Novel Thermal Phases of AdS5xS5

Southampton

Based on:

OD, Jorge Santos, Benson Way, 1501.06574

Iberian Strings 2016, IFT — UAM, Madrid January 2016

 \rightarrow Recalling the primordial days: AdS₅ / CFT₄

• Type IIB supergravity:

$$G_{MN} \equiv R_{MN} - \frac{1}{48} F_{MPQRS} F_N{}^{PQRS} = 0, \qquad \nabla_M F^{MPQRS} = 0, \qquad F_{(5)} = \star F_{(5)}$$

• AdS_5xS^5 is a solution:

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\Omega_{3}^{2} + L^{2}d\Omega_{5}^{2}, \qquad F_{\mu\nu\rho\sigma\tau} = \epsilon_{\mu\nu\rho\sigma\tau}, \qquad F_{abcde} = \epsilon_{abcde}$$
$$f(r) = 1 + \frac{r^{2}}{L^{2}}$$

• Schwarzschild-AdS₅xS⁵ is also a solution:

$$f(r) = 1 + \frac{r^2}{L^2} - \frac{r_+^2}{r^2} \left(\frac{r_+^2}{L^2} + 1\right)$$

→ But ... we can have hierarchy of scales:

Schwarzschild-AdS₅ x S^5 :

$$f(r) = 1 + \frac{r^2}{L^2} - \frac{r_+^2}{r^2} \left(\frac{r_+^2}{L^2} + 1\right)$$

Horizon topology $S^3 \times S^5$

... but now we have two scales: horizon radius 🔓

• Recall Gregory-Laflamme instability on a black string Mink₄ x S¹ with $r_+ \ll L$

• And suspect that for $r_+ \ll L$ Schwarzschild-AdS₅ xS⁵:

Horizon topology $S^3 \times S^5$

CFT: spontaneous symmetry breaking SO(6) -> SO(5)

[Banks, Douglas, Horowitz, Martinec, 1998] [Peet, Ross, 1998] [Hubeny, Rangamani, 2002]

→ Numerical technology required to construct these solutions:

Einstein-De Turck method with spectral discretisation methods described in:

- M. Headrick, S. Kitchen, and T. Wiseman, 0905.1822
- OD, J. Santos, B. Way, 1510.02804

Invited Topical Review for Classical and Quantum Gravity

→ Technology required to construct these solution:

Kaluza-Klein Holography

- 3 fundamental tasks to find and describe solution:
 - find asymptotic BCs <--> turning-off sources on CFT.
 - compute E,
 - compute VEVs of dim reduced scalar fields
- Use Kaluza-Klein Holography:
 - 1) dim reduction of asymptotic AdS5 \times S5 (AdSp \times X9) solns down to solns on AdS5
 - 2) Apply holographic renormalisation to compute Tab, VEVs on bdry of AdS5.

[Skenderis, Taylor, hep-th/0603016]

See also Appendix of [OD, Santos, Way 1501.06574]

→ Kaluza-Klein Holography:

1) dim reduction of asymptotic AdS5 \times S⁵ (AdSp \times X^q) solns down to solns on AdS5

• Write the fields as a deformation of $AdS_5 \times S^5$

 $g_{MN} = g^o_{MN} + h_{MN}, \qquad F_{MNPQR} = F^o_{MNPQR} + f_{MNPQR}$

• Decompose d=10 {h,f} as a sum of spherical harmonics of S⁵, $h = \sum_{\ell} \psi^{\ell}(z) Y_{\ell}(x)$, that break SO(6) but preserve SO(5):

$$h_{\mu\nu}(z,X) = \sum_{\ell} \tilde{h}^{\ell}_{\mu\nu}(z)Y_{\ell}(X), \qquad h_{\mu a}(z,X) = \sum_{\ell} \tilde{B}^{\ell}_{\mu}(z)D_{a}Y_{\ell}(X),$$
$$h_{(ab)}(z,X) = \sum_{\ell} \tilde{\phi}^{\ell}(z)D_{(a}D_{b)}Y_{\ell}(X)), \qquad h^{a}_{a}(z,X) = \sum_{\ell} \tilde{\pi}^{\ell}(z)Y_{\ell}(X)$$

• d=10 Harmonic coefs. $\psi^{\ell}(z)$ — upon dim reduction — give d=5 fields Ψ^{ℓ}

which are interpreted as scalar fields in the reduced AdS5 theory: VEVs ~ Ψ^{ℓ} | dAdS5

• d=10 Harmonic coefs. $\psi^{\ell}(z) \rightarrow \dim reduction \rightarrow give d=5$ fields Ψ^{ℓ} : VEVs ~ $\Psi^{\ell}|_{\partial AdS_5}$

- In general, highly nonlinear map between Ψ and ψ .
- For VEVs we only need the field Ψ up to certain order in a Fefferman-Graham expansion.

