Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy

Supergravity (and Gauge Theories) as Double Copies

Silvia Nagy

based on work done in collaboration with: A. Anastasiou, L. Borsten, M. J. Duff and M. J. Hughes

January 27, 2016

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy Supergravity as the square of Super Yang-Mills Why squaring? Local symmetries Global symmetries Applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring? Local symmetries Global symmetries Applications

Chiral squaring and the quadruple copy

1 Supergravity as the square of Super Yang-Mills

Why squaring? Local symmetries Global symmetries

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy

Supergravity as the square of Super Yang-Mills Why squaring?

Local symmetries Global symmetries Applications

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy

Why squaring?

- A recurring theme in attempts to understand the quantum theory of gravity is the idea of "Gravity as the square of Yang-Mills"
- This idea of tensoring left (*L*) and right (*R*) multiplets appears in many different (but sometimes overlapping) guises:
 - KLT relations in string theory [Kawai et al:1985]
 - D = 10 dimensional Type IIA and IIB supergravity (SG) multiplets from D = 10 super Yang-Mills (SYM) multiplets [Green et al:1987]
 - gravity anomalies from gauge anomalies [Antoniadis:1992]
 - (super)gravity scattering amplitudes from those of (super) Yang-Mills in various dimensions (BCJ,etc)

What is the aim?

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy

- Derive off-shell linearised Supergravity local transformations via a convolution of SYM superfields.
- Obtain global U-duality algebra $\mathfrak g$ and its maximally compact subalgebra $\mathfrak h$ in all dimensions, for all $\mathcal N$ (via the division algebras).

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy Supergravity as the square of Super Yang-Mills Why squaring? Local symmetries Global symmetries Applications

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy

Local symmetries

- We tensor left and right off-shell multiplets with arbitrary non-Abelian gauge groups G_L and G_R
- Focus on the Yang-Mills origin of the *local* gravitational symmetries of general covariance, local Lorentz invariance, local supersymmetry and *p*-form gauge invariance acting on the classical fields.
- Traditionally:

ł

$$g_{\mu
u}(x) = A_{\mu}(x)(L) \otimes A_{
u}(x)(R)$$

• This can't reproduce the symmetries correctly! (not in a supergravity sense)

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy • Instead we define[Anastasiou, Borsten, Duff, Hughes, SN 2014]:

$$g_{\mu\nu}(x) = [A_{\mu}{}^{i}(L) \star \Phi_{ii'} \star A_{\nu}{}^{i'}(R)](x)$$

Local symmetries

where $\Phi_{ii'}$ is the "spectator" bi-adjoint scalar field introduced by [Hodges 2013] and [Cachazo 2014]

• The convolution is defined as

Į

$$[f \star g](x) = \int d^4 y f(y) g(x-y).$$

and is a consequence of the momentum-space origin of squaring: product in momentum space is convolution in position space!

• Importantly, is **doesn't** obey the Leibnitz rule:

$$\partial_\mu (f\star g) = (\partial_\mu f)\star g = f\star (\partial_\mu g)$$

Example

Double Copies Silvia Nagy

Supergravity (and Gauge

Theories) as

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries

Global symmetr Applications

Chiral squaring ar the quadru copy

- Look at $\mathcal{N} = 1$ supergravity in D = 4, obtained by tensoring the (4 + 4) off-shell $\mathcal{N}_L = 1$ Yang-Mills multiplet $(A_\mu(L), \chi(L), D(L))$ with the (3 + 0) off-shell $\mathcal{N}_R = 0$ multiplet $A_\mu(R)$.
- We obtain the new-minimal formulation of $\mathcal{N} = 1$ supergravity [Sohnius] with its 12+12 multiplet $(e^a_{\mu}, \psi_{\mu}, V_{\mu}, B_{\mu\nu}).$

Silvia Nagy

Outline

- Supergravity as the square of Super Yang-Mills
- Local symmetries

Global symmetrie Applications

Chiral squaring and the quadrupl copy

Transformation rules

• $\mathcal{N} = 1$ supergravity is described by a superfield φ_{μ} transforming at linearised level separately under local transformations with chiral parameter S_{μ} and real parameter ϕ and under global super-Poincaré with parameters a, λ, ϵ :

$$\delta arphi_{\mu} = \mathcal{S}_{\mu} + ar{\mathcal{S}}_{\mu} + \partial_{\mu} \phi + \delta_{(\mathbf{a},\lambda,\epsilon)} arphi_{\mu}$$

where
$$\delta_{(a,\lambda,\epsilon)}F = (aP + \lambda M + \epsilon Q + \bar{\epsilon}\bar{Q})F$$

