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• the physics of quarkonium and its 
relevance to the physics of Standard 

Model and beyond

• experimental/theoretical  
challenges and  opportunities

• the  state of the art theory tools 
confronted to  experimental  data
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Jülich,
Jülich,

52425,
G
erm

an
y

3
4
A
lbert

E
in
stein

C
en
ter

for
F
un

dam
en
tal

P
hysics,

In
stitut

für
T
heoretische

P
hysik,

U
n
iversität

B
ern

,
S
id
lerstraße

5,
3012

B
ern

,
S
w
itzerlan

d

3
5
F
aculty

of
P
hysics,

W
arsaw

U
n
iversity

of
T
echn

ology,
00-662

W
arsaw

,
P
olan

d

3
6
E
uropean

O
rgan

ization
for

N
uclear

R
esearch

(C
E
R
N
),

G
en
eva,

S
w
itzerlan

d

3
7
K
en
t
S
tate

U
n
iversity,

D
epartm

en
t
of

P
hysics,

K
en
t,

O
H

44242,
U
S
A

3
8
C
rete

C
en
ter

for
T
heoretical

P
hysics,

D
epartm

en
t
of

P
hysics,

U
n
iversity

of
C
rete,

71003
H
eraklion

,
G
reece.

3
9
L
aboratoire

A
P
C
,
U
n
iversité
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We highlight the progress, current status, and open challenges of QCD-driven physics, in theory
and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep
of physical problems, in settings ranging from astrophysics and cosmology to strongly-coupled,
complex systems in particle and condensed-matter physics, as well as to searches for physics beyond
the Standard Model. We also discuss how success in describing the strong interaction impacts other
fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of
the work we offer a perspective on the many research streams which flow into and out of QCD, as
well as a vision for future developments.
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The rich structure of separated energy scales makes QQbar  an ideal probe
Quarkonium as a confinement and deconfinement probe

It is precisely the rich structure of separated energy scales that makes quarkonium an
ideal probe of confinement and deconfinement.

• The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.
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Low lying QQ̄ High lying QQ̄

◦ Godfrey Isgur PRD 32(85)189

• Different quarkonia will dissociate in a medium at different temperatures, providing
a thermometer for the plasma.

◦ Matsui Satz PLB 178(86)416

At zero temperature 

quarkonia probe the perturbative (high energy)  and non 
perturbative region (low energy)  as well as the transition 

region in dependence of their radius r

Quarkonium as a confinement and deconfinement probe
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Quarkonium can serve for the precise extraction of 
Standard Model parameters: heavy quark masses and 

strong coupling constant αs
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Quarkonium decay into new particles?

Mode Mass range ( GeV) BF upper limit (90% CL)
Υ(2S , 3S )→ γA0, A0 → µ+µ− 0.21 < mA < 9.3 (0.3 − 8.3) × 10−6

Υ(3S )→ γA0, A0 → τ+τ− 4.0 < mA < 10.1 (1.5 − 16) × 10−5

Υ(2S , 3S )→ γA0, A0 → hadrons 0.3 < mA < 7.0 (0.1 − 8) × 10−5

Υ(1S )→ γA0, A0 → χχ̄ mχ < 4.5 GeV (0.5 − 24) × 10−5

Υ(1S )→ γA0, A0 → invisible mA < 9.2 GeV (1.9 − 37) × 10−6

Υ(3S )→ γA0, A0 → invisible mA < 9.2 GeV (0.7 − 31) × 10−6

Υ(1S )→ γA0, A0 → gg mA < 9.0 GeV 10−6 − 10−2

Υ(1S )→ γA0, A0 → ss mA < 9.0 GeV 10−5 − 10−3

Table 3. Results of light Higgs boson searches performed by the BABAR Collaboration.

from e+e− → γγ, radiative Bhabha, and two-photon fusion events. The A0 yield is extracted by a
series of unbinned likelihood fits to the photon energy distribution for 0 < mA0 < 7.8 GeV. No excess
is seen, and limits on the branching fraction at the level of (0.7 − 31) × 10−6 are derived with 90%
confidence level [13].

3.5 Search for Υ(1S )→ γA0, A0 → gg or ss

.
A recent search was performed by BABAR for Υ(2S ) → π+π− − Υ(1S )),Υ(1S ) → γA0, A0 →

gg(orss). Selected events with final states consisting of three or more light adrons, in addition to the
two pions from the Υ(2S ) decay, and the radiative photon. A total of 26 final states composed of
light hadrons were studied, including some containing at least a kaon pair, which were assigned to
the A0 → ss decay. The main background is due to Υ(1S ) decay to ggg, where one of the π0 of the
hadronization decays to photons, one of which is mistaken for the radiative one. The A0 mass range
explored is 0.5 to 9 GeV. We observe no signals [14]in the hadronic invariant mass spectra, and set
upper limits at 90% CL limits on the product branching for Υ(1S )→ γA0, A0 → gg from 10−6 to 10−2

; for the branghing ratio Υ(1S ) → γA0, A0 → ss the corresponding limits are from 10−5 to 10−3 We
do not observe a NMSSM A0 or any narrow hadronic resonance.

4 Search for light dark matter

We have now overwhelming astrophysical evidence for dark matter with several possibly related
anomalies observed. There is more than one explanation, of course, and most models introduce a
new dark force mediated by a new gauge boson with a mass around a GeV. Dark matter particles are
expected at the TeV scale, but the lightest particles in which they would annihilate could be pairs of
light dark bosons, which subsequently could only decay into lepton pairs, or scatter. This light hidden
sector is poorly constrained, and it is worth exploring the possibility that these particles are produced
at accelerators. B-factories offer a low background environment , so signatures of dark particles at the
MeV/GeV scale, should not escape detection, and a discovery would allow to probe their structure.
The 2 sectors could interact via kinematical mixing, and the value of the mixing parameter would be
the key to a possible detection. The dark photon, the equivalent of the e.m. photon, could have a mass
of the order from MeV to GeV, and would couple to the SM fermions with a charge ε. The preferred
value for ε is from 10−5 to 10−3 and several experiments have already put limits. The hidden boson
masses are usually generated via the Higgs mechanism, adding hidden Higgs bosons (h′) to the theory.
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Figure 6. Constraints on the mixing parameters, ε, as a function of the hidden photon mass derived from searches
in Υ(2S , 3S ) decays at BABAR (orange shading) and from other experiments [18–20] (gray shading). The red
line shows the value of the coupling required to explain the discrepancy between the calculated and measured
anomalous magnetic moment of the muon [? ].

10−10 − 10−8 are excluded for a large range of hidden photon and hidden Higgs masses, assuming
prompt decays. Assuming αD = α " 1/137, limits on the mixing strength in the range 10−4 − 10−3

are derived, an order of magnitude smaller than the current experimental bounds extracted from direct
photon production in this mass range.

5 Summary

More than 5 years after completion of the data taking, the BABAR collaboration is still very active.
The great amount of data collected is stimulating new ideas. The T violation measurement is a first
and constitues a beautiful proof of the CPT theorem. Searches for exotic particles have not given
positive results, but have contributed to considerably narrow the parameters space. One of the hot
topics in Particles Physics is now dark matter: recent evidence has suggested that dark matter might
contain a MeV- GeV scale component. Thanks to their large luminosities, B factories provide an ideal
environment to probe for such a possibility, complementing direct detection and satellite experiments.
No sign of light dark matter has been observed so far, but several new analyses are going on and we
still hope for surprises. A big step forward is expected with the atart of the Super flavor factory at
KEK: BELLE-II is expected to increase the sensitivity of these searches by a factor 10 − 100.
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Effective Field Theories

Whenever a system H, described by LQCD, is characterized by 2 scales Λ ! λ,
observables may be calculated by expanding one scale with respect to the other.
An effective field theory makes the expansion in λ/Λ explicit at the Lagrangian level.

The EFT Lagrangian, LEFT , suitable to describe H at scales lower than Λ is defined by
(1) a cut off Λ ! µ ! λ;
(2) by some degrees of freedom that exist at scales lower than µ

⇒ LEFT is made of all operators On that may be built from the effective degrees
of freedom and are consistent with the symmetries of L.

a hierarchy of EFTS can be formulated in 
correspondence to the hierarchy of scales
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range of validity of the EFT: energy < µ

a hierarchy of EFTS can be formulated in 
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• Since 〈On〉 ∼ λn the EFT is organized as an expansion in λ/Λ.

