

Q1D

1

o gt
|

T
oAl )]

d

1

d

‘/\/ﬁ




Motivation

Study the Wald’s entropy for infinite higher derivative
gravity.

Study the area law when gravity is being modified in
the UV.

Entropy of such gravity on (A)dS background.

Study the result in the context of non-singular
bouncing cosmology.



An Old Problem!

UV is pathological and IR is well behaved.

What terms shall we add so that the

gravity becomes well behaved in short
distances and early times?
(While keeping the general covariance)



Most general higher order action

Stot - SEH + SUV

SEH — ! /d4:1: vV—9R

167G
SUV _ /d4$\/—_g [(RulmAlal 05:;112;;200121%“2’”2)‘202) + .. ]

- Contains covariant operators such as D’Alembertian operator.

These corrections are expected to arise
naturally in string field theory, where they are
analogous to have all orders of = corrections.



Simplification

Using integration by parts, Bianchi identities and the
symmetry properties of the Riemann tensor, we
simplify the action to

1
5t = / d*ov/=g[R + o (RF:(On)R

+RMV-F2(DM)R“V e RuuAa‘FB(DM)RMVAG)]

a has inverse of mass squared dimensio

DM — |:|/]\42




Equations of Motion

Biswas,Conroy,Koshelev, Mazumdar (2014)
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Linearised EoM

= / d*zy/=g [R+ RF1(O)R + Ry Fo(O)R* + RyuapFs(0)RH 7]

1
Ropov = 3 (0sOuhpy + 0v0phps — 8,0uhpe — 0x0phyw)

1 g (o8
g/_u/ s npu _ hp,u . By= 5 (3,,3“’7,1, + 8,,8(,h“ — 8,,8“h — th,) ;

R =08,8,h* — Oh,

O =n""0,0, and h = n*"h,.

P = —% [a(D)Dh"‘ﬁ +5(0)0,(8*h°F + 8°h°®) + ¢(Q) (0°0°h + n**9,0, k)

+ d(O)*0h + f(D)D‘laaaﬂB,,Buh“”] :
where we have defined the functions a, b, ¢, d, f
a(0) = 1+ 275(0)0 + 8F:(0)1 ,
b(O) = —1—2F(0)0 —8F3(O)O,
c(d) =1-8FA (OO - 2F(O)O,
d(d) = -1+ 8/ (O0)O+ 25(0O)O
f(O) =8F(O0)O+ 4F(O)O + 8F3(0O).




Bianchi Identities

a(0)0hpw + b(0)05 (8, kS + 8,h3) + ¢(O) (1 805k + 8,0, h)
+ Nud(0)0h + f(O)O'05020,0,h*° = —2k7,, with k= M,

Q Q

=i =) = (¢ + d)00,h + (a v b)ThY

Which implies:

a+b=0;, c+d=0; b+c+f=0.

As long as F’s are analytical functions aroundm
We have

a(0) = ¢(0) = —b(0) = —d(0) = 1 and £(0) =0

This insures we recover GR in IR limit.



Graviton Propagator

Using the field equations

—1A
H“V “hire = KTuw

One obtains the graviton propagator using the spin projection
operators corresponding to the spin-2, the two scalars, and the vector

degree of freedom. (See Spyros Talk)

For D-dim propagator
see (arXiv:1509.01247)

Ghost free action as no new
— s propagating degree of freedom
k? 2192] [ k? other than the massless

graviton.

1
lim II ~
oo a(k?) [




Ghost Free Condition

The theory will be ghost free if “a” is an entire
function and “a-3c¢” has at most a single zero.

Since, we do not wish to introduce any new extra
degrees of freedom other than the massless graviton
throughout the IR to the UV:

a(Um) = c(0m)

= 2./—"1(|:|M) —+ fz(DM) —+ 2.F3(DM) = U .




Wald's Entropy

consider a simple static, homogeneous and isotropic

metric
ds* = —f(r)dt® + f(r)~1dr® + r*dQ?

