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•  AdS5xS5  is a solution:
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1 Introduction

Gauge-gravity duality [1] provides a unique arena to study quantum gravity in its most extreme
regimes. Its best understood formulation stipulates an equivalence between ten dimensional
IIB String Theory on AdS5 ⇥ S5 and four-dimensional N = 4 Super-Yang-Mills (SYM) with
gauge group SU(N). This AdS5/CFT4 duality is the most concrete example of the holographic
principle and provides a non-perturbative definition of string theory.

States of the field theory at large N and large t’Hooft coupling correspond to solutions of
classical gravity in the bulk. In particular, bulk black holes describe thermal states on the field
theory, with the field theory temperature T identified with the Hawking temperature of the AdS
black hole. We thus expect black holes in AdS5⇥S5 to play an important role in understanding
the phase diagram of N = 4 SYM.

According to the correspondence, the background spacetime for the field theory is specified
by the four-dimensional boundary of AdS5. Since N = 4 SYM is a conformal field theory, it
does not exhibit phase transitions on a scale-invariant background like Minkowski space M1,3.
Instead, a di↵erent background spacetime can be chosen which allows for a more interesting
phase structure. The phase structure of such solutions is a well-studied topic (see, e.g. the
review [2] and references therein). However, much of this study neglects e↵ects set by the
curvature scale of the S5.

In this manuscript, we construct new thermal phases where the S5 plays an important role.
One of the most well-studied backgrounds for the field theory is the Einstein static universe
Rt⇥S3. We will therefore be concerned with solutions that are asymptotically global AdS5⇥S5.
These solutions must satisfy the type IIB SUGRA equations of motion. With only the metric
g and Ramond-Ramond 5-form F(5) = dC(4) turned on, these equations are given by:
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•  Schwarzschild-AdS5xS5  is also a solution:

➙ Recalling   the  primordial   days:   AdS5 / CFT4

•  Type IIB  supergravity:



Microcanonical ensemble:
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Schwarzschild-AdS5 x S5:

… but now we have two scales: horizon radius r+ and S5 radius L

➙ But … we can have hierarchy of scales:
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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Horizon topology S3 × S5 



•  Recall  Gregory-Laflamme  instability  on  a  black  string  Mink 4 x S1  with r+ << L
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[ Banks, Douglas, Horowitz, Martinec, 1998 ] 
[ Peet, Ross, 1998 ]
[ Hubeny, Rangamani, 2002 ]  

CFT: spontaneous symmetry breaking  
SO(6) -> SO(5) 
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Figure 7: Phase diagram in the microcanonical ensemble that collects the information displayed
both in Fig. 2 and Fig. 5. The red line represents the AdS5-Schw⇥S5 BH; blue dots
represent the ` = 1 lumpy BH family; black inverted triangles describe the ` = 2
lumpy double BH branch; and the brown triangles represent the black belt branch.

Figure 8: Phase diagram in the canonical ensemble that collects the information displayed both
in Fig. 3 and Fig. 6. The red line represents the AdS5-Schw⇥S5 BH; blue disks
represent the ` = 1 lumpy BH family; black inverted triangles describe the ` = 2
lumpy double BH branch; and the brown triangles represent the black belt branch.
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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Figure 7: Phase diagram in the microcanonical ensemble that collects the information displayed
both in Fig. 2 and Fig. 5. The red line represents the AdS5-Schw⇥S5 BH; blue dots
represent the ` = 1 lumpy BH family; black inverted triangles describe the ` = 2
lumpy double BH branch; and the brown triangles represent the black belt branch.
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Figure 8: Phase diagram in the canonical ensemble that collects the information displayed both
in Fig. 3 and Fig. 6. The red line represents the AdS5-Schw⇥S5 BH; blue disks
represent the ` = 1 lumpy BH family; black inverted triangles describe the ` = 2
lumpy double BH branch; and the brown triangles represent the black belt branch.
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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• M. Headrick, S. Kitchen, and T. Wiseman, 0905.1822 

• OD,  J. Santos, B. Way, 1510.02804 

   Invited Topical Review for Classical and Quantum Gravity

➙ Numerical technology required to construct these solutions:

Einstein-De Turck method with spectral discretisation methods described in: 



➙ Technology required to construct these solution: 

Kaluza-Klein Holography

• 3 fundamental tasks to find and describe solution: 


• find asymptotic BCs <—> turning-off sources on CFT. 


• compute E, 


• compute  VEVs of dim reduced scalar fields


• Use  Kaluza-Klein Holography:  


1) dim reduction of asymptotic AdS5 × S5 (AdSp × Xq ) solns down to solns on AdS5


2) Apply holographic renormalisation to compute Tab, VEVs on bdry of AdS5.