• The EFT is renormalizable order by order in λ/Λ.

• The matching coefficients cn(Λ/µ) encode the non-analytic behaviour in Λ. They
are calculated by imposing that LEFT and L describe the same physics at any
finite order in the expansion: matching procedure.

• If Λ $ ΛQCD then cn(Λ/µ) may be calculated in perturbation theory.
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In QCD another scale is relevant ΛQCD

Quarkonium with NR EFT: pNRQCD
strongly 
coupled 
pNRQCD

weakly 
coupled 
pNRQCD



Caswell, Lepage 86,
 Lepage, Thacker 88

                      Bodwin, Braaten, Lepage 95......

Quarkonium with EFT

established in a series of papers:
Pineda, Soto , N.B., Pineda, Soto, Vairo  97, 99

N.B. Vairo,   Pineda, Soto  00--015
N.B., Pineda, Soto, Vairo Review of Modern Physis 77(2005) 

1423
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predictions with measurements in hadron-hadron and ep collisions.
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I refer the reader to Ref. 1 as a supplement to this brief account.

1. FACTORIZATION OF THE INCLUSIVE QUARKONIUM

PRODUCTION CROSS SECTION

In heavy-quarkonium production in hard-scattering processes, two large momentum
scales appear: the heavy-quark mass m and the typical momentum transfer in the
hard scattering, which I will denote generically by pT . One would like to separate the
perturbative physics at these large momentum scales from the physics at smaller mo-
mentum scales that is associated with nonperturbative heavy-quarkonium bound-
state dynamics. It has been conjectured2 that, for the inclusive quarkonium pro-
duction cross section at pT ! m, one can achieve such a separation and that one
can write the cross section in the following factorized form:

σ(H) =
∑

n

Fn〈0|O
H
n |0〉. (1)

The Fn are “short-distance coefficients.” They are essentially the process-dependent
partonic hard-scattering cross sections convolved with the parton distributions. The
partonic hard-scattering cross sections depend only on the large scales m and pT ,
and they have an expansion in powers of αs. The quantities 〈0|OH

n (Λ)|0〉 are long-
distance matrix elements (LDMEs) that are formulated in terms of the effective field
theory nonrelativistic QCD (NRQCD). They give the probability for a heavy QQ̄
pair with a certain set of quantum numbers to evolve into a heavy quarkonium H .

1

NRQCD  factorization formula for quarkonium production 
valid for large p_T

 cross section

 short distance coefficients
partonic hard scattering cross section 

convoluted with parton distribution

 long distance matrix elements
give the probability of a qqbar 

pair with certain quantum 
number to evolve into a final 

quarkonium H

Bodwin Braaten Lepage 1995

they are vacuum expectation 
values of four fermion operators 
and contain color singlet and 

color octet contribution
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number to evolve into a final 

quarkonium H

Bodwin braaten lepage 1995

they are vacuum expectation 
values of four fermion operators 
and contain color singlet and 

color octet contribution

Explained the data at Fermilab on the cross section with the 
octet contribution (the singlet model failed)

!"#$%&'()*&#!!

•  Color Octet (CO) has been introduced, in  addition to Color Singlet 
(CS), to cope with the large discrepancies: 

       - Leading Order:  CO  dominant        quarkonium transversely polarized  
 
 
 

•  Nowadays the role of CO vs. CS is still on debate… 
       -  CS + CO: LO + NLO                       can reproduce data 
         -  CS   only: LO + NLO + NNLO*     not very far from data 
                          NNLO – NNLO* (part. of NNLO)  = ? 

+!,-.,/-0/,.! 12!34&5!!6(4%7&#8(9!:%&'()*&#!

M. Kraemer 01 CDF 97
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 short distance coefficients
partonic hard scattering cross section 

convolved with parton distribution

 long distance matrix elements
give the probability of a qqbar 

pair with certain quantum 
number to evolve into a final 

quarkonium H

Bodwin braaten lepage 1995

they are vacuum expectation 
values of four fermion operators 
and contain color singlet and 

color octet contribution

Difficulties in explaining quarkonium polarization at Fermilab   

!"#$%&'()*&#!!

•  Color Octet (CO) has been introduced, in  addition to Color Singlet 
(CS), to cope with the large discrepancies: 

       - Leading Order:  CO  dominant        quarkonium transversely polarized  
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+!,-.,/-0/,.! 12!34&5!!6(4%7&#8(9!:%&'()*&#!

Explained the data at Fermilab on the cross section with the 
octet contribution (the singlet model failed)
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Terrific progress in production in the last few years

• Proof of  NRQCD  factorization at NNLO Qiu, Nayak, Sterman 05-08

•Calculation of the differential singlet cross section 
at NLO and NNLO*

Gong, Wang 08 Artoisenet, 
Campbell,Lansberg, Maltoni,
Tramontano 07

•Development of fragmentation function approach/
SCET approach

• NLO calculation of J/psi photoproduction at HERA

• Full NLO calculation of the direct J/psi hadroproduction in NRQCD 

Qiu, Nayak, Sterman 050-014-S. Fleming et al 
012-013  

Artoisenet, et al.09, 
Butenschon Kniehl  09

 Butenschon Kniehl  010

• Global fit of NRQCD color octet matrix elements 
at NLO

Kuang ta Chao et al 010,
 Butenschon Kniehl  011 Kuang ta Chao et al 011,

•Polarization in hadroproduction at NLO Butenschon Kniehl  012, Chao et al 012,Gong et al 012
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• Global fit of NRQCD color octet matrix elements 
at NLO

Kuang ta Chao et al 010,
 Butenschon Kniehl  011 Kuang ta Chao et al 011,

•Polarization in hadroproduction at NLO Butenschon Kniehl  012, Chao et al 012,Gong et al 012

a coherent picture in NRQCD for quarkonium production at Tevatron, Rhic, 
Hera is emerging and is being scrutinized at LHC

many more data are produced by LHC : polarizations (J/psi, psi(2s), Y(nS)), 
ratio of chi states, double quarkonium production,  production of new states



NRQCD on the lattice for spectra calculations: 
many advances in the calculation of the 

matching coefficients in the lattice regularization 
and in considering higher order corrections in 
v^2: applications to  bottomonium, hyperfine 

separation..... still a challenge the excited states

NRQCD for exclusive decays, implement collinear 
degrees of freedom with SCET
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bound state formation 

pNRQCD is today the theory used to address 
quarkonium bound states properties
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in v and alpha_s

*Resumming the log

*Calculating/extracting  nonperturbatively the low energy  

quantities  

*Extending the theory (electromagnetic effect, 3 bodies)

The EFT  has not yet been  constructed 

*Degrees of freedom still to be identified

The EFT  is being   constructed 

*Results in the static limit that hints at a new physical picture

(Exotics close to threshold) 

(Finite T ) 

(away from the stong decay threshold)
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*Results in the static limit that hints at a new physical picture
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(Finite T ) 

only in particular cases  (X(3872)) a universal treatment is possible
E.  Braaten et al 

Important  to understand the X, Y, Z puzzles of the 
dozens of unexpected states showing up at the LHC 

and other collider experiments

Near theshold heavy-light mesons have to be included   and 
many additional degrees of freedom considered

No systematic treatment is available; lattice calculations are 
also challenging and in the infancy state in this case

pNRQCD treatment available at the moment for the exotics 
states made by excited glue: HYBRIDS

N. B., M. Berwein, J. Tarrus, A. Vairo 2015 
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Gluons with energy and momentum ∼ ΛQCD, mv2
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Singlet static potential
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pNRQCD

pNRQCD provides a QM description from field theory: the Schroedinger 
equation and the potentials appear once all scales above the binding energy 
have been integrated out

The EFT accounts for non-potential terms as well. They provide loop 
corrections to the leading potential picture. Retardation effects are typically 
related to the nonperturbative physics

The Quantum Mechanical divergences are cancelled by the NRQCD 
matching coefficients.

Poincare’ invariance is intact and is realized via exact relations among the 
matching coefficients (potentials)
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error bars when increasing the perturbative accuracy of

the prediction is manifest. We also recall that the differ-
ent perturbative orders always refers to the corrections to

the potential, i.e. the ãi coefficients in Eq. (10), but we

always use four-loop accuracy for the running of αs. If

one does not do that, and uses the running of αs at lower

accuracies, the χ2 values resulting from lower orders in

perturbation theory are much higher.

