Spinning strings with mixed fluxes

Rafael Hernández
Universidad Complutense de Madrid

Collaboration with J. M. Nieto

Outline

- Type IIB string theory with mixed R-R and NS-NS fluxes
- An integrable deformation of the Neumann-Rosochatius system
- Spinning string solutions in $\operatorname{AdS}_{3} \times S^{3}$ with mixed fluxes
- Conclusions

Type IIB string theory with mixed R-R and NS-NS fluxes

$A d S_{3}$ string backgrounds come from the D1-D5 system
The corresponding near-horizon geometries with 16 supersymmetries are

$$
A d S_{3} \times S^{3} \times T^{4} \quad \text { and } \quad A d S_{3} \times S^{3} \times S^{3} \times S^{1}
$$

The dual gauge theory is a SCFT with $\mathcal{N}=(4,4)$ symmetry
\rightarrow Type IIB string backgrounds on $A d S_{3}$ backgrounds can be supported by a mixture of R-R and NS-NS fluxes

We will focur on type IIB strings on $A d S_{3} \times S^{3} \times T^{4}$, with no dynamics along T^{4} Thus

$$
d s^{2}=-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \phi^{2}+d \theta^{2}+\sin ^{2} \theta d \phi_{1}^{2}+\cos ^{2} \theta d \phi_{2}^{2},
$$

with

$$
\begin{gathered}
b_{t \phi}=q \sinh ^{2} \rho, \quad b_{\phi_{1} \phi_{2}}=-q \cos ^{2} \theta, \\
\text { where } 0 \leq q \leq 1
\end{gathered}
$$

When $q=0$ we have pure R-R flux \rightarrow Green-Schwarz coset (integrable, both at classical and quantum level)

The value $q=1$ is the limit of pure NS-NS flux
Supersymmetric WZW model

$$
\begin{gathered}
S=-\frac{1}{2}\left[\int d^{2} \sigma \frac{1}{2} \operatorname{tr}\left(\mathcal{J}_{+} \mathcal{J}_{-}\right)-q \int d^{3} \sigma \frac{1}{3} \epsilon^{a b c} \operatorname{tr}\left(\mathcal{J}_{a} \mathcal{J}_{b} \mathcal{J}_{c}\right)\right] \\
\text { with the currents } \mathcal{J}_{a}=g^{-1} \partial_{a} g \\
\text { [Maldacena, Ooguri] }
\end{gathered}
$$

Type IIB string theory on $A d S_{3} \times S^{3}$ with mixed R-R and NS-NS fluxes is also integrable
[Cagnazo,Zarembo]
(Lax operator, nested Bethe ansatz equations, scattering matrix, dressing phase factor, ...)

An integrable deformation of the Neumann-Rosochatius system

Spinning string ansatz

(for the simpler case of rotation on S^{3})

$$
X_{1}+i X_{2}=r_{1}(\sigma) e^{i \varphi_{1}(\tau, \sigma)}, \quad X_{3}+i X_{4}=r_{2}(\sigma) e^{i \varphi_{2}(\tau, \sigma)}
$$

with the angles are chosen as

$$
\varphi_{i}(\tau, \sigma)=\omega_{i} \tau+\alpha_{i}(\sigma)
$$

When we enter the spinning ansatz in the world sheet action we find

$$
\begin{gathered}
L_{S^{3}}=\frac{\sqrt{\lambda}}{2 \pi}\left[\sum_{i=1}^{2} \frac{1}{2}\left[\left(r_{i}^{\prime}\right)^{2}+r_{i}^{2}\left(\alpha_{i}^{\prime}\right)^{2}-r_{i}^{2} \omega_{i}^{2}\right]-\frac{\Lambda}{2}\left(r_{1}^{2}+r_{2}^{2}-1\right)\right. \\
\left.+q r_{2}^{2}\left(\omega_{1} \alpha_{2}^{\prime}-\omega_{2} \alpha_{1}^{\prime}\right)\right]
\end{gathered}
$$

where Λ is a Lagrange multiplier to impose the condition that the solutions live on S^{3}

The equations for the angles can be easily integrated once

$$
\alpha_{i}^{\prime}=\frac{v_{i}+q r_{2}^{2} \epsilon_{i j} \omega_{j}}{r_{i}^{2}}, \quad i=1,2
$$

