Spinning strings with mixed fluxes

Rafael Hernández Universidad Complutense de Madrid

Collaboration with J. M. Nieto

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- Type IIB string theory with mixed R-R and NS-NS fluxes
- An integrable deformation of the Neumann-Rosochatius system
- Spinning string solutions in $AdS_3 \times S^3$ with mixed fluxes

• Conclusions

Type IIB string theory with mixed R-R and NS-NS fluxes

AdS_3 string backgrounds come from the D1-D5 system

The corresponding near-horizon geometries with 16 supersymmetries are

$$AdS_3 \times S^3 \times T^4$$
 and $AdS_3 \times S^3 \times S^3 \times S^1$

The dual gauge theory is a SCFT with $\mathcal{N} = (4, 4)$ symmetry

\rightarrow Type IIB string backgrounds on AdS_3 backgrounds can be supported by a mixture of R-R and NS-NS fluxes

We will focur on type IIB strings on $AdS_3 \times S^3 \times T^4$, with no dynamics along T^4 Thus

 $ds^{2} = -\cosh^{2}\rho \, dt^{2} + d\rho^{2} + \sinh^{2}\rho \, d\phi^{2} + d\theta^{2} + \sin^{2}\theta d\phi_{1}^{2} + \cos^{2}\theta d\phi_{2}^{2} ,$

with

 $b_{t\phi} = q \sinh^2 \rho$, $b_{\phi_1\phi_2} = -q \cos^2 \theta$,

where $0 \leq q \leq 1$

When q = 0 we have **pure R-R flux** \rightarrow **Green-Schwarz coset** (**integrable**, both at classical and quantum level)

The value q = 1 is the limit of **pure NS-NS flux** \downarrow **Supersymmetric WZW model**

$$S = -\frac{1}{2} \left[\int d^2 \sigma \, \frac{1}{2} \text{tr}(\mathcal{J}_+ \mathcal{J}_-) - q \int d^3 \sigma \, \frac{1}{3} \epsilon^{abc} \text{tr}(\mathcal{J}_a \mathcal{J}_b \mathcal{J}_c) \right]$$

with the currents $\mathcal{J}_a = g^{-1} \partial_a g$

[Maldacena,Ooguri]

Type IIB string theory on $AdS_3 \times S^3$ with mixed R-R and NS-NS fluxes is also **integrable**

[Cagnazo,Zarembo]

(Lax operator, nested Bethe ansatz equations, scattering matrix, dressing phase factor, ...)

An integrable deformation of the Neumann-Rosochatius system

Spinning string ansatz (for the simpler case of rotation on S^3)

 $X_1 + iX_2 = r_1(\sigma) e^{i\varphi_1(\tau,\sigma)} , \quad X_3 + iX_4 = r_2(\sigma) e^{i\varphi_2(\tau,\sigma)}$

with the angles are chosen as

 $\varphi_i(\tau,\sigma) = \omega_i \tau + \alpha_i(\sigma)$

When we enter the spinning ansatz in the world sheet action we find

$$L_{S^{3}} = \frac{\sqrt{\lambda}}{2\pi} \Big[\sum_{i=1}^{2} \frac{1}{2} \Big[(r_{i}')^{2} + r_{i}^{2} (\alpha_{i}')^{2} - r_{i}^{2} \omega_{i}^{2} \Big] - \frac{\Lambda}{2} (r_{1}^{2} + r_{2}^{2} - 1) \\ + q r_{2}^{2} (\omega_{1} \alpha_{2}' - \omega_{2} \alpha_{1}') \Big]$$

where Λ is a Lagrange multiplier to impose the condition that the solutions live on S^3 The equations for the angles can be easily integrated once

$$\alpha'_i = \frac{v_i + qr_2^2 \epsilon_{ij}\omega_j}{r_i^2} , \quad i = 1, 2$$