For example, the quadratic expansion for a field Ψ^{ℓ} takes the form:

$$\Psi^{\ell} = \psi^{\ell} + \sum_{k,m} \left(J_{\ell km} \psi^{k} \psi^{m} + L_{\ell km} D_{\mu} \psi^{k} D^{\mu} \psi^{m} \right) + O([\psi^{\ell}]^{3}), \text{ const J,L}$$

If Ψ^{ℓ} is dual to an operator of dim $\ell \implies$ FG expand Ψ^{ℓ} off the boundary to $O(z^{\ell})$. But the quadratic terms with $k + m = \ell$ also contribute to $O(z^{\ell})$. In our case computing VEVs like E only requires quadratic order.

• Important to use gauge invariant fields to avoid gauge issues

• KK nonlinear map between 5-dim Ψ and 10-dim ψ :

 $\Psi^{\ell} = \psi^{\ell} + \sum_{k,m} (J_{\ell km} \psi^{k} \psi^{m} + L_{\ell km} D_{\mu} \psi^{k} D^{\mu} \psi^{m}) + O([\psi^{\ell}]^{3})$

WARNING: this contribution is often missed!

$$G_{\mu\nu} = h^{0}_{\mu\nu} - \frac{1}{12} \left[\frac{2}{9} D_{\mu} D^{\sigma} \hat{\psi}^{2} D_{\nu} D_{\sigma} \hat{\psi}^{2} - \frac{10}{3} \hat{\psi}^{2} D_{\mu} D_{\nu} \hat{\psi}^{2} + \left(\frac{10}{9} (D \hat{\psi}^{2})^{2} - \frac{32}{9} (\hat{\psi}^{2})^{2} \right) g^{o}_{\mu\nu} \right].$$

• EOM can be obtained from a **5-dim action**:

$$S_{5d} = \frac{N^2}{2\pi^2} \int d^5x \sqrt{-G} \left[\frac{1}{4}R - 3 + \sum_{\Psi_\ell} \left(\frac{1}{2} G^{\mu\nu} \partial_\mu \Psi_\ell \partial_\nu \Psi_\ell + V(\Psi_\ell) \right) \right]$$

• EOM in d=5 are: $R_{\mu\nu}[G] = 2\left(-2G_{\mu\nu} + T_{\mu\nu} - \frac{1}{3}G_{\mu\nu}T_{\sigma}^{\sigma}\right)$ $T_{\mu\nu} = \sum_{\Psi_{\ell}} \left[\partial_{\mu}\Psi_{\ell} \partial_{\nu}\Psi_{\ell} - G_{\mu\nu}\left(\frac{1}{2}(\partial\Psi_{\ell})^{2} + V(\Psi_{\ell})\right)\right]$ $\left(\Box - m_{\psi_{\ell}}^{2}\right)\Psi_{\ell} = \lambda_{\Psi\psi\psi}(\psi_{\ell})^{2} \qquad \Box = \Box_{G} = \Box_{AdS_{5}} \text{ up to } : \mathcal{O}(z^{4})$ 2) Apply holographic renormalisation to compute Tab, VEVs on bdry of AdS5.

• Introduce 5-dim FG coord Z(z), &

Do standard FG expansion and Holographic Renormalisation:

$$ds_{5}^{2} = \frac{dZ^{2}}{Z^{2}} + \frac{1}{Z^{2}} \left[G_{ij}^{(0)}(X) + Z^{2}G_{ij}^{(2)}(X) + Z^{4} \left(G_{ij}^{(4)}(X) + \log Z^{2}H_{ij}^{(4)}(X) \right) + \cdots \right] dX^{i}dX^{j};$$

$$\Phi^{2}(X,Z) = Z^{2} \left(\log Z^{2}\Phi_{(0)}^{2}(X) + \tilde{\Phi}_{(0)}^{2}(X) + \cdots \right), \quad \text{for} \quad \Delta = \Delta_{BF} = 2;$$

$$\Phi^{\Delta}(X,Z) = Z^{(4-\Delta)}\Phi_{(0)}^{\Delta}(X) + \cdots + Z^{\Delta}\Phi_{(2\Delta-4)}^{\Delta}(X) + \cdots, \quad \text{for} \quad \Delta > 2, \qquad (A.49)$$

• Impose Dirichlet BCs that eliminate sources (non-normalizable modes):

$$G_{ij}^{(0)}(X) = G_{ij}^{(0)} |_{R_t \times S^3}$$

$$\Phi_{(0)}^2(X) = 0, \text{ for } \Delta = \Delta_{BF} = 2;$$

$$\Phi_{(0)}^{\Delta}(X) = 0, \text{ for } \Delta > 2.$$

• Use standard Holographic Renormalisation on 5-dim spacetime to get VEVs, E

$$\langle T_{ij} \rangle = \frac{N^2}{2\pi^2} \left[\frac{3}{16} + \frac{3}{4} y_+^2 - \frac{y_+^4}{3072} \left(30\beta_2^2 + 5\beta_2 + 12(16\delta_0 + \delta_4 - 192) \right) \right] \operatorname{diag} \left\{ 1, \frac{1}{3} \eta_{\hat{i}\hat{j}} \right\}$$

 \rightarrow Thermal Phases of AdS₅xS⁵ and their competition

Page 1

Muchas gracias! Muito obrigado!

For Kerr-AdS₅xS⁵ BHs, could it be that

the GL instability could shield $\Omega_{HL} > 1$ BHs from the superradiant instability? NO

• Ultraspinning instability on a rotating BH