For a spherically symmetric Black hole we define the entropy as

Sw = —8n 7{ ( oL )(0) o(r)dQ?

5th'r't

where we construct two normal directions along r and t with

$ = §'r'='r'H t=const

Area = f q(r)dQ?

q(r)dQ? = r2(dh? + sin® Odg?

The area of the horizon:

Where,




Wald's Entropy

1

tot __
i 167G

/ d*zv/—g[R+ o (RF(OM)R

+R,, Fo(Ou)R* + Ruvre F3(Onr) R¥)]

Area

4G

a(DM) — C(DM)
= 2f1(|:|M) + .F2(I:|M) -1 2.F3(|:|M) = 0.

[1 + « {2F1(DM) + fz(DM) + 2?3(5]\/_[)} R]

« Holographic nature of gravity remains
preserved.

* Higher order corrections yield zero
entropy .

* Holography is an IR effect.

* Ground state of gravity?




What is the entropy in the linearised limit?

Assume that we modify the metric with two
Newtonian potential such that the r and t directions
take the following form

ds® = —(1 +2®(r))dt* + (1 — 2%(r))dr?

Area
1420 — 20
g Ut

+a [2F1 (DM) + FQ(DM) -+ 2F3(|:|M)] (—2(1)”)}

Sw =

Note that when W = ® and 2F1 +F2 + 2F3 = o, for any source
term within the linearised limit, the gravitational entropy
duly reduces to that of EH entropy.



CherEseenaBle st

What if we don’t consider spherically mertic? Namely
® and W are different?

What if we introduce extra propagating degrees of
freedom apart from the massless graviton? (Such as in
f(R)-theories) (Implies “a” and “c” are not equal). This
is interesting in the context of cosmological
singularity.



Black hole entropy in D-dim

Our result can be generalised to D-dim.

ds? = —f(r)dt? + f(r)"tdr? + r2dQ% _,

Ag = j{ rP-2d03,
r=ry,t=const

Ap
Sw = 7 e ——[1+a2F:(O)R

. ‘F2 (D) (g'r'rRtt e g'r'rR'r'r) L 4F3(D)thrt)]




Black hole entropy in D-dim

We can decompose the entropy equation into (r,t)
and its spherical components.

Where the dimensions can be obtain via:

9" 9w = 9%°gab + g™ gimin =

Expanding the scalar curvature into Ricci
and Riemann tensors, along with the
properties of the static, spherically

symmetric metric
) g'r'r'Rtt + g'r'rR'r'r = _gttht . grrRrr = —g

— 4Rytrt = 29°° Rop — 29°°g™™



Black hole entropy in D-dim

In a static, spherically symmetric background

Sw = 211 | o(2F, (0) + Fo(O) + 2F5(0))x

4Gp
g“bRa,b + 2a(.7:1(D)gmﬁRmn — F3 (D)gabgﬁmRﬁmﬁb)]-

The angular components of the Ricci tensor are given by
n runs from 1 to (d-2)

Rgn 9, = sin_2(9n)R9n Y/ satisfying each angular

For the given metric: direction.

Rg,6, = (D —3)— (D —3)f(r) —rf'(r) =0

With solution: Considering the metric and the

solution one realises
Schwarzschild solution.




Black hole entropy in D-dim

Thus, when considering a Schwarzschild solution, all

Ry.p, components, will vanish. This is a consequence
of the axisymmetric properties of the solution.

Therefore:

Sy = —L[1 + a(2F(0) + Fo(O) 4 2F3(0)) X g% Rap)

4G p

Using We recover the Area law in to all dimensions.
f(O)=0,ie a0 =¢0),

Sw = '

2F1(0) + F2(0) + 2F3(0) =0

4Gp



Black hole entropy in D-dim

We insured that,

in the context of a static, spherically symmetric
metric, which asymptotes to Minkowski, the
holographic nature of gravity is preserved in the IR.