[ Skenderis, Taylor, hep-th/0603016 ] 

See also Appendix of [ OD, Santos, Way 1501.06574 ]  



➙ Kaluza-Klein Holography:

g
MN

= go
MN

+ h
MN

, F
MNPQR

= F o

MNPQR

+ f
MNPQR

•  Write the fields as a deformation of AdS5 × S5

• Decompose d=10 {h,f} as a sum of  spherical harmonics of S5,     h= Σl ψl (z) Yl (x),     

that break SO(6) but preserve SO(5):

If the S5 is written as

d⌦2
5 =

4 dX2

2�X2
+
�
1�X2

�2
d⌦2

4 , (A.2)

the regular (axisymmetric) scalar spherical harmonics are given by

Y`(X) =

p
(`+ 2)(`+ 3)

2
1
2 (`+1)

p
3

2F1

✓
�`, `+ 4;

5

2
;
1

2

⇣
1 +X

p
2�X2

⌘◆
, (A.3)

and satisfy

⇤S5Y`(X) = ⇤` Y`(X), with ⇤` = �`(`+ 4), ` = 0, 1, 2, . . . (A.4)

The quantum number ` is a measure of the number of nodes along the polar direction X that
was quantised by requiring regularity at the poles X = ±1 of the S5; we set the azimuthal
quantum number m = 0 because these modes would further break the SO(5) symmetry. We
have chosen a normalisation in (A.3) so that

Z

S5
Y`1Y`2 = z(`1)�

`1`2 , with z(`) =
⌦5

2`�1(`+ 1)(`+ 2)
, ⌦5 = ⇡3. (A.5)

Now let us expand our lumpy BH solutions in terms of these harmonics. First, we write the
fields of the solution as a deformation of AdS5 ⇥ S5:

gMN = goMN + hMN , (A.6)

FMNPQR = F o
MNPQR + fMNPQR ,

where {go, F o
(5)} is global AdS5⇥S5. Here, h and f need not be small. The field fluctuations

abound global AdS5⇥S5 thus admit the harmonic expansion:

hµ⌫(z,X) =
X

`

h̃`µ⌫(z)Y`(X) , hµa(z,X) =
X

`

B̃`
µ(z)DaY`(X) ,

h(ab)(z,X) =
X

`

�̃`(z)D(aDb)Y`(X)) , haa(z,X) =
X

`

⇡̃`(z)Y`(X) , (A.7)

and

fµ⌫⇢�⌧ (z,X) =
X

`

5D[µb̃
`
⌫⇢�⌧ ](z)Y`(X) , faµ⌫⇢�(z,X) =

X

`

b̃`µ⌫⇢�(z)DaY`(X) ,

fabµ⌫⇢(z,X) = 0 , fabcµ⌫(z,X) = 0 , (A.8)

fabcdµ(z,X) =
X

`

Dµb̃
`(z) ✏abcd

eDeY`(X) , fabcde(z,X) =
X

b̃`(z)⇤` ✏abcdeY`(X),

where we use the symmetric traceless notation A(ab) =
1
2(Aab +Aba)� 1

5gabA
c
c. It follows from

the field equations that b̃`µ⌫⇢� is given by the algebraic relation b̃`µ⌫⇢� = ✏µ⌫⇢��
⇣
B̃`

� �D� b̃`
⌘
.

Therefore we do not discuss the fluctuations b̃`µ⌫⇢� any further. Note that the case ` = 1 is

special because D(aDb)Y` = 0 so �̃`=1 is not defined. The case ` = 0 is also special since ⇤` = 0,

DaY` = 0 and D(aDb)Y` = 0; therefore, �̃`=0, B̃`=0
µ and b̃`=0 are not defined. The expansion of

all other fields start at ` = 0.

21

1) dim reduction of asymptotic AdS5 × S5 (AdSp × Xq ) solns down to solns on AdS5

•  d=10 Harmonic coefs. ψl (z)  — upon dim reduction — give d=5 fields Ψl


        which are interpreted as scalar fields in the reduced AdS5 theory: VEVs ~ Ψl |∂AdS5 



• d=10 Harmonic coefs. ψl (z)  —> dim reduction —> give d=5 fields Ψl:  VEVs ~ Ψl |∂AdS5 


• In general, highly nonlinear map between Ψ and ψ. 