(v_{i} are some integration constants)
while the radial coordinates lead to

$$
\begin{gathered}
r_{1}^{\prime \prime}=-r_{1} \omega_{1}^{2}+r_{1} \alpha_{1}^{\prime 2}-\Lambda r_{1} \\
r_{2}^{\prime \prime}=-r_{2} \omega_{2}^{2}+r_{2} \alpha_{2}^{\prime 2}-\Lambda r_{2}+2 q r_{2}\left(\omega_{1} \alpha_{2}^{\prime}-\omega_{2} \alpha_{1}^{\prime}\right)
\end{gathered}
$$

Furthermore, from the isometries of the problem

$$
\begin{gathered}
E=\sqrt{\lambda} w_{0} \\
J_{1}=\sqrt{\lambda} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi}\left(r_{1}^{2} \omega_{1}-q r_{2}^{2} \alpha_{2}^{\prime}\right) \\
J_{2}=\sqrt{\lambda} \int_{0}^{2 \pi} \frac{d \sigma}{2 \pi}\left(r_{2}^{2} \omega_{2}+q r_{2}^{2} \alpha_{1}^{\prime}\right)
\end{gathered}
$$

The resulting system is a deformation of the Neumann-Rosochatius integrable system
(system of oscillators on a sphere, with a centrifugal barrier and a deformation coming from the mixture of fluxes)

Integrals of motion

Integrability of the Neumann-Rosochatius system follows from the existence of a set of integrals of motion in involution, the Uhlenbeck constants

For the case of a closed string rotating in S^{3} there are two integrals I_{1} and I_{2}, but they must satisfy the constraint $I_{1}+I_{2}=1$ and we are left with a single independent constant

Integrability of the deformation by fluxes of the Neumann-Rosochatius system also follows from a deformation of the Uhlenbeck constant

$$
\bar{I}_{1}=r_{1}^{2}\left(1-q^{2}\right)+\frac{1}{\omega_{1}^{2}-\omega_{2}^{2}}\left[\left(r_{1} r_{2}^{\prime}-r_{1}^{\prime} r_{2}\right)^{2}+\frac{\left(v_{1}+q \omega_{2}\right)^{2}}{r_{1}^{2}} r_{2}^{2}+\frac{v_{2}^{2}}{r_{2}^{2}} r_{1}^{2}\right]
$$

Spinning string solutions in $\mathrm{AdS}_{3} \times S^{3}$ with mixed fluxes

We can find the most general kind of solutions by introducing an ellipsoidal coordinate defined through

$$
\frac{r_{1}^{2}}{\zeta-\omega_{1}^{2}}+\frac{r_{2}^{2}}{\zeta-\omega_{2}^{2}}=0
$$

The equation of motion for ζ is

$$
\zeta^{\prime 2}=-4 P_{3}(\zeta)
$$

where

$$
\begin{aligned}
& P_{3}(\zeta)=\left(1-q^{2}\right)\left(\zeta-\omega_{1}^{2}\right)^{2}\left(\zeta-\omega_{2}^{2}\right)+\left(\zeta-\omega_{1}^{2}\right)\left(\zeta-\omega_{2}^{2}\right)\left(\omega_{1}^{2}-\omega_{2}^{2}\right) \bar{I}_{1} \\
& \quad+\left(\zeta-\omega_{1}^{2}\right)^{2} v_{2}^{2}+\left(\zeta-\omega_{2}^{2}\right)^{2}\left(v_{1}+q \omega_{2}\right)^{2}=\left(1-q^{2}\right) \prod_{i=1}^{3}\left(\zeta-\zeta_{i}\right)
\end{aligned}
$$

The polynomial $P_{3}(\zeta)$ defines an elliptic curve, $s^{2}+P_{3}(\zeta)=0$
If we change variables to

$$
\zeta=\zeta_{2}+\left(\zeta_{3}-\zeta_{2}\right) \eta^{2}
$$

we are left with the differential equation for the Jacobian elliptic cosine,

$$
\begin{aligned}
& \eta^{\prime 2}=\left(1-q^{2}\right)\left(\zeta_{3}-\zeta_{1}\right)\left(1-\eta^{2}\right)\left(1-\kappa+\kappa \eta^{2}\right) \\
& \left(\kappa=\left(\zeta_{3}-\zeta_{2}\right) /\left(\zeta_{3}-\zeta_{1}\right) \text { is the elliptic modulus }\right)
\end{aligned}
$$

We conclude that the radial coordinate is solved by the elliptic sine

$$
r_{1}^{2}(\sigma)=\frac{\zeta_{3}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}+\frac{\zeta_{2}-\zeta_{3}}{\omega_{2}^{2}-\omega_{1}^{2}} \operatorname{sn}^{2}\left(\sigma \sqrt{\left(1-q^{2}\right)\left(\zeta_{3}-\zeta_{1}\right)}, \kappa\right)
$$