Let us now compare our result for ΛMS with other

recent extractions of the strong coupling. The present

analysis, together with our preceding paper [5], consti-

tutes, at present, the only extraction of ΛMS from the

QCD static energy with at least three flavors; therefore,

the only one that can be used to obtain αs(MZ). Other

analyses aiming at extracting ΛMS from the static energy

with less than three flavors include Refs. [25, 32, 33, 37–

40]. In particular, let us mention that the nf = 2 anal-

ysis of Ref. [25] concludes that smaller lattice spacings

than those currently available to them would be needed

to extract ΛMS. This reference uses Wilson fermions.

The data for the force that they use contains only three

points below r = 0.75r1, with none below r = 0.5r1. Our

analyses show that we would not have been able to ob-

tain ΛMS with that amount of data. In this sense, we

do agree with the findings of Ref. [25]. Regarding lattice

αs extractions from other observables, the FLAG collab-

oration recently presented, in Ref. [41], a comprehensive

and critical review of all the available αs lattice determi-

nations, and provided an average. We show this lattice

average, together with our new result, in Fig. 23 (note

that the FLAG average includes the result from Ref. [5]).

We also show in the figure a few other individual lattice

determinations of αs, a few selected recent non-lattice

determinations, and the PDG average excluding lattice

results [2]. Further determinations of αs, as well as dis-

cussions about them, can be found, for instance, in the

summary reports of recent dedicated workshops [36, 42].

VI. SUMMARY OF RESULTS AND

CONCLUSIONS

We have improved our previous extraction of αs, in

Ref. [5], from the comparison of lattice data with per-

turbative expressions for the static energy of a heavy

quark-antiquark pair. This has been possible because

a considerable amount of new lattice data at shorter dis-

tances has become available [6], which has allowed us to

carry out an extra number of cross checks and hence to

considerably reduce the systematic errors. In particu-

lar we have been able to correct for cutoff effects in the

shorter-distance points, to analyze the dependence on the

fit range, and to carry out separate analyses for different
lattice spacings. Thus we could, for instance, discard

points which are not in the perturbative regime, points

which suffer from large cutoff effects and, very impor-

tantly, avoid the lattice normalization errors that dom-

BBGPSV �this work�

PDG average w�o lattice
FLAG lattice average

thrust �Abbate et al.�thrust �Gehrmann et al.�

HPQCDWilson loops

HPQCDcorrelators
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FIG. 23. Comparison of our result for αs(MZ) in Eq. (15) -red

point- with a few other recent determinations -blue points-.

We include: The lattice determinations of the HPQCD [3],

PACS-CS [43] (we take the number quoted in Ref. [41]), and

ETM [44] collaborations (the latter paper uses nf = 2+1+1

simulations while the other two use nf = 2 + 1 simulations).

Non-lattice determinations from τ decays in Refs. [45, 46];

from thrust in e+e− collisions in Refs. [4, 47]; the recent H1

re-analysis of Ref. [48]; and the PDF-fit ABM13 result of

Ref. [49] (note that the error bars in this case do not include

effects from higher unknown perturbative orders). We also

show the lattice average by the FLAG collaboration [41] and

the PDG average excluding lattice results [2] -black points-.

inated our previous extraction. On the other hand, we

have used improved perturbative expressions, in which

not only the first renormalon is avoided, and the ultra-

soft logarithms resummed, but also the soft logarithms

are summed up. This appears to be necessary because

the lattice data covers a relative large range of distance

values now. Our final result reads

r1ΛMS = 0.495+0.028
−0.018, (16)

which corresponds to

αs(MZ , nf = 5) = 0.1166+0.0012
−0.0008. (17)

This updated result reduces the errors by roughly a factor

of two with respect to our previous extraction. It displays

a higher central value, which is, nevertheless, perfectly

compatible with our previous result.

The errors of the αs extraction presented here can in

principle be reduced by just incorporating more lattice

data at shorter distances, with no further modification

of the perturbative expressions, which are already at the

three-loop level. Notice that with the lattice data avail-

able at present, there is still little sensitivity to the ultra-

soft resummation, and hence we do not expect much sen-

sitivity to the yet unknown four-loop contribution. We

have also checked that there is no sensitivity to other

possible non-perturbative effects, like for instance those

due to gluon or quark condensates.

We conclude that the method first outlined in Ref. [33],

and further developed in the present paper, is not only
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entirely determined by the quark anomalous mag-
netic moment. Since the quark magnetic moment
appears at the scale m, it is accessible by pertur-
bation theory: κQ = 2αs(m)/(3π) + O(αs

2). As a
consequence, κQ is a small positive quantity, about
0.05 in the bottomonium case and about 0.08 in the
charmonium one. This is confirmed by lattice cal-
culations [423] and by the analysis of higher-order
multipole amplitudes (see Sect. 3.1.6).

• QCD does not allow for a scalar-type contribution
to the magnetic transition rate. A scalar interac-
tion is often postulated in phenomenological mod-
els.

The above conclusions were shown to be valid at any
order of perturbation theory as well as nonperturbatively.
They apply to magnetic transitions from any quarkonium
state. For ground state magnetic transitions, we expect
that perturbation theory may be used at the scale mv.
Under this assumption, the following results were found
at relative order v2.

• The magnetic transition rate between the vector
and pseudoscalar quarkonium ground state, includ-
ing the leading relativistic correction (parametrized
by αs at the typical momentum-transfer scale
miαs/2) and the leading anomalous magnetic mo-
ment (parametrized by αs at the mass scale mi/2),
reads

Γ(i → γ + f) =
16

3
α e2

Q

E3
γ

m2
i

×
[

1 +
4

3

αs(mi/2)

π
−

32

27
αs

2(miαs/2)

]
, (97)

in which i = 1301 and f = 1101. This expression
is not affected by nonperturbative contributions.
Applied to the charmonium and bottomonium case
it gives: B(J/ψ → γηc(1S)) = (1.6 ± 1.1)%
(see Sect. 3.1.2 for the experimental situation) and
B(Υ(1S) → γηb(1S)) = (2.85 ± 0.30) × 10−4 (see
Sect. 3.1.8 for some experimental perspectives).

• A similar perturbative analysis, performed for hin-
dered magnetic transitions, mischaracterizes the
experimental data by an order of magnitude, point-
ing either to a breakdown of the perturbative ap-
proach for quarkonium states with principal quan-
tum number n > 1, or to large higher-order rela-
tivistic corrections.

The above approach is well suited to studying the line-
shapes of the ηc(1S) and ηb(1S) in the photon spectra of
J/ψ → γηc(1S) and Υ(1S) → γηb(1S), respectively. In
the region of Eγ $ mαs, at leading order, the lineshape

is given by [424]

dΓ

dEγ
(i → γ + f) =

16

3

α e2
Q

π

E3
γ

m2
i

×

Γf/2

(mi − mf − Eγ)2 + Γ2
f/4

, (98)

which has the characteristic asymmetric behavior around
the peak seen in the data (compare with the discussion
in Sect. 3.1.2).

No systematic analysis is yet available for relativis-
tic corrections to electromagnetic transitions involving
higher quarkonium states, i.e., states for which ΛQCD

is larger than the typical binding energy of the quarko-
nium. These states are not described in terms of a
Coulombic potential. Transitions of this kind include
magnetic transitions between states with n > 1 and all
electric transitions, n = 2 bottomonium states being on
the boundary. Theoretical determinations rely on phe-
nomenological models, which we know do not agree with
QCD in the perturbative regime and miss some of the
terms at relative order v2 [407]. A systematic analysis
is, in principle, possible in the same EFT framework de-
veloped for magnetic transitions. Relativistic corrections
would turn out to be factorized in some high-energy coef-
ficients, which may be calculated in perturbation theory,
and in Wilson-loop amplitudes similar to those that en-
code the relativistic corrections of the heavy quarkonium
potential [174]. At large spatial distances, Wilson-loop
amplitudes cannot be calculated in perturbation theory
but are well-suited for lattice measurements. Realizing
the program of systematically factorizing relativistic cor-
rections in Wilson-loop amplitudes and evaluating them
on the lattice, would, for the first time, produce model-
independent determinations of quarkonium electromag-
netic transitions between states with n > 1. These are
the vast majority of transitions observed in nature.