• For VEVs we only need the field Ψ up to certain order in a Fefferman-Graham expansion. 
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• EOM  in d=5 are:

 Ψl = ψl + Σk,m ( Jl km ψk ψm + Ll km Dμψk  Dμψm)+ O([ψl ]3) 

• EOM can be obtained from a 5-dim action: 

where ⌘ij = diag{�1, ⌘îĵ} with ⌘îĵ being the line element of a unit radius S3 and, to shorten
the presentation, we introduced the auxiliary constants {K0,K1,K2} such that {K0,K1,K2} =
{1, 1, 1} for i = j = t, while {K0,K1,K2} = {�1,�1/3, 31/17} for components i = j on the S3.
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with Gµ⌫ given by (A.43) (recall that Newton’s constant G5 is given by (3.2)). The first two
contributions in this action are the Einstein and cosmological terms (recall L = 1) that admit
AdS5 as a solution. Up to order O(z4), the potentials in this action are
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Variation of the 5-dimensional action w.r.t. the scalar fields indeed yields the massive Klein-
Gordon equations (A.41); note that ⇤ = ⇤AdS5 = ⇤G up to order O(z4).

The Einstein equation that follows from the 5-dimensional action (A.45) is
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where Rµ⌫ is the Ricci tensor of Gµ⌫ and the energy-momentum tensor reads
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As indicated by the second equality up to the relevant O(z4) only the scalar field S`=2 con-
tributes to the stress tensor.

A.5 Holographic renormalisation and Stress tensor.

We can now apply the standard holographic renormalisation procedure to the 5-dimensional
solution [51]. Introduce the Fe↵erman-Graham coordinate Z = z � 65
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for the 5-dimensional metric Gµ⌫ , and denote the boundary coordinates collectively by X.
Furthermore, collectively denote the scalar fields of the system by � = {S`, T `,�`KK} (where
�`KK are the massive KK gravitons described at linear order by (A.20)-(A.21)) and recall that
the conformal dimensions � (and �� = 4 � �) of the operators dual to these fields that are
given in Table 2.

The expansion around the holographic boundary Z = 0 for the 5-dimensional metric Gµ⌫ ,
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contributions in this action are the Einstein and cosmological terms (recall L = 1) that admit
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Furthermore, collectively denote the scalar fields of the system by � = {S`, T `,�`KK} (where
�`KK are the massive KK gravitons described at linear order by (A.20)-(A.21)) and recall that
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• KK nonlinear map between 5-dim Ψ and 10-dim ψ:



where ⌘ij = diag{�1, ⌘îĵ} with ⌘îĵ being the line element of a unit radius S3 and, to shorten
the presentation, we introduced the auxiliary constants {K0,K1,K2} such that {K0,K1,K2} =
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with Gµ⌫ given by (A.43) (recall that Newton’s constant G5 is given by (3.2)). The first two
contributions in this action are the Einstein and cosmological terms (recall L = 1) that admit
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the conformal dimensions � (and �� = 4 � �) of the operators dual to these fields that are
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2) Apply holographic renormalisation to compute Tab, VEVs on bdry of AdS5.

• Introduce 5-dim FG coord Z(z), &

  Do standard FG expansion and Holographic Renormalisation:

• Impose Dirichlet BCs that eliminate sources (non-normalizable modes): 

• Use standard Holographic Renormalisation on 5-dim spacetime to get VEVs, E 
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Table 2: Conformal dimensions �± of the scalar fields S`, T ` and of the KK gravitons �`
KK .

where the � = 2 case saturates the 5-dimensional Breitenlohner-Freedman (BF) bound, i.e.
�+ = �� = �BF . In Fig. 13, we plot the conformal dimensions of the several scalar fields
� = {S`, T `,�`

KK} as a function of the harmonic quantum number `. The BF bound is saturated
only for the field S`=2.

In the above o↵-boundary expansion, the non-normalisable modesG(0)ij ,�
2
(0),�

�
(0) are source

terms for the boundary QFT stress tensor and dual operators of dimension� = 2 and�, respec-
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by solving the field equations (A.47) and (A.41) of (A.45) subject to regular (ingoing) boundary

conditions at the BH horizon. All other coe�cients G(k)
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(k) of (A.49), typically represented

by dots, are expressed as a function of the (non-)normalisable modes and their derivatives.
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Figure 13: Conformal dimensions of the several operators that are present in the lumpy system.
From top to bottom the points connected by a continuous line are the conformal
dimensions �+ of the dual operator of the scalars T `, KK gravitons �KK

` , and
scalars S`. The dots connected by a dashed line represent the conformal dimension
�� = 4��+; in the region displayed, the plot shows only the dashed line associated
with the scalars S`.

