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What I would like to communicate today:

A question:
What are the dynamics of Information in
Black holes and democratic systems?

A toy model:
Random particles

An answer:
Large-N factorization as
Extensivity of entanglement evolution
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Do not be scared!! I do not assume familiarity with these concepts!!!






A Question:
What are the Dynamics of Information ?

Why?

Defines the interaction structure of the microscopic model.
No need of conserved charges!
Information transport always appear.

l

Potential implications for:

Information paradox (Hawking)
Fast Scrambling Conjecture (Hayden and Preskill, Sekino and Susskind)
Event Horizon locality (Many authors).
Entanglement and geometry (Many authors).
Microscopic models of Black Holes(AdS/CFT, Sachdev, Gomez/Dvali...)



String Theory Hamiltonians:

Non-perturbatively described by
Large-N Matrix Models (Gauge Theories)

Banks,Fischler,Shenker,Susskind (1997)
Maldacena's AdS/CFT (1998)

N
H D E WiAijﬂ'j
%}

Black Holes ===p High energy states
Very difficult problem, even at infinite N.
We want finite N!!

Gauge invariant entanglement entropy?



Sadchev-Ye-Kitaev model:

Fermions with random quartic couplings
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J, iidm = Random numbers

Black Holes == High energy states
Very difficult problem, even at infinite N.
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J, iidm = Random numbers

Black Holes == High energy states
Very difficult problem, even at infinite N.

Too difficult problems at finite N!!!



A Toy Model?




First requirement:

Solvability

Second requirement:

Quantum thermalization
(two different approaches: correlators and
entanglement entropies)

Third requirement:

Democracy



Second requirement:

Quantum Many Body system
displaying Quantum Thermalization

<w(t)‘OA‘w(t)> — Tr(/OGibbSOA) T error
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Second requirement:

Quantum Many Body system
displaying Quantum Thermalization

<w(t)‘OA‘w(t)> — Tr(/OGibbSOA) T error

Eigenstate Thermalization Hypothesis (ETH)
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Third requirement:

“Democratic” system.
(As non-local as it can be.
There is no locality structure whatsoever)
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Previous examples are democratic!

String Theory Hamiltonians:

Large-N Matrix Models

N
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Sadchev-Ye-Kitaev model:

Fermions with random
quartic couplings

3/2 Z mec c Cl Cm
13?]€?l 1

Jij:1m ™ Random numbers

What are the common features?



First requirement:

Solvability

Second requirement:

Quantum thermalization
(two different approaches: correlators and
entanglement entropies)

Third requirement:

Democracy



The Toy Model:
Black Holes as “random particles”

J.M.M (arXiv:1601.04663)

Complexity comes to the rescue. Take the
simplest (gaussian/ free) but most complex Hamiltonian

—aZc cz—l—an Vij cj

1,7=1
A system of free partlcles with Gaussian random couplings:

A collection of “random particles”




Information/Entanglement structure of Eigenstates
J.M.M (arXiv:1508.05339, Phys. Rev. Lett)

Within time independent hamiltonians,
random particles constitute the first analytical example of:
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Within time independent hamiltonians,
random particles constitute the first analytical example of:

Eigenstate Thermalization Hypothesis
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Information/Entanglement structure of Eigenstates
J.M.M (arXiv:1508.05339, Phys. Rev. Lett)

Within time independent hamiltonians,
random particles constitute the first analytical example of:

Eigenstate Thermalization Hypothesis

N.
CENP — (En, | c;fcj | EN,) = Wp + error = ij + error
errors ~ O(1/VN)

Entanglement Thermalization

N N
SY" =|A| S, + error = S + error
N N N N N

S :_Wplogﬁ_(l_ﬁ)log(l_ﬁ)

Thermalization is typical within the space of gaussian systems!!



Information/Entanglement Dynamics
in Democratic systems

“Throwing in” an unentangled particle
Pin =PLEOPE  Ciy(t) = (e} (H)e; (1))

!

Thermalization of occupation densities

eult) = -+ n- NELE 5 017wy




Information/Entanglement Dynamics
in Democratic systems

“Throwing in” an unentangled particle
Pin = P1OPs  Cii(t) = (cl(t)e;(t))

!

Cizi(t) = O(1/N)

Information transport is instantaneous and structureless.
Analytical example of large-N factorization
in high energy/entropic sectors.



The answer:
J.M.M (arXiv:1601.04663)

Large-N factorization translates into extensive
entanglement dynamics

Sa(t) =) Si(t)

1EA
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Large-N factorization translates into extensive
entanglement dynamics

Sa(t) =3 Si(t)
€A
Where if the degrees of freedom are fermions:

SO (L) = —(ni(t) log mi(t) + (1 — ny(t) ) log(1 — ny(t)) )

While for bosons:
SPosons (1) — (n,(t) 4 1)log(n,(t) + 1) — ny(t) log n; (t)



The answer:
J.M.M (arXiv:1601.04663)

Large-N factorization translates into extensive
entanglement dynamics

Sa(t) =) Si(t)

1EA

For large-N matrix models this law
should apply for “Generalized free field” modes

A0 = Yoy, (1) + Dlog(ne, , (1) +1) = noy, () log(ne, , (1)

Entanglement entropy shows quasinormal ringing



First insights for black hole physics:

The results challenge the “Fast Scrambling Conjecture”
Hayden,Preskill (2007) Sekino,Susskind (2008)

tscrambling ™ B log S

While we find

tscrambling ~ 5



First insights for black hole physics:

The results shed new light on the Information Paradox.

Cij(t)> = lim Cy(t) = fdij + (n — f)4(J1(Rt))2

N—o0 2

S(p) = Si(t) + Spu = S(t)

511

In Democratic systems,
Unitarity is lost in the thermodynamic limit.
This should be contrasted with the behavior of local systems



Summary:

Random particles, the most complex gaussian system,
is the simplest example of Democratic systems
displaying Quantum Thermalization.

It is solvable at finite N!!

Key result on information dynamics:
Large-N factorization implies extensivity of
Entanglement entropy in time evolved scenarios.
Quasinormal ringing of entanglement entropy.

First insights for Black Hole physics:
Challenge the Fast Scrambling Conjecture
Non-Unitarity of the large-N limit



THANK YOU

Javier Martinez Magan
j.martinezmagan@uu.nl
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