Higher-order multipole transitions have been observed
in experiments (see Sect. 3.1.6), Again, a systematic
treatment is possible in the EFT framework outlined
above, but has not yet been realized.

3.1.2. Study of ψ(1S, 2S) → γηc(1S)

Radiative transitions in the charmonium system have
recently been explored using both lattice QCD [423] and
effective field theory techniques [407]. Key among these
are the magnetic dipole (M1) transitions J/ψ → γηc(1S)
and ψ(2S) → γηc(1S). Using a combination of inclusive
and exclusive techniques, CLEO [69] has recently mea-
sured

B(J/ψ → γηc(1S)) = (1.98 ± 0.09 ± 0.30)%

B(ψ(2S) → γηc(1S)) = (0.432± 0.016 ± 0.060)% , (99)

reducing the discrepancy between experiment and pre-
dictions from the nonrelativistic quark model [31]. The
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TABLE 23: Comparison of measured χcJ decay-width ra-
tios (using PDG08 [18] and its online update for 2009) with
LO and NLO determinations, assuming mc = 1.5 GeV and
αs(2mc) = 0.245, but without corrections of relative order v2.
LH ≡ light hadrons

Ratio PDG LO NLO

Γ(χc0 → γγ)
Γ(χc2 → γγ)

4.9 3.75 5.43

Γ(χc2 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

440 347 383

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc0 → γγ)

4000 1300 2781

Γ(χc0 → LH) − Γ(χc2 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

8.0 2.75 6.63

Γ(χc0 → LH) − Γ(χc1 → LH)
Γ(χc2 → LH) − Γ(χc1 → LH)

9.0 3.75 7.63

matrix elements is to go to the lower-energy EFT, pN-
RQCD, and to exploit the hierarchy mv ! mv2. In
pNRQCD, NRQCD matrix elements factorize into two
parts: one, the quarkonium wave-function or its deriva-
tive at the origin, and the second, gluon-field correlators
that are universal, i.e., independent of the quarkonium
state. The pNRQCD factorization has been exploited for
P-wave and S-wave decays in [176].

Quarkonium ground states have typical binding en-
ergy larger than or of the same order as ΛQCD. Matrix
elements of these states may be evaluated in perturba-
tion theory with the nonperturbative contributions being
small corrections encoded in local or nonlocal conden-
sates. Many higher-order corrections to spectra, masses,
and wave functions have been calculated in this man-
ner [152], all of them relevant to the quarkonium ground
state annihilation into light hadrons and its electromag-
netic decays. For some recent reviews about applica-
tions, see [445, 446]. In particular, Υ(1S), ηb(1S), J/ψ,
and ηc(1S) electromagnetic decay widths at NNLL have
been evaluated [248, 447]. The ratios of electromagnetic
decay widths were calculated for the ground state of char-
monium and bottomonium at NNLL order [447], finding,
e.g.,

Γ(ηb(1S) → γγ)

Γ(Υ(1S) → e+e−)
= 0.502± 0.068 ± 0.014 . (107)

A partial NNLL-order analysis of the absolute widths of
Υ(1S) → e+e− and ηb(1S) → γγ can be found in [248].

As the analysis of Γ(Υ(1S) → e+e−) of [248] illus-
trates, for this fundamental quantity there may be prob-
lems of convergence of the perturbative series. Prob-
lems of convergence are common and severe for all the
annihilation observables of ground state quarkonia and

may be traced back to large logarithmic contributions, to
be resummed by solving suitable renormalization group
equations, and to large β0αs contributions of either re-
summable or nonresummable nature (these last ones are
known as renormalons). Some large β0αs contributions
were successfully treated [448] to provide a more reliable
estimate for

Γ(ηc(1S) → LH)

Γ(ηc(1S) → γγ)
= (3.26 ± 0.6) × 103 , (108)

or (3.01 ± 0.5)× 103 in a different resummation scheme.
A similar analysis could be performed for the ηb(1S),
which combined with a determination of Γ(ηb(1S) → γγ)
would then provide a theoretical determination of the
ηb(1S) width. At the moment, without any resummation
or renormalon subtraction performed,

Γ(ηb(1S) → LH)

Γ(ηb(1S) → γγ)
$ (1.8–2.3) × 104 . (109)

Recently a new resummation scheme has been suggested
for electromagnetic decay ratios of heavy quarkonium
and applied to determine the ηb(1S) decay width into
two photons [449]:

Γ(ηb(1S) → γγ) = 0.54 ± 0.15 keV . (110)

Substituting Eq. (110) into Eq. (109) gives Γ(ηb(1S) →
LH) = 7-16 MeV.

3.2.2. Measurement of ψ, Υ → γgg

In measurements of the γgg rate from J/ψ [223],
ψ(2S) [224], and Υ(1S, 2S, 3S) [218], CLEO finds that
the most effective experimental strategy to search for
γgg events is to focus solely upon those with energetic
photons (which are less prone to many backgrounds),
then to make the inevitable large subtractions of ggg,
qq̄, and transition backgrounds on a statistical basis,
and finally to extrapolate the radiative photon energy
spectrum to zero with the guidance of both theory and
the measured high energy spectrum. The most trouble-
some background remaining is from events with energetic
π0 → γγ decays which result in a high-energy photon in
the final state. One of several methods used to estimate
this background uses the measured charged pion spectra
and the assumption of isospin invariance to simulate the
resulting photon spectrum with Monte Carlo techniques;
another measures the exponential shape of the photon-
from-π0 distribution at low photon energy, where γgg de-
cays are few, and extrapolates to the full energy range.
Backgrounds to γgg from transitions require the input of
the relevant branching fractions and their uncertainties.
The rate for ggg decays is then estimated as that fraction
of decays that remains after all dileptonic, transition, and
qq̄ branching fractions are subtracted, again requiring in-
put of many external measurements and their respective
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 -factorization; power counting; 
QM divergences absorbed by 
NRQCD matching coefficients
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 Spin dependent potentials  

Such data can distinguish different models for the dynamics 
of low energy QCD e.g. effective string model 

N. B., Martinez, Vairo 2014 
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= 3524.4 ± 0.6 ± 0.4 MeV ◦ CLEO PRL 95 (2005) 102003

Mhc
= 3525.8 ± 0.2 ± 0.2 MeV, Γ < 1 MeV ◦ E835 PRD 72 (2005) 032001

Mhc
= 3525.40 ± 0.13 ± 0.18 MeV, Γ < 1.44 MeV ◦ BES PRL 104 (2010) 132002

To be compared with Mc.o.g.(1P ) = 3525.36 ± 0.2 ± 0.2 MeV.
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Mhb

= 9902 ± 4 ± 1 MeV ◦ BABAR arXiv:1102.4565
To be compared with Mc.o.g.(1P ) = 9899.87 ± 0.28 ± 0.31 MeV.

Confirmed in the spectrum, e.g. no long range spin-spin 
interaction 



Exact relations from Poincare’  invariance
The EFT is still Poincare’ invariant-> this induces   relations 

among the potentials (this corresponds to 
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Low energy  physics factorized in Wilson loops: can be 
used to probe the confinement mechanism  
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Heating quarkonium systems  
T > 0
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(electromagnetic plasma)

V (r) ∼ −αs
e−mDr
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Bound state
dissolves

Quarkonium in a hot medium

But what is the potential at 
finite T?

up to few years ago 
phenonological potentials used 
or hints from other observable 

calculted on the lattice
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four spacetime dimensions as

δL(φi) =
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i

ci

Mdi−4
Oi, (1.22)

where Oi is an operator of dimension di > 4 and ci is the corresponding Wilson coeffi-

cient. It should be noted that even the parameters (couplings, massess, etc.) appearing

in L(φi) are not the same in the two regions, the difference given again by the matching

conditions.

Once the matching has been performed one can proceed further down in energy using

again the RG equation. It should be noted that the procedure we just sketched can

be perfectly iterated. Suppose that one of the light degrees of freedom, φj , as a mass

mj � mi, ∀i �= j: then one can repeat the previous steps, integrating out the field φj .

From this procedure we can understand that the EFT will clearly have the same IR

behavior of the starting theory but a different UV one.