At this point we can discuss the boundary conditions (BCs) that we impose in the holo-

graphic boundary Z = 0. We do not want to deform the boundary background so we fix G(0)
ij

to be the static Rt⇥S3 metric as a Dirichlet boundary condition. Moreover, we do not want to
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which, for the lumpy BHs, explicitly reads
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with ⌘îĵ being the line element of a unit radius S3. This holographic stress tensor is conserved,
(0)rihT iji = 0, and it is traceless, hT i

i i = 0.7

An important holographic quantity that we want to extract from (A.53) is the energy of the
solution. This is done by pulling-back hTiji to a 3-dimensional spatial hypersurface ⌃t, with

unit normal n and induced metric �ij = Gij
(0) + ninj , and contracting it with the Killing vector

⇠ = @t that generates time translations. The integral of this quantity gives the desired energy
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This is the main result of this Appendix. In the main text we will use (A.54) (rewritten in
(3.4) with factors of L restored) to determine the energy of the lumpy BHs. The energy of the
AdS5-Schw BH, ESAdS5/N

2 = (3/4)y2+
�
y2+ + 1

�
+ 3/16, is recovered when we set the lumpy

parameters to zero, �2 = �0 = �4 = 0.

B Numerical details and validity

In this appendix we discuss the validity of our numerical results, while giving further details of
the numerical construction of the AdS5⇥S5 lumpy BHs.

We start by testing the numerical convergence. We use pseudospectral collocation meth-
ods, and thus we expect exponential convergence with increasing number of grid points. We
demonstrate this convergence with the panel of Fig. 14. In this figure, as a typical example of
our results, we consider a lumpy BH at constant temperature T = 0.50065, and show how its
entropy changes as the number N of grid points is varied.

Next, we test numerical convergence of the norm of the deTurck vector ⇠2, defined below
(2.1). The Einstein-de Turck method solves Einstein equations in the gauge ⇠M = 0. Therefore,
the norm of the deTurck vector is a measure of how well this gauge condition is satisfied, and
verifies that we have a proper solution to the Einstein equations and not a DeTurck soliton
with ⇠M 6= 0. On the right panel of Fig. 14, we take a lumpy BH at constant temperature and
plot the square root of the norm of the DeTurck vector (evaluated at the asymptotic boundary,
y = 1, and at the rotation axis x = 1) as a function of the grid points. Again we confirm the
presence of exponential convergence. We find that

p|⇠2| < 10�12 everywhere.

7The lumpy BH asymptotes to global AdS5 which is conformal to the Einstein Static universe Rt ⇥ S

3, and
thus conformal to flat space. Therefore the gravitational conformal anomaly vanishes. Moreover a possible
contribution, both to the conservation equation and trace, of the form ��

(0)O� is not present because we impose

Dirichlet boundary conditions in the scalar field, ��
(0) ⌘ 0.
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Figure 4: Expectation values hOS2i (Left) and hOS3i (Right) of the dual operators to the KK
scalar fields S2 and S3 (here we set L = 1) for the ` = 1 lumpy BH. We find that
near the merger we have the fitting: hOS2i ' A (1� T/Tc)

↵ with A ' 0.0147±0.0001
and ↵ ' 0.966 ± 0.001; and hOS3i ' B (1� T/Tc)

� with B ' �0.1643 ± 0.0006 and
� ' 1.4739± 0.0006.

tonically away from the merger. This is much like the behaviour displayed in Fig. 4 for the
` = 1 case, so we do not present a separate plot.

Putting the ` = 1 and ` = 2 plots together, we get Fig. 7 for the microcanonical ensemble
and Fig. 8 for the canonical ensemble. We note that at the GL zero modes, the slope of the
entropy and free energy of the lumpy solutions match that of the AdS5-Schw⇥S5 BH. This
indicates a second-order phase transition and is consistent with the fact that these phases arise
perturbatively.

Now we attempt to analyse the approach of the lumpy solutions towards the conical mergers.
Let us first discuss the ` = 1 case. In the left panel of Fig. 9, we plot the Ricci scalar of the
induced horizon geometry on each of the poles of the S5 as a function of temperature. We see
that the Ricci scalar is getting large at one pole and small at the other pole. In the right panel
of Fig. 9, we plot the radius of the S3 at the horizon as a function of the polar variable x of
the S5 for four di↵erent temperatures. As the temperature decreases and we move away from
the GL zero mode we find that this radius is getting small at the South pole (x = 1), consistent
with the conjectured conical merger. As we mentioned earlier, we suspect topologically S8 BHs
on the other side of this conical merger.