Now we could find E, J_{1} and J_{2} and solve for

$$
E=E\left(\sqrt{\lambda}, J_{1}, J_{2}\right)
$$

The result is lengthy and cumbersome in the most general case
Instead we can look at the problem when $q=1$ (pure NR-NS regime, or WZW limit)
\rightarrow The case where $q=0$ corresponds to the (undeformed) Neumann-Rosochatius system

Solutions with pure NS-NS flux

In the limit where $q=1$ the elliptic surface degenerates

$$
\left(P_{3}(\zeta)=\left(1-q^{2}\right)\left(\zeta-\omega_{1}^{2}\right)^{2}\left(\zeta-\omega_{2}^{2}\right)+\left(\zeta-\omega_{1}^{2}\right)\left(\zeta-\omega_{2}^{2}\right)\left(\omega_{1}^{2}-\omega_{2}^{2}\right) \overline{1}_{1}\right)
$$

The problem reduces to

$$
\zeta^{\prime 2}=-4 P_{2}(\zeta)
$$

The elliptic sine becomes a trigonometric sine and thus

$$
\begin{gathered}
r_{1}^{2}(\sigma)=\frac{\tilde{\zeta}_{2}-\omega_{1}^{2}}{\omega_{2}^{2}-\omega_{1}^{2}}+\frac{\tilde{\zeta}_{1}-\tilde{\zeta}_{2}}{\omega_{2}^{2}-\omega_{1}^{2}} \sin ^{2}(\omega \sigma) \\
\text { where } \\
\omega^{2}=\left(\omega_{1}^{2}-\omega_{2}^{2}\right) \bar{l}_{1}+\left(v_{1}+\omega_{2}\right)^{2}+v_{2}^{2}
\end{gathered}
$$

Now the energy and the angular momenta can be expressed in a very compact form

$$
\begin{gathered}
E^{2}=\lambda\left(\omega^{2}+\omega_{1}^{2}-\omega_{2}^{2}-2 v_{1} \omega_{2}-2 v_{2} \omega_{1}\right) \\
\frac{J_{1}}{\sqrt{\lambda}}=\omega_{1}-v_{2}, \quad \frac{J_{2}}{\sqrt{\lambda}}=\bar{m}_{1}-v_{1} \\
\left(\bar{m}_{i} \text { are some winding numbers }\right)
\end{gathered}
$$

Furthermore we can use the Virasoro constraints to write

$$
\begin{gathered}
E^{2}=\lambda\left(\bar{m}_{1}^{2}-\bar{m}_{2}^{2}+4 \omega \bar{m}_{2}-3 \omega^{2}\right)-2 \sqrt{\lambda} J\left(\bar{m}_{1}+\bar{m}_{2}-2 \omega\right) \\
\text { with } J=J_{1}+J_{2}
\end{gathered}
$$

$\rightarrow \mathrm{In}$ an identical way we can treat solutions spinning in AdS_{3}
Solutions rotating in $A d S_{3} \times S^{3}$ can be solved similarly, but the solution needs to be written in terms of theta functions (the diffferential equation involves an hyperelliptic surface)

The (less general) case of constant radii solutions also leads to rather compact expressions
(constant radii can be achieved by colliding two roots in the elliptic curve)

$$
\begin{gathered}
\text { In the presence of mixed fluxes } \\
E^{2}=J^{2}-2 \sqrt{\lambda} q \bar{m}_{1} J+\frac{\lambda}{J}\left[\left(\bar{m}_{1}^{2} J_{1}+\bar{m}_{2}^{2} J_{2}\right)\left(1-q^{2}\right)+q^{2} \bar{m}_{1}^{2} J\right]+\cdots \\
\text { which in the case of pure NS-NS flux becomes } \\
E=J-\sqrt{\lambda} \bar{m}_{1}
\end{gathered}
$$

Conclusions

- Type IIB string theory on $A d S_{3} \times S^{3}$ with mixed R-R and NS-NS fluxes can be solved using a deformation of a classical integrable system
- We can reproduce solutions in $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ that are obtained by solving the WZW model (using a pulsating string) [Maldacena, Ooguri]
- We can study quadratic fluctuations around our solutions
- Other deformations of the Neumann-Rosochatius system can be constructed to describe for instance $\left(A d S_{5} \times S^{5}\right)_{\eta}$