1.3 NRQCD

We now concentrate on EFTs for heavy quarkonium systems. We remark that any non-

relativistic bound state develops a hierarchy of scales m � mv � mv2, where m is in

this case the heavy quark mass and v the velocity. Estimates for the physical systems of

charmonium and bottomonium give v2 ≈ 0.3 for the former and v2 ≈ 0.1 for the latter:

therefore a non-relativistic treatment is viable, but relativistic corrections need to be

considered, especially for charmonium. The scale of the m is called the hard scale, the

scale of the exchanged momentum mv is called the soft scale and the scale of the kinetic

energy mv2 is called the ultrasoft scale.
NonRelativistic QCD is then obtained by integrating out the hard scale m from the

QCD Lagrangian (1.1) with the methods of the previous section. In QCD there is

of course another intrinsic scale, ΛQCD: the position of this scale with respect to the

others will play an important role in the following section. In a non-relativistic system

energy and three-momentum scale differently; however for NRQCD we define a single

UV cut-off νNR = {νp, νs} satisfying m � νNR � ΛQCD, E, |p|. νp is the cut-off of the

relative spacial momenta |p| of the heavy quarks, νs is the cut-off of the energy E of the

heavy quarks and of the four-momenta of gluons and light quarks. Moreover the relation

nuNR � ΛQCD implies that the integration of the hard scale can be done perturbatively.

Once the integration has been performed heavy quark-antiquark pairs cannot be created

anymore so it is convenient to use non-relativistic Pauli spinors instead of Dirac spinors:

let then ψ(x) be the Pauli spinor field annihilating a heavy quark and χ(x) the one

creating a heavy antiquark. Furthermore if the quark-antiquark pair is of the same flavor

it can annihilate to hard gluons, which have been integrated out: in order to preserve

this physical aspects the NRQCD Lagrangian contains imaginary Wilson coefficients.

The NRQCD Lagrangian will thus be expressed as a power expansion in
1
m

2. Below the

2If the masses of the two quarks are different the expansion will be organized in powers of 1
ma

1mb
2
,

with a, b ≥ 0

14
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this case the heavy quark mass and v the velocity. Estimates for the physical systems of

charmonium and bottomonium give v2 ≈ 0.3 for the former and v2 ≈ 0.1 for the latter:

therefore a non-relativistic treatment is viable, but relativistic corrections need to be

considered, especially for charmonium. The scale of the m is called the hard scale, the

scale of the exchanged momentum mv is called the soft scale and the scale of the kinetic

energy mv2 is called the ultrasoft scale.
NonRelativistic QCD is then obtained by integrating out the hard scale m from the

QCD Lagrangian (1.1) with the methods of the previous section. In QCD there is

of course another intrinsic scale, ΛQCD: the position of this scale with respect to the

others will play an important role in the following section. In a non-relativistic system

energy and three-momentum scale differently; however for NRQCD we define a single

UV cut-off νNR = {νp, νs} satisfying m � νNR � ΛQCD, E, |p|. νp is the cut-off of the

relative spacial momenta |p| of the heavy quarks, νs is the cut-off of the energy E of the

heavy quarks and of the four-momenta of gluons and light quarks. Moreover the relation

nuNR � ΛQCD implies that the integration of the hard scale can be done perturbatively.

Once the integration has been performed heavy quark-antiquark pairs cannot be created

anymore so it is convenient to use non-relativistic Pauli spinors instead of Dirac spinors:

let then ψ(x) be the Pauli spinor field annihilating a heavy quark and χ(x) the one

creating a heavy antiquark. Furthermore if the quark-antiquark pair is of the same flavor

it can annihilate to hard gluons, which have been integrated out: in order to preserve

this physical aspects the NRQCD Lagrangian contains imaginary Wilson coefficients.

The NRQCD Lagrangian will thus be expressed as a power expansion in
1
m

2. Below the

2If the masses of the two quarks are different the expansion will be organized in powers of 1
ma

1mb
2
,

with a, b ≥ 0

14

T � gT � g2T . . .
?

Debye mass

Screening Scale

mD ∼ gT

and ΛQCD

Without heavy quarks an EFT already exists that 

comes from integrating out hard gluon of p \sim T: 

Hard Thermal Loop EFT

Braaten Pisarski  90 

-> obtain pNRQCD at 
finite T 
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Weak coupling

In the weak coupling regime:

• v ∼ αs " 1; valid for tightly bound states: Υ(1S), J/ψ, ...
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Effects due to the scale ΛQCD will not be considered.

We work under the conditions:
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pNRQCD at finite T allows us to 
define the  static QQbar  potential

in the medium in real time



pNRQCD supply the potential (weak coupling regime T>>gT)

•  The thermal part of the potential has a real and an imaginary part 

Landau damping 
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Discovery from new EFT calculations:
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octet transition

thermal breakup of a Q-Q ! 
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octet state and gluons
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The singlet static potential and the static energy (pNRQCD) 
•  Temperature effects can be other than screening

T > 1/r  and  1/r ~ mD ~ gT

exponential screening   
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no exponential screening, but 
power-like T-corrections  
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exponential screening but ImV � ReV

no exponential screening but 
power-like T corrections

 no corrections to the potential,
corrections to the energy 

We calculated the potential in the EFT for all 
the different scales hierarchies. There are 

preliminary lattice attempts to obtain the static 
potential 

 



The singlet static potential and the static energy (pNRQCD) 
We  have calculated the potential  for all the situations from T bigger 

than the inverse radius 1/r to smaller than the energy E
N.B., Ghiglieri, 

Petreczsky,Vairo

 The imaginary part is bigger than the real part before the screening exp{-m_D r} 
sets in 

->the imaginary part is responsible for QQbar dissociation !

:Quarkonium melts in the mediumStatic quark antiquark at T ! 1/r ! mD ! V

Divergences appear in the imaginary part of the potential at order αs

r
× (rmD)2 × (Tr).

They cancel in physical observables against loop corrections from lower energy scales.

We consider the case T " 1/r " mD " V . Integrating out mD from pNRQCDHTL

leads to an extra contribution δVs to the potential coming from

HTL propagator

Re δVs(r) ∼ g2r2T 3 ×
“mD

T

”3

Im δVs(r) = −
CF

6
αs r2 T m2

D

 

1

ε
− γE + ln π + ln

µ2

m2
D

+
5

3

!

Quarkonium melting temperature

The quarkonium melts in the medium when

Ebinding ∼ Γ

i.e.

g2

r
∼ g2Tm2

Dr2 ln
1

mDr

for 1/r ∼ m g2 and mD ∼ g T

T ∼ m g4/3 (ln 1/g)−1/3

◦ Escobedo Soto arXiv:0804.0691, Laine arXiv:0810.1112

Conclusions I

• In a framework that makes close contact with modern effective field theories for
non-relativistic bound states at zero temperature, we have studied the real-time
evolution of a heavy quarkonium in a thermal bath of gluons and light quarks.

• The derived potential is neither the quark-antiquark free energy nor the internal
energy. It is the real-time potential that describes the real-time evolution of a
quarkonium state in a medium. It encodes all contributions coming from modes
with energy and momentum larger than the binding energy.

• For T > E the potential gets thermal contributions.

• Two mechanisms contribute to the thermal decay width: the imaginary part of the
gluon self energy induced by the Landau damping phenomenon, and the
quark-antiquark color singlet to color octet thermal break up. Parametrically, the
first mechanism dominates for temperatures such that the Debye mass mD is
larger than the binding energy, while the latter dominates for temperatures such
that mD is smaller than the binding energy.

• In a medium, the quarkonium melts at a temperature πTmelting ∼ m g4/3 before
screening sets in.
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offer a systematic framework to do the  calculation for 
the first time, inpired calculations in lattice, strings ..



Υ suppression at CMS
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application to the study of
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The bottomonium ground state at finite T

The relative size of non-relativistic and thermal scales depends on the medium and on
the quarkonium state.