Now we proceed with the ` = 2 case. In Fig. 10, we plot the Ricci scalar of the induced
horizon geometry at one of the poles of the S5 and at the equator, both as a function of
temperature. The curvature of the black belt branch is getting large at the poles. In Fig. 11,
we plot the radius of the S3 on the horizon as a function of the polar angle x of the S5 for
four di↵erent temperatures. In the right panel, we see that close to the conjectured conical
merger, the S3 radius of the black belt branch gets very small on the poles (x = 1) of the S5. In
the left panel, we see that the S3 radius of the double BH branch is decreasing on the equator
(x = 0) of the S5 as we approach the conical merger, though we are still somewhat far from
this conjectured merger. This also explains why the induced Ricci scalar is not yet appreciably
large at the equator for this family (see Fig. 10).
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` = 1 case, so we do not present a separate plot.

Putting the ` = 1 and ` = 2 plots together, we get Fig. 7 for the microcanonical ensemble
and Fig. 8 for the canonical ensemble. We note that at the GL zero modes, the slope of the
entropy and free energy of the lumpy solutions match that of the AdS5-Schw⇥S5 BH. This
indicates a second-order phase transition and is consistent with the fact that these phases arise
perturbatively.

Now we attempt to analyse the approach of the lumpy solutions towards the conical mergers.
Let us first discuss the ` = 1 case. In the left panel of Fig. 9, we plot the Ricci scalar of the
induced horizon geometry on each of the poles of the S5 as a function of temperature. We see
that the Ricci scalar is getting large at one pole and small at the other pole. In the right panel
of Fig. 9, we plot the radius of the S3 at the horizon as a function of the polar variable x of
the S5 for four di↵erent temperatures. As the temperature decreases and we move away from
the GL zero mode we find that this radius is getting small at the South pole (x = 1), consistent
with the conjectured conical merger. As we mentioned earlier, we suspect topologically S8 BHs
on the other side of this conical merger.

Now we proceed with the ` = 2 case. In Fig. 10, we plot the Ricci scalar of the induced
horizon geometry at one of the poles of the S5 and at the equator, both as a function of
temperature. The curvature of the black belt branch is getting large at the poles. In Fig. 11,
we plot the radius of the S3 on the horizon as a function of the polar angle x of the S5 for
four di↵erent temperatures. In the right panel, we see that close to the conjectured conical
merger, the S3 radius of the black belt branch gets very small on the poles (x = 1) of the S5. In
the left panel, we see that the S3 radius of the double BH branch is decreasing on the equator
(x = 0) of the S5 as we approach the conical merger, though we are still somewhat far from
this conjectured merger. This also explains why the induced Ricci scalar is not yet appreciably
large at the equator for this family (see Fig. 10).
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Microcanonical ensemble:

                    (fixed E)

Canonical ensemble:

              (fixed T)

➙ Thermal  Phases  of  AdS5xS5    and   their  competition  

S  / N2

E  / N2

A

B

Page 1
Page 1

Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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Figure 12: Conjectured phases diagram of asymptotically AdS5⇥S5 static BHs in the micro-
canonical (Left Panel) and canonical (Right Panel) ensembles (�F ⌘ F � FAdS5 ;
L ⌘ 1). The red line is the AdS5-Schw⇥S5 BH, the blue line AB describes the ` = 1
lumpy AdS5⇥S5 BH family with horizon topology S3⇥S5. The green diamond A is
the ` = 1 zero mode. The blue dashed line BC represents the conjectured localised
AdS5⇥S5 BHs with horizon topology S8. We expect there to be some point B which
is the conical merger between these solutions. The turning points must be cusps to
be consistent with the first law. The black square is the Hawking-Page (HP) critical
point. The magenta square D is the ` = 2 zero mode with the double BH branch
along the brown curve and the black belt branch along the black curve. There are
conjectured points E and F that mark conjectured conical mergers.

We should mention that, in the sketched phase diagrams of Fig. 12, we are probably
oversymplifying the structure of the solutions near the conical mergers. Indeed, it might well be
the case that the lumpy and localised branches will spiral towards the conical merger, leading
to an infinite discrete non-uniqueness similar to the one found in [33,34,43–45]. In the present
case, we do not approach the conical mergers su�ciently enough to address this question.