The higher-order corrections to the UV do not affect

the gravitational entropy as long as the only
propagating degrees of freedom are the massless
graviton.



D-DIMENSIONAL (A)dS ENTROPY

The original action must be modified by the
cosmological constant.

_1
16wGp

Itot —

/ d”z/—g[R — 2A
+a(RF1(O)R + R, Fo(O)R™
+Rune F3(O)RMA)] .

(D—-1)(D -2)
)i

positive sign corresponds to dS, negative to AdS.

1x =ik

Note: hereafter, the topmost sign will
refer to dS and the bottom to AdS.



D-DIMENSIONAL (A)dS ENTROPY

We can obtain the (A)dS metric by taking

fir) = (1 F 72—;)

(A)dS

AY
GlAas ; G ZH_ 1 4+ o(2F(0) + Fo(0O) + 2F3(0)) x

gabRab + 2a(F1 (D)gmnRﬁm — fS(D)gabgmanaﬁb)]

Considering the entropy equation and
using the definition of curvatures in

(A)dS backgrouds

=7 )/T[2]

1 D-1
- il_zg[p)\gu]ow Rul/ - :l:—29;l:l/a Vi

[ [2

h— (147 { f1, D(D-1)+f2y (D—1)+2fa,})

Note that f's are now only coefficients as they are not acting on any curvature.



4-dim (A)dS entropy

We note that upon using 4-dim the entropy’s
contribution takes the form of

12f10 +3f20 3 5 2f30

The difference from Minkowski case is due to the nature of propagator in (A)dS

* Gauss Bonnet Gravity

{R,poR"*P° — AR, R + R?}

Lo = 167 G D

S _ P Ap, (1 aD(D —2)(D — 3)) Our result can be

B + 212 matched upon reducing
the f's to appropriate
coefficients.

4G p




NON-SINGULAR BOUNCING COSMOLOGY AND
E@E@EGRARISIGENSER @R

The applications of seeking (A)dS gravitational entropy for
an infinite derivative theory of gravity is to understand the
initial conditions for the Universe.

Non-locality in gravity solves the cosmological singularity
problem, at least in the context of homogeneous and
isotropic metric, such as Friedmann-Robertson-Walker
(FRW) background. (1. Biswas, A. Mazumdar and W. Siegel [hep-th/0508194])



NON-SINGULAR BOUNCING COSMOLOGY AND
E@E@EGRARISIGENSER @R

1

I =
B 167G,

/ d'zv/=g (R — 2A + oRF,(O)R)

o0 to ensure that gravity remains ghost-free.

A reduced action of this type has been studied in where it was
shown in a FRW spacetime (consequently dS), that null rays can
be made past-complete without violating any relevant energy
conditions, thus replacing the cosmological singularity with a
bounce at t = o.

Well developed example:

— e~ 0/M? e~0/M* _q
e
O/M




NON-SINGULAR BOUNCING COSMOLOGY AND
E@EQ@GRARIGENIER @R

What's the gravitational entropy at the time of
bounce for a cosmological constant dominated
universe?

Observations:

» The entropy of a cosmological constant dominated
universe is less that what we have in EH gravity.

» Upon specific choice of dimensionful « the entropy
vanishes entirely.



Conclusion and future directions

We developed our understanding for infinite derivative theory of
gravity. A theory which is ghost- and singularity free.

We obtained the entropy over (A)dS background.
We gained some insight regarding the bouncing cosmology.

Could our Universe have begun its journey with a zero gravitational
entropy? As a zero entropy state for any system would be equivalent
to realising a ground state of the system.

In our case, it is the graviton which realises its ground state in the
presence of A and non-local gravity.

Could this lead to a new state of gravity such that our Universe would
yield a condensation of gravitons, at the moment of bounce, similar to
the Bose-Einstein condensate with a zero entropy state?

Towards (A)dS / CFT?...