The bottomonium ground state , which is a weakly coupled non-relativistic bound state:
mv ∼ mαs,mv2 ∼ mα2

s
>
∼

ΛQCD, produced in the QCD medium of heavy-ion collisions
at the LHC may possibly realize the hierarchy

m ≈ 5 GeV > mαs ≈ 1.5 GeV > πT ≈ 1 GeV > mα2
s ≈ 0.5 GeV >

∼
mD,ΛQCD
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case of interest for LHC: bottomonium 1S below the 
melting temperature T_d

The complete mass and width up to O(mα5
s )

δE(thermal)
1S =

34π

27
α2
s T

2a0 +
7225

324

E1α3
s

π

[

ln

(

2πT

E1

)2

− 2γE

]

+
128E1α3

s

81π
L1,0 − 3a20

{[

6

π
ζ(3) +

4π

3

]

αs T m2
D −

8

3
ζ(3)α2

s T
3
}

Γ(thermal)
1S =

1156

81
α3
sT +

7225

162
E1α

3
s +

32

9
αs Tm2

D a20 I1,0

−

[

4

3
αsTm2

D

(

ln
E2

1

T 2
+ 2γE − 3− ln 4− 2

ζ′(2)

ζ(2)

)

+
32π

3
ln 2α2

s T
3
]

a20

where E1 = −
4mα2

s

9
, a0 =

3

2mαs
and L1,0 (similar I1,0) is the Bethe logarithm.

◦ Brambilla Escobedo Ghiglieri Soto Vairo JHEP 1009 (2010) 038

Consistent with lattice calculations of spectral functions

Lattice width
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Consistent with Γ
(thermal)
1S =

1156

81
α3
sT ⇒ αs ≈ 0.4.
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TABLE 12: Quarkonium-like states above the corresponding open flavor thresholds. For charged states, the C-parity is given
for the neutral members of the corresponding isotriplets.

State M, MeV Γ, MeV JPC Process (mode) Experiment (#σ) Year Status

Y (3915) 3918.4± 1.9 20± 5 0/2?+ B → K(ωJ/ψ) Belle [1050] (8), BaBar [1000, 1051] (19) 2004 Ok

e+e− → e+e−(ωJ/ψ) Belle [1052] (7.7), BaBar [1053] (7.6) 2009 Ok

χc2(2P ) 3927.2± 2.6 24± 6 2++ e+e− → e+e−(DD̄) Belle [1054] (5.3), BaBar [1055] (5.8) 2005 Ok

X(3940) 3942+9
−8 37+27

−17 ??+ e+e− → J/ψ (DD̄∗) Belle [1048, 1049] (6) 2005 NC!

Y (4008) 3891± 42 255± 42 1−− e+e− → (π+π−J/ψ) Belle [1008, 1056] (7.4) 2007 NC!

ψ(4040) 4039± 1 80± 10 1−− e+e− → (D(∗)D̄(∗)(π)) PDG [1] 1978 Ok

e+e− → (ηJ/ψ) Belle [1057] (6.0) 2013 NC!

Z(4050)+ 4051+24
−43 82+51

−55 ??+ B̄0 → K−(π+χc1) Belle [1058] (5.0), BaBar [1059] (1.1) 2008 NC!

Y (4140) 4145.8± 2.6 18± 8 ??+ B+ → K+(φJ/ψ) CDF [1060] (5.0), Belle [1061] (1.9), 2009 NC!

LHCb [1062] (1.4), CMS [1063] (>5)

D0 [1064] (3.1)

ψ(4160) 4153± 3 103± 8 1−− e+e− → (D(∗)D̄(∗)) PDG [1] 1978 Ok

e+e− → (ηJ/ψ) Belle [1057] (6.5) 2013 NC!

X(4160) 4156+29
−25 139+113

−65 ??+ e+e− → J/ψ (D∗D̄∗) Belle [1049] (5.5) 2007 NC!

Z(4200)+ 4196+35
−30 370+99

−110 1+− B̄0 → K−(π+J/ψ) Belle [1065] (7.2) 2014 NC!

Z(4250)+ 4248+185
−45 177+321

−72 ??+ B̄0 → K−(π+χc1) Belle [1058] (5.0), BaBar [1059] (2.0) 2008 NC!

Y (4260) 4250± 9 108± 12 1−− e+e− → (ππJ/ψ) BaBar [1066, 1067] (8), CLEO [1068, 1069] (11) 2005 Ok

Belle [1008, 1056] (15), BES III [1007] (np)

e+e− → (f0(980)J/ψ) BaBar [1067] (np), Belle [1008] (np) 2012 Ok

e+e− → (π−Zc(3900)+) BES III [1007] (8), Belle [1008] (5.2) 2013 Ok

e+e− → (γX(3872)) BES III [1070] (5.3) 2013 NC!

Y (4274) 4293± 20 35± 16 ??+ B+ → K+(φJ/ψ) CDF [1060] (3.1), LHCb [1062] (1.0), 2011 NC!

CMS [1063] (>3), D0 [1064] (np)

X(4350) 4350.6+4.6
−5.1 13+18

−10 0/2?+ e+e− → e+e−(φJ/ψ) Belle [1071] (3.2) 2009 NC!

Y (4360) 4354± 11 78± 16 1−− e+e− → (π+π−ψ(2S)) Belle [1072] (8), BaBar [1073] (np) 2007 Ok

Z(4430)+ 4458± 15 166+37
−32 1+− B̄0 → K−(π+ψ(2S)) Belle [1074, 1075] (6.4), BaBar [1076] (2.4) 2007 Ok

LHCb [1077] (13.9)

B̄0 → K−(π+J/ψ) Belle [1065] (4.0) 2014 NC!

X(4630) 4634+9
−11 92+41

−32 1−− e+e− → (Λ+
c Λ̄−

c ) Belle [1078] (8.2) 2007 NC!

Y (4660) 4665± 10 53± 14 1−− e+e− → (π+π−ψ(2S)) Belle [1072] (5.8), BaBar [1073] (5) 2007 Ok

Υ(10860) 10876± 11 55± 28 1−− e+e− → (B(∗)
(s) B̄

(∗)
(s) (π)) PDG [1] 1985 Ok

e+e− → (ππΥ(1S, 2S, 3S)) Belle [1013, 1014, 1079] (>10) 2007 Ok

e+e− → (f0(980)Υ(1S)) Belle [1013, 1014] (>5) 2011 Ok

e+e− → (πZb(10610, 10650)) Belle [1013, 1014] (>10) 2011 Ok

e+e− → (ηΥ(1S, 2S)) Belle [948] (10) 2012 Ok

e+e− → (π+π−Υ(1D)) Belle [948] (9) 2012 Ok

Yb(10888) 10888.4± 3.0 30.7+8.9
−7.7 1−− e+e− → (π+π−Υ(nS)) Belle [1080] (2.3) 2008 NC!

sured using ISR [1085]. The partial widths are mea-
sured to be Γ[ψ(4040, 4160) → ηJ/ψ] ∼ 1 MeV. Thus
it seems to be a general feature of all charmonium(-
like) states above the open charm thresholds to have in-
tense hadronic transitions to lower charmonia. A sim-
ilar phenomenon is found in the bottomonium sector:
In 2008 Belle observed anomalously large rates of the
Υ(5S) → π+π−Υ(nS) (n = 1, 2, 3) transitions with
partial widths of 300−400 keV [1079]. Recently Belle re-
ported preliminary results on the observation ofΥ(5S) →
ηΥ(1S, 2S) and Υ(5S) → π+π−Υ(1D) with anomalously
large rates [948]. It is proposed that these anomalies are
due to rescatterings [1086, 1087]. The large branching
fraction of the Υ(4S) → Υ(1S)η decay observed in 2010

by BaBar could have a similar origin [1088]. The mech-
anism can be considered either as a rescattering of the
DD̄ or BB̄ mesons, or as a contribution of the molec-
ular component to the quarkonium wave function. The
model in which Y (4260) is a D1(2420)D̄ molecule nat-
urally explains the high probability of the intermediate
molecular resonance in the Y (4260) → π+π−J/ψ transi-
tions [1089, 1090] and predicts the Y (4260) → γX(3872)
transitions with high rates [1091]. Such transitions have
recently been observed by BES III, with [1070]

σ[e+e− → γX(3872)]

σ[e+e− → π+π−J/ψ]
∼ 11%. (4.15)
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TABLE 10: Quarkonium-like states at the open flavor thresholds. For charged states, the C-parity is given for the neutral
members of the corresponding isotriplets.

State M, MeV Γ, MeV JPC Process (mode) Experiment (#σ) Year Status
X(3872) 3871.68± 0.17 < 1.2 1++ B → K(π+π−J/ψ) Belle [772, 992] (>10), BaBar [993] (8.6) 2003 Ok

pp̄ → (π+π−J/ψ) ... CDF [994, 995] (11.6), D0 [996] (5.2) 2003 Ok
pp → (π+π−J/ψ) ... LHCb [997, 998] (np) 2012 Ok
B → K(π+π−π0J/ψ) Belle [999] (4.3), BaBar [1000] (4.0) 2005 Ok
B → K(γ J/ψ) Belle [1001] (5.5), BaBar [1002] (3.5) 2005 Ok

LHCb [1003] (> 10)
B → K(γ ψ(2S)) BaBar [1002] (3.6), Belle [1001] (0.2) 2008 NC!