Of course, to fully complete these phase diagrams, the localised solutions need to be con-
structed. We leave this to future work that is currently in progress [46]. We note that it is not
necessary to resort to numerics to contribute to our understanding of this phase diagram. In
particular, small localised BHs and black belts should be well described by black branes, and
are hence amenable to a matched asymptotic expansion or a blackfold approximation (similar
to the analysis done in [15–17,22,26,47,48] for localised BHs on a S1 [46]).3

We also note that we have studied but two modes in the entire spectrum of spherical har-
monics on S5, and we have only focused on those preserving an SO(5) symmetry. The full phase
diagram is thus incredibly rich. Though, since the localised BHs connected to the ` = 1 modes
would possess a full SO(4)⇥SO(5) symmetry, they are likely the most symmetric of the single
localised S8 BHs, and are thus likely to be the entropically dominant phase for small energies
in the microcanonical ensemble. For ` > 1, we can have multi-BH configurations localised on
the S5 even with di↵erent sizes.

We have also only focused on global AdS5 which corresponds to a field theory background
on R ⇥ S3. Other backgrounds such as M1,2 ⇥ S1 [49] or BH backgrounds [2] yield gravity
solutions with physics near the AdS scale. It would be interesting to understand how breaking
the symmetries of the S5 will influence these geometries.

3We note that although asymptotically flat BHs only have a blackfold description when one of the spheres is odd,
the s4⇥S4 belts are not supported by angular momentum, but by the geometry of the S5.
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The boundary conditions are now simply given by q̂0i(0) = q̂0i(1) = 0.

Given an ↵ ⌘ ⌦HL, the equations of motion are a 9th order polynomial eigenvalue problem

in � ⌘ r
+

2/L2. We solve this problem using the Newton-Raphson method described in

the previous section. We expect the Gregory-Laflamme mode for rotating solutions to be

connected to that of Schwarzschild AdS
5

⇥ S5. Therefore, we can use the known value of �

in [407, 408] for ↵ = 0 as a seed for small ↵ perturbations. Our findings are shown in Fig. 2,

where we can see that increasing rotation shuts down the instability, since we need to move

towards smaller values of r
+

/L.

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■
■■■

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

r+/L

Ω
H
L

● ℓ = 1
■ ℓ = 2

FIG. 2: Onset of the rotating Gregory-Laflamme instability. The dotted line below ⌦HL = 1 is

the Hawking-Page transition and the dotted line above ⌦HL = 1 is extremality. The left (right)

vertical line is the onset of the ` = 1 (` = 2) mode. We expect that the left side of each of these

curves to be the unstable region. For ⌦HL = 0, our results reproduce those in [407, 408].

The results of Fig. 2 are physically interesting. We first note that the line with ⌦HL = 1

separates two distinct regions of the moduli space of the Hawking-Hunter-Taylor black hole

[334]. Solutions with ⌦HL > 1 were shown to be unstable to the superradiant instability [44],

whereas solutions with ⌦HL < 1 are expected to be linearly stable to the same instability22.

One could envisage a scenario where the onset of the rotating Gregory-Laflamme, presented

in Fig. 2, would asymptote from below to ⌦HL = 1 as r
+

/L increases. This would shield

22 Note that solutions with ⌦HL = 1 are likely to be nonlinearly unstable.
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FIG. 3: Entropy of rotating BHs in AdS versus their energy
with Kerr-AdS BHs (solid blue line) and black resonators (red
triangles). The black resonators all have y+ = 0.16.
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FIG. 4: Energy density in units of L at a moment in time of
a black resonator with y+ = 0.16 and " = 0.1.

zero-size limit to smooth horizonless geometries called
geons [23, 24]. The existence of black resonators proves
that Kerr-AdS is non-unique, even in four dimensions.
We focused on the scalar progenitor mode m = ` = 2,
but expect similar behaviour for other m and `. This
would mean a countably infinite violation of uniqueness
for rotating BHs in AdS with ⌦HL > 1 and E > J/L.

In retrospect, new BHs could have been anticipated
from the AdS/CFT correspondence. Since CFTs are ex-
pected to saturate the bound E � J/L, but Kerr-AdS
BHs do not, another BH might fill the gap. Though, this
argument does not suggest that these BHs have a single
Killing field or are connected to the superradiant onset.

The precise boundary CFT interpretation of these in-
stabilities and the black resonators remain mysterious.
We note that superradiance is not particular to four di-
mensions, and occurs also in AdS5. Furthermore, includ-
ing the full AdS5⇥S

5 bulk geometry, so that the bound-
ary field theory is specifically N = 4 super Yang-Mills,
does not cure this instability.