The left supermultiplet is described by a vector superfield Vⁱ(L) transforming at linearised level separately under local Abelian gauge transformations with parameter Λⁱ(L), non-Abelian global G_L transformations with parameter θⁱ(L) and global super-Poincaré:

$$\delta V^{i}(L) = \Lambda^{i}(L) + \bar{\Lambda}^{i}(L) + f^{i}_{jk} V^{j}(L) \theta^{k}(L) + \delta_{(a,\lambda,\epsilon)} V^{i}(L).$$

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrup copy

Transformation rules

• The right Yang-Mills field $A_{\nu}{}^{i'}(R)$ transforms separately under local Abelian gauge transformations with parameter $\sigma^{i'}(R)$, non-Abelian global G_R transformations with parameter $\theta^{i'}(R)$ and global Poincaré:

$$\begin{split} \delta A_{\nu}{}^{i'}(R) &= \partial_{\nu} \sigma^{i'}(R) + f^{i'}{}_{j'k'} A_{\nu}{}^{j'}(R) \theta^{k'}(R) \\ &+ \delta_{(a,\lambda)} A_{\nu}{}^{i'}(R). \end{split}$$

 The spectator bi-adjoint scalar field transforms under non-Abelian global G_L × G_R and global Poincaré:

$$\delta \Phi_{ii'} = -f^{j}{}_{ik} \Phi_{ji'} \theta^{k}(L) - f^{j'}{}_{i'k'} \Phi_{jj'} \theta^{k'}(R) + \delta_{a} \Phi_{ii'}.$$

Dictionary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Double Copies Silvia Nagy

Supergravity (and Gauge

Theories) as

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries Global symmetries Applications

Chiral squaring and the quadrupl copy

$$\varphi_{\mu} = V^{i}(L) \star \Phi_{ii'} \star A_{\mu}{}^{i'}(R)$$
$$\phi = V^{i}(L) \star \Phi_{ii'} \star \sigma^{i'}(R)$$
$$S_{\mu} = \Lambda^{i}(L) \star \Phi_{ii'} \star A_{\mu}{}^{i'}(R)$$

Works without imposing external constraints!

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

- Why squaring?
- Local symmetries Global symmetries
- Chiral squaring and the quadrupl copy

Component Formalism

• Work in Wess-Zumino gauge; field dictionary becomes:

$$Z_{\mu\nu} \equiv h_{\mu\nu} + B_{\mu\nu} = A_{\mu}{}^{i}(L) \star \Phi_{ii'} \star A_{\nu}{}^{i'}(R)$$

$$\psi_{\nu} = \chi^{i}(L) \star \Phi_{ii'} \star A_{\nu}{}^{i'}(R)$$

$$V_{\nu} = D^{i}(L) \star \Phi_{ii'} \star A_{\nu}{}^{i'}(R),$$

• Parameter dictionary:

$$\begin{aligned} \alpha_{\mu}(L) &= A_{\mu}{}^{i}(L) \star \Phi_{ii'} \star \sigma^{i'}(R), \\ \alpha_{\nu}(R) &= \sigma^{i}(L) \star \Phi_{ii'} \star A_{\nu}{}^{i'}(R), \\ \eta &= \chi^{i}(L) \star \Phi_{ii'} \star \sigma^{i'}(R), \\ \Lambda &= D^{i}(L) \star \Phi_{ii'} \star \sigma^{i'}(R), \end{aligned}$$

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries

Global symmetries Applications

Chiral squaring and the quadrupl copy

Supergravity as the square of Super Yang-Mills Why squaring? Local symmetries Global symmetries

Silvia Nagy

Outline

- Supergravity as the square of Super Yang-Mills Why squaring?
- i i i i
- Global symmetries

Applications

Chiral squaring and the quadrup copy

But how do we square now?

- Tensoring two on-shell super Yang-Mills multiplets in dimensions D ≤ 10 yields an on-shell supergravity multiplet, possibly with additional matter multiplets.
- We take tensor product over little group representations and exterior product over the R-symmetry representations:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills Why squaring?

Global symmetries

Applications

Chiral squaring and the quadrup copy

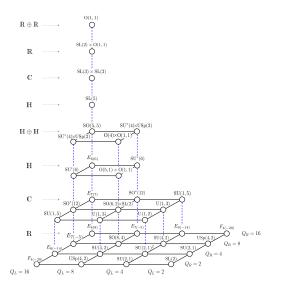


Figure : The U-duality group G in all dimensions. The amount of supersymmetry is determined by the horizontal axis. The spacetime dimension is determined by the division algebra A_D

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills Why squaring?