 $(v_i \text{ are some integration constants})$

while the radial coordinates lead to

$$r_{1}'' = -r_{1}\omega_{1}^{2} + r_{1}\alpha_{1}^{'2} - \Lambda r_{1}$$
$$r_{2}'' = -r_{2}\omega_{2}^{2} + r_{2}\alpha_{2}^{'2} - \Lambda r_{2} + 2qr_{2}(\omega_{1}\alpha_{2}' - \omega_{2}\alpha_{1}')$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで

Furthermore, from the isometries of the problem

 $E = \sqrt{\lambda} w_0$ $J_1 = \sqrt{\lambda} \int_0^{2\pi} \frac{d\sigma}{2\pi} \left(r_1^2 \omega_1 - q r_2^2 \alpha_2' \right)$ $J_2 = \sqrt{\lambda} \int_0^{2\pi} \frac{d\sigma}{2\pi} \left(r_2^2 \omega_2 + q r_2^2 \alpha_1' \right)$

The resulting system is a **deformation of the Neumann-Rosochatius** integrable system

(system of **oscillators on a sphere**, with a centrifugal barrier and a deformation coming from the mixture of fluxes)

Integrals of motion

Integrability of the Neumann-Rosochatius system follows from the existence of a set of integrals of motion in involution, **the Uhlenbeck constants**

For the case of a closed string rotating in S^3 there are two integrals I_1 and I_2 , but they must satisfy the constraint $I_1 + I_2 = 1$ and we are left with a single independent constant

Integrability of the deformation by fluxes of the Neumann-Rosochatius system also follows from a **deformation of the Uhlenbeck constant**

$$\bar{l}_1 = r_1^2(1-q^2) + \frac{1}{\omega_1^2 - \omega_2^2} \left[(r_1r_2' - r_1'r_2)^2 + \frac{(v_1 + q\omega_2)^2}{r_1^2}r_2^2 + \frac{v_2^2}{r_2^2}r_1^2 \right]$$

- ▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ → 重 - のへの

Spinning string solutions in $AdS_3 \times S^3$ with mixed fluxes

We can find the most general kind of solutions by introducing an **ellipsoidal coordinate** defined through

$$\frac{r_1^2}{\zeta - \omega_1^2} + \frac{r_2^2}{\zeta - \omega_2^2} = 0$$

The equation of motion for ζ is

 $\zeta'^2 = -4P_3(\zeta)$

where

$$P_{3}(\zeta) = (1 - q^{2})(\zeta - \omega_{1}^{2})^{2}(\zeta - \omega_{2}^{2}) + (\zeta - \omega_{1}^{2})(\zeta - \omega_{2}^{2})(\omega_{1}^{2} - \omega_{2}^{2})\overline{I}_{1}$$
$$+ (\zeta - \omega_{1}^{2})^{2}v_{2}^{2} + (\zeta - \omega_{2}^{2})^{2}(v_{1} + q\omega_{2})^{2} = (1 - q^{2})\prod_{i=1}^{3}(\zeta - \zeta_{i})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

The polynomial $P_3(\zeta)$ defines an elliptic curve, $s^2 + P_3(\zeta) = 0$

If we change variables to

$$\zeta = \zeta_2 + (\zeta_3 - \zeta_2)\eta^2 ,$$

we are left with the differential equation for the Jacobian elliptic cosine,

$$\eta'^2 = (1 - q^2)(\zeta_3 - \zeta_1)(1 - \eta^2)(1 - \kappa + \kappa \eta^2)$$

 $(\kappa = (\zeta_3 - \zeta_2)/(\zeta_3 - \zeta_1)$ is the elliptic modulus)

We conclude that the radial coordinate is solved by the elliptic sine

$$r_1^2(\sigma) = \frac{\zeta_3 - \omega_1^2}{\omega_2^2 - \omega_1^2} + \frac{\zeta_2 - \zeta_3}{\omega_2^2 - \omega_1^2} \operatorname{sn}^2 \left(\sigma \sqrt{(1 - q^2)(\zeta_3 - \zeta_1)}, \kappa \right)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Now we could find E, J_1 and J_2 and solve for