Though these black resonators have more entropy than
Kerr-AdS, we argue that they are unstable, so they can-

not be the endpoint of the superradiant instability. While
black resonators with progenitor modes ` = m = 2 should
be stable to perturbations with m = ` = 2, they are un-
stable to higher m modes. The reason for this is that
small black resonators are well-approximated (as con-
firmed in (9) and Fig. 2) by a small Kerr-AdS BH at
the centre of a geon [19, 23], and small Kerr-AdS BHs
are still unstable to higher m modes. More precisely, the
results of [36] mathematically prove that our solutions are
unstable, since no Killing vector field that is everywhere
timelike can be found at the conformal boundary.
Our results support the conjecture of [37] that there is

no stationary endpoint to the superradiant instability in
AdS. Instead, modes with increasingm continue to be ex-
cited and develop. It may be possible for additional small
BHs to form as energy is deposited into higher m modes.
While such configurations should exist, they are them-
selves superradiantly unstable [38, 39]. Though classical
evolution may continue indefinitely, eventually the in-
creasingly high m modes will reach sub-Planckian length
scales. This may be viewed as a violation of the spirit of
cosmic censorship in that initial data well-described clas-
sically leads to a situation requiring quantum mechanics.
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Figure 9: Left Panel: Ricci scalar of the ` = 1 lumpy BHs evaluated at the horizon and at the
north (x = 1; upper curve) and south poles (x = �1; lower curve) of the S5. Right
Panel: Radius of the S3 evaluated at the horizon as a function of the polar angle x
of the S5 for the ` = 1 lumpy BH. The green diamonds are for the solution closer
to the GL merger (T = 0.50167), while the blue dots describe the lumpy solution
with the lowest temperature (T = 0.49444) we have reached. In between we have two
other curves with intermediate temperatures, namely T = 0.50120 (empty squares)
and T = 0.49898 (circles). These solutions appear to be approaching a localised black
hole.

Figure 10: Ricci scalar of the induced horizon geometry for the ` = 2 lumpy double BH branch
(black inverted triangles) and ` = 2 lumpy black belt branch (brown triangles). We
show this quantity evaluated both at the pole (x = 1; filled triangles) and at the
equator (x = 0; empty triangles) of the S5.
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Figure1:ApictorialrepresentationoftheS5forsomeblackholesolutionsthatasymptoteto
globalAdS5⇥S5(thelastthreeareconjecturedsolutions).Thefirstoneisthefamiliar
AdS5-Schw⇥S5thatissmearedovertheS5.Thesecondisa`=1BHlocalizedon
thenorthpoleoftheS5.Thethirdisa`=2localisedBHsolutionandthefourthisa
`=2blackbelt.Inthismanuscript,weconstructthe`=1,2“lumpy”BHsolutions,
withhorizontopologyS3⇥S5thatweconjecturetobeconnecttotheselocalisedBH
solutionsinaphasediagram.

Ofcourse,the`=1zeromodeisonlythefirstmodethatappears.Thereareaninfinite

numberofsuchmodes,withhighermodesappearingateversmallerhorizonradii.Forexample,

the`=2modeappearsat
r+

��
`=2'0.3238898L.(1.6)

Wenote,however,thatthereareimportantdi↵erencesbetweentheeven`modesandodd`

modes.If�gisalinearperturbation,then��gisalsoalinearperturbation.Intheodd`

modes,thesecanbemappedtoeachotherviaaZ2symmetryoftheS5,andsoareequivalent.

Forexample,amongthe`=1solutions,thechoiceofsignmerelyselectswhetherthelocalised

S8blackholewilldeveloponthenorthorsouthpoleoftheS5.Intheeven`modes,however,

theseperturbationsmaptothemselvesunderthissymmetry.The�gand��gperturbations

arenotequivalent,whichmeanswehavetwobranchesofsolutionsemanatingfromtheeven`

zeromodes.Inthe`=2modes,weexpectonebranchtoleadtotwodisconnectedS8black

holeslocalisedonthepolesoftheS5;seeFig.1.c.Weexpecttheotherbranchtoleadtoan

s4⇥S4blackhole(thes4beingasmallerspherethantheS4);seeFig.1.d.ThelargerS4wraps

around(coincideswith)theS4equatoroftheS5,sowecalltheseconjecturedsolutions“black

belts”(thes4givesthetransversedirectionsofthebelt).Higher`modesleadtovariousother

multi-horizonsolutionswithsomecombinationofS8holesands4⇥S4belts.
Inthispaper,weconstructtheselumpyblackholesconnectedtothe`=1and`=2zero

modesandstudytheirthermodynamicproperties.Wedetailournumericalconstructionin

section2,andcomputethephasediagraminsection3.InappendixA,wegivethetechnical

detailsofKaluza-KleinholographynecessarytointerpretourresultsontheCFT4[40](seealso