Global symmetries

Applications

Chiral squaring and the quadrup copy

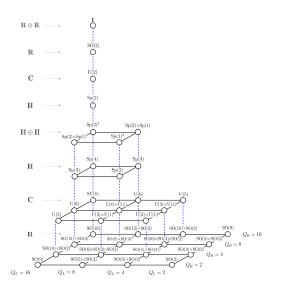


Figure : Pyramid of maximal compact subgroups $H \subset G$. The amount of supersymmetry is determined by the horizontal axis. The spacetime dimension is determined by the division algebra \mathbb{A}_D

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring?

Local symmetries

Global symmetries

Chiral squaring a the quadru

Conclusions-global symmetries

- One can build the U-duality algebra g and its maximally compact subgroup h of theories obtained from squaring in any dimensions from knowledge of the multiplet content and global symmetries of the original SYM theories.
- The general prescription [Anastasiou, Borsten, Duff, Hughes, SN 2015]:

$$\mathfrak{g}(\mathcal{N}_L, \mathcal{N}_R, D) = \mathfrak{sym}(\mathcal{N}_L) \oplus \mathfrak{sym}(\mathcal{N}_R) + (Q'_L \otimes Q'_R) + \sum (\Phi_L \otimes \Phi_R)$$

where $\mathfrak{sym}(\mathcal{N}_{L/R})$ is the R-symmetry of the SYM and $Q'_L \otimes Q'_R$ are bosonic transformations on the supergavity multiplet that follow from L/R supersymmetry by suppressing the spacetime indices.

 Associating a division algebra A_D with every dimension D allows for a unified description of these algebras.

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Why squaring? Local symmetries Global symmetries

Applications

Chiral squaring and the quadruple copy

1 Supergravity as the square of Super Yang-Mills

Why squaring? Local symmetries Global symmetries

Applications

Applications

Double Copies Silvia Nagy

Supergravity (and Gauge

Theories) as

Outline

- Supergravity as the square of Super Yang-Mills
- Why squaring? Local symmetries Global symmetrie

Applications

Chiral squaring and the quadruple copy

- Black hole solutions [Monteiro et al 2015]
- Note that the formula given previously will work for any squaring (e.g. we can obtain supergravity coupled to n vector multiplets)-study supersymmetric solutions
- Ultimately, we want to obtain full non-linear (super)gravity theory from squaring.

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy Supergravity as the square of Super Yang-Mills Why squaring? Local symmetries Global symmetries Applications

Chiral Squaring

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Can we go further and decompose SYM multiplets?
- We have

$$(\mathcal{N}=4)_{{\it SYM}}=(\mathcal{N}=1)_{{\it chiral}} imes(\mathcal{N}=1)_{{\it chiral}}$$

- One can obtain all the symmetries of $\mathcal{N} = 4$ SYM from two copies of the chiral multiplet.[SN 2014]
- We need to introduce new SUSY generators via SO(2) rotation of the bosonic states.

Supergravity (and Gauge Theories) as Double Copies

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy

Applications

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy

Applications

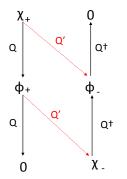


Figure : extra susy generators

ヘロト ヘロト ヘヨト ヘヨト

æ

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy

Applications

- We can write $\mathcal{N}=8$ as a quadruple copy; all its symmetries can be derived from those of $\mathcal{N}=1$ chiral multiplet.
- Extends to D = 6:

$$\begin{split} [\mathcal{N} = (2,0)]_{tensor} &= [\mathcal{N} = (1,0)] \times [\mathcal{N} = (1,0)] \\ [\mathcal{N} = (1,1)]_{SYM} &= [\mathcal{N} = (1,0)] \times [\mathcal{N} = (0,1)] \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Applications

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Double Copies Silvia Nagy

Supergravity (and Gauge

Theories) as

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy

- Extension of KLT relations to chiral squaring [Schreiber 2016]
- Fermion double copies as dark matter candidates [de la Cruz et al 2016]
- Off-shell description of double copy theories?

Table of Contents

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Silvia Nagy

Outline

Supergravity as the square of Super Yang-Mills

Chiral squaring and the quadruple copy Applications Supergravity as the square of Super Yang-Mills Why squaring? Local symmetries Global symmetries Applications