LHCb [1003] (4.4)
B → K(DD̄∗) Belle [1004] (6.4), BaBar [1005] (4.9) 2006 Ok

Zc(3885)+ 3883.9± 4.5 25± 12 1+− Y (4260) → π−(DD̄∗)+ BES III [1006] (np) 2013 NC!
Zc(3900)+ 3891.2± 3.3 40± 8 ??− Y (4260) → π−(π+J/ψ) BES III [1007] (8), Belle [1008] (5.2) 2013 Ok

T. Xiao et al. [CLEO data] [1009] (>5)
Zc(4020)+ 4022.9± 2.8 7.9± 3.7 ??− Y (4260, 4360) → π−(π+hc) BES III [1010] (8.9) 2013 NC!
Zc(4025)+ 4026.3± 4.5 24.8± 9.5 ??− Y (4260) → π−(D∗D̄∗)+ BES III [1011] (10) 2013 NC!
Zb(10610)+ 10607.2± 2.0 18.4± 2.4 1+− Υ(10860) → π(πΥ(1S, 2S, 3S)) Belle [1012–1014] (>10) 2011 Ok

Υ(10860) → π−(π+hb(1P, 2P )) Belle [1013] (16) 2011 Ok
Υ(10860) → π−(BB̄∗)+ Belle [1015] (8) 2012 NC!

Zb(10650)+ 10652.2± 1.5 11.5± 2.2 1+− Υ(10860) → π−(π+Υ(1S, 2S, 3S)) Belle [1012, 1013] (>10) 2011 Ok
Υ(10860) → π−(π+hb(1P, 2P )) Belle [1013] (16) 2011 Ok
Υ(10860) → π−(B∗B̄∗)+ Belle [1015] (6.8) 2012 NC!

LHCb evidence pointing towards existence of this chan-

nel [1003]. The dominant decay mode of the X(3872) is

D∗0D̄0 [1004, 1005, 1039], as expected for the molecule,

however, the absolute branching fraction is not yet de-

termined. These questions will have to wait for Belle II

data.

Charged bottomonium-like states Zb(10610) and

Zb(10650) are observed by Belle as intermediate

Υ(nS)π±
and hb(mP )π±

resonances in the Υ(5S) →
π+π−Υ(nS) and Υ(5S) → π+π−hb(mP ) decays [1013].

The nonresonant contribution is sizable for the Υ(5S) →
π+π−Υ(nS) decays and is consistent with zero for the

Υ(5S) → π+π−hb(mP ) decays. The mass and width of

the Zb states were measured from the amplitude analysis,

assuming a Breit–Wigner form of the Zb amplitude. The

parameters are in agreement among all five decay chan-

nels, with the average values M1 = (10607.4±2.0) MeV,

Γ1 = (18.4± 2.4) MeV and M2 = (10652.2± 1.5) MeV,

Γ2 = (11.5 ± 2.2) MeV. The measured Zb(10610) and

Zb(10650) masses coincide within uncertainties with the

BB̄∗
and B∗B̄∗

thresholds, respectively.

Belle observed the Zb(10610) → BB̄∗
and

Zb(10650) → B∗B̄∗
decays with the significances of 8σ

and 6.8σ, respectively, using the partially reconstructed

Υ(5S) → (B(∗)B̄∗
)
±π∓

transitions [1015]. Despite

much larger phase space, no significant signal of the

Zb(10650) → BB̄∗
decay was found. Assuming that the

decays observed so far saturate the Zb decay table, Belle

calculated the relative branching fractions of Zb(10610)

and Zb(10650) (Table 11). The Zb(10610) → BB̄∗
and

Zb(10650) → B∗B̄∗
decays are dominant with a branch-

ing fraction of about 80%. If the Zb(10650) → BB̄∗

channel is included in the decay table, its branching

fraction is B(Zb(10650) → BB̄∗
) = (25 ± 10)% and all

other Zb(10650) branching fractions are reduced by a

TABLE 11: Branching fractions (B) of Zbs in per cent.

Channel B of Zb(10610) B of Zb(10650)
π+Υ(1S) 0.32± 0.09 0.24± 0.07
π+Υ(2S) 4.38± 1.21 2.40± 0.63
π+Υ(3S) 2.15± 0.56 1.64± 0.40
π+hb(1P ) 2.81± 1.10 7.43± 2.70
π+hb(2P ) 4.34± 2.07 14.8± 6.22
B+B̄∗0 + B̄0B∗+ 86.0± 3.6 –
B∗+B̄∗0 – 73.4± 7.0

factor of 1.33.

Belle observed the neutral member of the Zb(10610)

isotriplet by performing a Dalitz analysis of the

Υ(5S) → π0π0Υ(nS) (n = 1, 2, 3) decays [1014]. The

Zb(10610)
0
significance combined over the π0Υ(2S) and

π0Υ(3S) channels is 6.5σ. The measured mass value

MZb(10610)0 = (10609± 6) MeV is in agreement with the

mass of the charged Zb(10610)
±
. No significant signal

of the Zb(10650)
0
is found; the data are consistent with

the existence of the Zb(10650)
0
state, but the available

statistics are insufficient to observe it.

To determine the spin and parity of the Zb states, Belle

performed a full 6-dimensional amplitude analysis of the

Υ(5S) → π+π−Υ(nS) (n = 1, 2, 3) decays [1040]. The

Zb(10610) and Zb(10650) are found to have the same

spin-parity JP
= 1

+
, while all other hypotheses with

J ≤ 2 are rejected at more than 10σ level. The high-

est discriminating power is provided by the interference

pattern between the Zb signals and the nonresonant con-

tribution.

Proximity to the BB̄∗
and B∗B̄∗

thresholds suggests

that the Zb states have molecular structure, i.e., their

wave function at large distances is the same as that of an
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isotriplet by performing a Dalitz analysis of the
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Zb(10610)
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significance combined over the π0Υ(2S) and

π0Υ(3S) channels is 6.5σ. The measured mass value

MZb(10610)0 = (10609± 6) MeV is in agreement with the

mass of the charged Zb(10610)
±
. No significant signal

of the Zb(10650)
0
is found; the data are consistent with

the existence of the Zb(10650)
0
state, but the available

statistics are insufficient to observe it.

To determine the spin and parity of the Zb states, Belle

performed a full 6-dimensional amplitude analysis of the

Υ(5S) → π+π−Υ(nS) (n = 1, 2, 3) decays [1040]. The

Zb(10610) and Zb(10650) are found to have the same
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est discriminating power is provided by the interference

pattern between the Zb signals and the nonresonant con-

tribution.

Proximity to the BB̄∗
and B∗B̄∗

thresholds suggests

that the Zb states have molecular structure, i.e., their

wave function at large distances is the same as that of an

Near theshold heavy-light mesons have to be included   and 
many additional degrees of freedom considered

No systematic treatment is available; lattice calculations are 
also challenging and in the infancy state in this case



We need a description of states close or above threshold from 
QCD 

Already the case of QCD without light quark is very 
interesting. The degrees of freedom are  heavy quarkonium, 

heavy hybrids and glueballs
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Gluonic excitations  in pNRQCD:more symmetry!
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pNRQCD predicts the     structure of 
multiplets at short distance and the 

ordering



We define symmetries and states in NRQCD

We match the energy and the states to 
pNRQCD  at order 1/m in the expansion (but no 
spin for now) and identify coupled Schroedinger 

equations for Sigma_u and Pi_u

These are  nonperturbative but 
would require lattice calculations of 

matrix elements

Lacking the lattice calculation, we 
identify the potentials with a multipole 

expansion in pNRQCD, solve the 
coupled equations and get the lowest 

ccbar, bbar and  bcbar muliplets
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Gluonic excitations  in pNRQCD: one can determine the 
form of the potential

+O(r2)
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Lowest energy multiplet Σ−
u –Πu

! The two lowest laying hybrid static energies are Πu and Σ−
u .

! They are generated by a gluelump with quantum numbers 1+− and thus are
degenerate at short distances.