[35–39,41,42]).NumericalchecksareinappendixB.
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Figure 9: Left Panel: Ricci scalar of the ` = 1 lumpy BHs evaluated at the horizon and at the
north (x = 1; upper curve) and south poles (x = �1; lower curve) of the S5. Right
Panel: Radius of the S3 evaluated at the horizon as a function of the polar angle x
of the S5 for the ` = 1 lumpy BH. The green diamonds are for the solution closer
to the GL merger (T = 0.50167), while the blue dots describe the lumpy solution
with the lowest temperature (T = 0.49444) we have reached. In between we have two
other curves with intermediate temperatures, namely T = 0.50120 (empty squares)
and T = 0.49898 (circles). These solutions appear to be approaching a localised black
hole.
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Figure 10: Ricci scalar of the induced horizon geometry for the ` = 2 lumpy double BH branch
(black inverted triangles) and ` = 2 lumpy black belt branch (brown triangles). We
show this quantity evaluated both at the pole (x = 1; filled triangles) and at the
equator (x = 0; empty triangles) of the S5.
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Figure 11: Radius of the S3 evaluated at the horizon of the ` = 2 lumpy solutions as a function
of the polar variable x of the S5. Left panel: ` = 2 lumpy double BH branch with
the magenta squares being the solution closer to the GL merger (with T = 0.59448),
and the black filled triangles being the solution with the highest temperature (T =
0.60849). In between we also present the solutions with T = 0.59922 (circles) and
T = 0.60552 (empty inverted triangles). Right panel: ` = 2 black belt branch with
the magenta squares being the solution closer to the GL merger (with T = 0.59448),
and the brown filled triangles being the solution with the lowest temperature (T =
0.57278). In between we also present the solutions with T = 0.59015 (circles) and
T = 0.58283 (empty triangles).
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Figure 1: A pictorial representation of the S5 for some black hole solutions that asymptote to
global AdS5⇥S5 (the last three are conjectured solutions). The first one is the familiar
AdS5-Schw⇥S5 that is smeared over the S5. The second is a ` = 1 BH localized on
the north pole of the S5. The third is a ` = 2 localised BH solution and the fourth is a
` = 2 black belt. In this manuscript, we construct the ` = 1, 2 “lumpy” BH solutions,
with horizon topology S3⇥S5 that we conjecture to be connect to these localised BH
solutions in a phase diagram.

Of course, the ` = 1 zero mode is only the first mode that appears. There are an infinite
number of such modes, with higher modes appearing at ever smaller horizon radii. For example,
the ` = 2 mode appears at

r+
��
`=2

' 0.3238898L . (1.6)

We note, however, that there are important di↵erences between the even ` modes and odd `
modes. If �g is a linear perturbation, then ��g is also a linear perturbation. In the odd `
modes, these can be mapped to each other via a Z2 symmetry of the S5, and so are equivalent.
For example, among the ` = 1 solutions, the choice of sign merely selects whether the localised
S8 black hole will develop on the north or south pole of the S5. In the even ` modes, however,
these perturbations map to themselves under this symmetry. The �g and ��g perturbations
are not equivalent, which means we have two branches of solutions emanating from the even `
zero modes. In the ` = 2 modes, we expect one branch to lead to two disconnected S8 black
holes localised on the poles of the S5; see Fig. 1.c. We expect the other branch to lead to an
s4⇥S4 black hole (the s4 being a smaller sphere than the S4); see Fig. 1.d. The larger S4 wraps
around (coincides with) the S4 equator of the S5, so we call these conjectured solutions “black
belts” (the s4 gives the transverse directions of the belt). Higher ` modes lead to various other
multi-horizon solutions with some combination of S8 holes and s4⇥S4 belts.

In this paper, we construct these lumpy black holes connected to the ` = 1 and ` = 2 zero
modes and study their thermodynamic properties. We detail our numerical construction in
section 2, and compute the phase diagram in section 3. In appendix A, we give the technical
details of Kaluza-Klein holography necessary to interpret our results on the CFT4 [40] (see also
[35–39,41,42]). Numerical checks are in appendix B.
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E 

Unstable	 Stable	

•  Gregory-Laflamme  instability  on  a  black  string                                

Some Concrete  contributions  to  the  programme:

1)   Ultraspinning  instability:

?

?• Evolution along  the  parameter  space  of  solutions:

• Construct  non-linearly  (numerically)  

a1

a2

• Construct  non-linearly  (numerically)  
the  new  branch  of  axisymmetric BHs:

• Stability of   black   rings ?   

• Ultraspinning in  AdS systems.  AdS Black  rings. 

• Holographic   interpretation  of   BH  solutions / instabilities : 

BH  with  temperature  T QFT  at  finite   T

•  Ultraspinning  instability  on  a  rotating BH                                