 $E = E(\sqrt{\lambda}, J_1, J_2)$

The result is lengthy and cumbersome in the most general case

Instead we can look at the problem when q = 1(pure NR-NS regime, or WZW limit)

 \rightarrow The case where q = 0 corresponds to the (undeformed) **Neumann-Rosochatius system**

[Arutyunov, Frolov, Russo, Tseytlin]

Solutions with pure NS-NS flux

In the limit where q = 1 the elliptic surface degenerates

$$\left(P_3(\zeta) = (1 - q^2)(\zeta - \omega_1^2)^2(\zeta - \omega_2^2) + (\zeta - \omega_1^2)(\zeta - \omega_2^2)(\omega_1^2 - \omega_2^2)\bar{I}_1\right)$$

The problem reduces to

$$\zeta'^2 = -4P_2(\zeta)$$

The elliptic sine becomes a trigonometric sine and thus

$$r_{1}^{2}(\sigma) = \frac{\tilde{\zeta}_{2} - \omega_{1}^{2}}{\omega_{2}^{2} - \omega_{1}^{2}} + \frac{\tilde{\zeta}_{1} - \tilde{\zeta}_{2}}{\omega_{2}^{2} - \omega_{1}^{2}} \sin^{2}(\omega\sigma)$$

where

$$\omega^{2} = (\omega_{1}^{2} - \omega_{2}^{2})\overline{I}_{1} + (v_{1} + \omega_{2})^{2} + v_{2}^{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now the energy and the angular momenta can be expressed in a very compact form

$$E^{2} = \lambda \left(\omega^{2} + \omega_{1}^{2} - \omega_{2}^{2} - 2v_{1}\omega_{2} - 2v_{2}\omega_{1} \right)$$
$$\frac{J_{1}}{\sqrt{\lambda}} = \omega_{1} - v_{2} , \quad \frac{J_{2}}{\sqrt{\lambda}} = \bar{m}_{1} - v_{1}$$

(\bar{m}_i are some winding numbers)

Furthermore we can use the Virasoro constraints to write

$$E^{2} = \lambda \left(\bar{m}_{1}^{2} - \bar{m}_{2}^{2} + 4\omega \bar{m}_{2} - 3\omega^{2} \right) - 2\sqrt{\lambda} J (\bar{m}_{1} + \bar{m}_{2} - 2\omega)$$

with $J = J_{1} + J_{2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \rightarrow In an identical way we can treat solutions spinning in AdS_3

Solutions rotating in $AdS_3 \times S^3$ can be solved similarly, but the solution needs to be written in terms of theta functions (the differential equation involves an hyperelliptic surface)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The (less general) case of **constant radii solutions** also leads to rather compact expressions

(constant radii can be achieved by **colliding two roots** in the elliptic curve)

In the presence of mixed fluxes

$$E^2 = J^2 - 2\sqrt{\lambda}q\bar{m}_1J + \frac{\lambda}{J}[(\bar{m}_1^2J_1 + \bar{m}_2^2J_2)(1-q^2) + q^2\bar{m}_1^2J] + \cdots$$

which in the case of pure NS-NS flux becomes

$$E = J - \sqrt{\lambda} \bar{m}_1$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusions

- Type IIB string theory on $AdS_3 \times S^3$ with mixed R-R and NS-NS fluxes can be solved using a deformation of a classical integrable system
- We can reproduce solutions in AdS₃/CFT₂ that are obtained by solving the WZW model (using a pulsating string) [Maldacena,Ooguri]
- We can study quadratic fluctuations around our solutions
- Other deformations of the Neumann-Rosochatius system can be constructed to describe for instance $(AdS_5 \times S^5)_{\eta}$