! The kinetic operator mixes them but not with other multiplets.

! Well separated by a gap of ∼ 1 GeV from the next multiplet with the same CP.

Coupled radial equations for Σ−
u –Πu

[

−
∂2
r

m
+

1

mr2

(

l(l + 1) + 2 2
√

l(l + 1)
2
√

l(l + 1) l(l + 1)

)

+

(

E
(0)
Σ 0

0 E
(0)
Π

)]

(

Ψε,ΣN

ψN
ε,Π

)

= EN

(

ΨN
ε,Σ

ΨN
ε,Π

)

[

−
∂2
r

m
+

l(l + 1)

mr2
+ E

(0)
Π

]

ψ(N)
−ε,Π = ENψ

(N)
−ε,Π .

! The coupled Schrödinger equations can be solved numerically.
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Hybrid Static energies

! The hybrid static energy spectrum reads

EH = 2m + VH ,

with

VH = lim
T→∞

i

T
log

〈

Ha(T/2)Oa(T/2)Hb(−T/2)Ob(−T/2)
〉

.

! Up to next–to–leading order in the multipole expansion.

VH = Vo + ΛH + bHr
2 ,

! Vo(r) is the octet potential, which can be computed in perturbation theory.

! ΛH corresponds to the gluelump mass.

ΛH = lim
T→∞

i

T
log

〈

Ha(T/2)φadj
ab (T/2,−T/2)Hb(−T/2)

〉

,

where

φadj (T/2,−T/2) = P exp

(

−ig

∫ T/2

−T/2
dt A0 (R, t)

)

.
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ΛH and bH
are nonperturbative and should be obtained from 

lattice calculations

l JPC{s = 0, s = 1} E(0)
n

H1 1 {1−−, (0, 1, 2)−+} Σ−
u , Πu

H2 1 {1++, (0, 1, 2)+−} Πu

H3 0 {0++, 1+−} Σ−
u

H4 2 {2++, (1, 2, 3)+−} Σ−
u , Πu

H5 2 {2−−, (1, 2, 3)−+} Πu

TABLE II. JPC multiplets with l ≤ 2 for the Σ−
u and Πu gluonic states. We follow the naming

notation Hi used in [20, 26], which orders the multiplets from lower to higher mass. The last

column shows the gluonic static energies that appear in the Schrödinger equation of the respective

multiplet.

For |λ| = 1 we can define even and odd parity or charge conjugation states:

1√
2

(

v1l,m r̂+ ± v−1
l,m r̂−

)

·Ga
B Oa †|0〉 P→ ∓(−1)l

1√
2

(

v1l,m r̂+ ± v−1
l,m r̂−

)

·Ga
B Oa †|0〉 , (49)

1√
2

(

v1l,m r̂+ ± v−1
l,m r̂−

)

·Ga
B Oa †|0〉 C→ ∓(−1)l+s 1√

2

(

v1l,m r̂+ ± v−1
l,m r̂−

)

·Ga
B Oa †|0〉 . (50)

We see that the combination with a relative minus sign has the same P and C transformation

properties as the λ = 0 state, while the positive combination has opposite behavior.

Now the angular momentum L and the spin S can be combined with the usual Clebsch-

Gordan coefficients to form eigenstates of the total angular momentum J = L + S. Since

at this level of the approximation nothing depends on the spin, all the different spin com-

binations have the same energy and appear as degenerate multiplets. The JPC quantum

numbers are then {l±±; (l − 1)±∓, l±∓, (l + 1)±∓}, where the first entry corresponds to the

spin 0 combination and the next three entries to the spin 1 combinations. For l = 0 there

is only one spin 1 combination as well as only one parity or charge conjugation state (see

below), so we have {0++, 1+−}. In Table II the first five degenerate multiplets that can be

obtained are shown, arranged according to their energy eigenvalues (see section VI).

The λ = 0 state will be convoluted with the radial wave functions ψ(N)
Σ (r), while the radial

wave functions ψ(N)
±Π (r) will be convoluted with the |λ| = 1 states that have the relative ±

sign between the two projection vectors and orbital wave functions. The differential term

n̂′ · ∇2
r n̂ in the coupled Schrödinger equation not only changes the differential equations

for the orbital wave functions, it also adds additional diagonal and off-diagonal terms. The

24



Identification with experimental states

Most of the candidates have 1−− or 0++/2++ since the main observation channels
are production by e+e− or γγ annihilation respectively.

! Charmonium states (Belle, CDF, BESIII, Babar):

H1

H4
H2

H1'

DD Threshold

DsDs Threshold

Y!4008"#1!!$ Y!4220"#1!!$ Y!4260"#1!!$ Y!4140"#??+$ X!4160"#??+$ X!4350"#0%2""$ X!4360"#1!!$ X!4630"#1!!$ Y!4660"#1!!$
3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Mass!GeV"

! Bottomonium states: Yb(10890)[1−−], m = 10.8884± 3.0 (Belle). Possible H1

candidate, mH1 = 10.79± 0.15.

However, except for Y (4220), all other candidates observed decay modes violate
Heavy Quark Spin Symmetry.
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error
bands
come

from the 
uncertainty on the 

gluelump mass
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FIG. 5. Comparison of the results from direct lattice computations of the masses for charmonium

hybrids [48] with our results using the V (0.25) potential. The direct lattice mass predictions are

plotted in solid lines with error bars corresponding the mass uncertainties. Our results for the H1,

H2, H3, and H4 multiplets have been plotted in error bands corresponding to the gluelump mass

uncertainty of ±0.15 GeV.

splitting Ref. [48] V (0.5) V (0.25)

δmH2−H1
0.10 0.04 0.13

δmH4−H1
0.24 0.12 0.22

δmH4−H2
0.13 0.08 0.09

δmH3−H1
0.20 0.64 0.44

δmH3−H2
0.09 0.60 0.31

TABLE VII. Mass splittings between H1, H2, H3, and H4 charmonium hybrid multiplets for the

potentials V (0.5) and V (0.25) compared with the spin averages from the direct lattice calculation

of [48]. All values are given in units of GeV.

They studied the correlation functions of five operators on the lattice, three of them

corresponding to hybrid operators. They identified three hybrid states corresponding to the

ground states of the H1, H2, and H3 multiplets and one excited state of the H ′
1 multiplet.

Since no spin (or any relativistic) effects were included, the results given by Juge, Kuti, and

Morningstar are the masses of the degenerate multiplets, which correspond to the ones in
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Comparison to direct lattice calculations

We observe the same Lambda-doubling pattern in 
lattice calculations, multiplets that receive mixed 

contributions from Sigma_u and Pi_u  have lower 
masses  then those that remain pure Pi_u states



Conclusions
OutlookII

Nonrelativistic Effective  Field Theories provide a systematic tool 

to investigate a wide range of heavy quarkonium observables         

in the realm of  QCD

At  T=0, away from threshold, EFTs allow us to make calculations 
with unprecented precision, where high order perturbative 

calculations are possible and to systematically factorize short from 
long range contributions where observables are sentitive to the 

nonperturbative dynamics of QCD.
Some lattice calculations are still needed (glue correlators,

quenched and unquenched Wilson loops with field insertions).

 At finite T allow us to give the appropriate definition and define a 
calculational scheme for quantities of huge phenomenological interest like  

the qqbar potential and energies at finite T

In the  EFT  framework heavy quark bound states become a 
unique laboratory for the study of strong interaction from  the 

high energy to the low energy scales

Quarkonium is a golden system to study strong interactions



Outlook

the EFT  gives us a definition of physical objects that can then be
 evaluated with other tools 

the EFT  gives us  a factorization between high energy and low energy 
contributions: tools to evaluate the nonperturbative physics should be 

applied only to the low energy part 
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The intended network brings together leading scientists in the fields of particle, nuclear, atomic, condensed-matter, 
quantum optics, and computational physics. The resulting group of researchers will have the capacity to address 
some of the most interesting open physics problems such as, for instance, the understanding of universal features 
in the equilibrium and transport properties of novel states of matter found in contexts as diverse as graphene, cold 
atom systems, and the quark-gluon plasma. It will develop needed novel numerical, analytic and computational 
tools, 

in quarkonium (the low energy part will be typically contained in some type of 
Wilson loops), in QCD, in QED, in atomic physics, condensed matter, etc..

the EFT  approach is very versatile and flexible can be applied to many 
different problems in


