$\mathcal{N}=3$ four dimensional field theories

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Diego Regalado Madrid, January 2016

Based on [1512.06434] with I. García-Etxebarria

Motivation and outline

Motivation:

- Original motivation: F-theory at terminal singularities (no supersymmetric smoothing). O3-planes are examples of this.
- In particular, D3-branes probing codimension 4 terminal singularities.
- The simplest unknown cases turn out to lead to $\mathcal{N}=3$ theories on the worldvolume of the D3s.

Motivation and outline

Motivation:

- Original motivation: F-theory at terminal singularities (no supersymmetric smoothing). O3-planes are examples of this.
- In particular, D3-branes probing codimension 4 terminal singularities.
- The simplest unknown cases turn out to lead to $\mathcal{N}=3$ theories on the worldvolume of the D3s.

Outline:

- D3s probing an O3 from several perspectives:
 - Worldsheet
 - M/F-theory
 - 4d field theory
- Generalize the O3-plane:
 - M/F-theory
 - 4d field theory ($\mathcal{N}=3$)

O3s in perturbation theory

• In 2d CFT, O3s are defined as the quotient of 10d Type IIB by $\mathcal{I}(-1)^{F_L}\Omega$

$$\mathcal{I}: (z_1, z_2, z_3) \to (-z_1, -z_2, -z_3)$$

- $\begin{array}{l} (-1)^{F_L}: \text{ left moving spacetime fermion number} \\ \Omega: \text{ orientation reversal on the worldsheet} \end{array} \right\} \left(\begin{array}{c} B_2 \\ C_2 \end{array}\right) \rightarrow \left(\begin{array}{c} -B_2 \\ -C_2 \end{array}\right)$
- When including *N* parallel D3s, we need to specify an action on the Chan-Paton factors. [Gimon, Polchinski]

• There are different kinds of O3-planes.

O3s in M/F-theory (I)

• 10d Type IIB is given by the F-theory limit of M-theory on a torus.

M-th. on
$$\mathbb{R}^{1,2} \times \mathbb{C}^3 \times T^2$$
 $\xrightarrow{T^2 \to 0}$ IIB on $\mathbb{R}^{1,3} \times \mathbb{C}^3$
Complex structure of T^2 \longrightarrow Axio-dilaton $(\tau \supset g_s)$

O3s in M/F-theory (I)

• 10d Type IIB is given by the F-theory limit of M-theory on a torus.

M-th. on
$$\mathbb{R}^{1,2} \times \mathbb{C}^3 \times T^2$$
 $\xrightarrow{T^2 \to 0}$ IIB on $\mathbb{R}^{1,3} \times \mathbb{C}^3$
Complex structure of T^2 \longrightarrow Axio-dilaton $(\tau \supset g_s)$

• The M-theory lift of the O3 is given by [Hanany, Kol] M-th. on $\mathbb{R}^{1,2} \times (\mathbb{C}^3 \times T^2)/\mathbb{Z}_2$ with $(z_1, z_2, z_3, u) \to (-z_1, -z_2, -z_3, -u)$ $(-1)^{F_L}\Omega$ lifts to: $\mathcal{M}_{(-1)^{F_L}\Omega} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in SL(2,\mathbb{Z})$ This can be seen by looking at the action of the O3 on $\begin{pmatrix} B_2 \\ C_2 \end{pmatrix}$, which comes from reducing C_3 along the one-cycles in the torus.

O3s in M/F-theory (II)

- Four fixed points, which locally look like $\mathbb{C}^4/\mathbb{Z}_2$.
 - This is a terminal singularity: no low-energy dynamics associated to O3. [Morrison, Stevens; Anno]
- D3-branes parallel to the O3-plane lift to M2-branes.
- In M-theory, this is precisely ABJM (at level k = 2).

The F-theory limit provides the 4d lift of ABJM.

 $k = 1 : \quad 4d \ \mathcal{N} = 4 \ \mathfrak{u}(N)$

 $k = 2 : \quad 4d \ \mathcal{N} = 4 \ \mathfrak{so}(N), \mathfrak{usp}(N)$

• Orientifold variants: discrete flux $\longrightarrow O3^-, O3^+, \widetilde{O3}^-, \widetilde{O3}^+$.

[[]Hanany, Kol]

• Before the quotient we have $4d \mathcal{N} = 4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM} = \tau_{\rm IIB}$.

- Before the quotient we have $4d \mathcal{N} = 4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM} = \tau_{\rm IIB}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.

- Before the quotient we have $4d \mathcal{N} = 4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM} = \tau_{\rm IIB}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.
- We have seen that $(-1)^{F_L}\Omega$ maps to $\mathbb{Z}_2^S \subset SL(2,\mathbb{Z})$.

 $SL(2,\mathbb{Z})$ is a duality, not a symmetry: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$ However, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathbb{Z}_2^S$ is a symmetry: $\tau \rightarrow \tau$

- Before the quotient we have $4d \mathcal{N} = 4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM} = \tau_{\rm IIB}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.
- We have seen that $(-1)^{F_L}\Omega$ maps to $\mathbb{Z}_2^S \subset SL(2,\mathbb{Z})$.

$$SL(2,\mathbb{Z})$$
 is a duality, not a symmetry: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$
However, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathbb{Z}_2^S$ is a symmetry: $\tau \rightarrow \tau$

- Therefore, the orientifold corresponds to gauging $\mathbb{Z}_2^{O3} = \mathbb{Z}_2^R \cdot \mathbb{Z}_2^S$.
- Supercharges: $Q_{\alpha a}$ is charged under both \mathbb{Z}_2^R and \mathbb{Z}_2^S . [Kapustin, Witten]

 $\mathbb{Z}_2^{O3}: Q_{\alpha a} \to Q_{\alpha a}$ (the O3 does not break SUSY further)

Beyond the O3

Three different ways to look at the O3:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_L}\Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_2$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_2^R) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_2^S).

Beyond the O3

Three different ways to look at the O3:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_L}\Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_2$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_2^R) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_2^S).

The last two admit a generalization: $\mathbb{Z}_2 \longrightarrow \mathbb{Z}_k$

- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} \times (\mathbb{C}^3 \times T^2)/\mathbb{Z}_k$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_{k}^{R}) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_{k}^{S}).

We call the associated objects $OF3_k$ -planes. $(OF3_2 = O3)$

OF3s in M/F-theory (I)

• We want to consider M/F-theory on $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_k$

 $(z_1, z_2, z_3, u) \to (\zeta_k z_1, \bar{\zeta}_k z_2, \zeta_k z_3, \bar{\zeta}_k u)$ with $\zeta_k = e^{2\pi i/k}$ (k = 2, 3, 4, 6)

 $OF3_k$ -planes exist only for some values of k.

Only well-defined for special values of the complex structure τ (g_s^{IIB}).

(Different kinds of singularities for a given k)

OF3s in M/F-theory (II)

- Similarly to k = 2, these do not have supersymmetric resolutions. [Morrison, Stevens ; Anno]
- Preserve twelve supercharges, $\mathcal{N}_{3d} = 6$ or $\mathcal{N}_{4d} = 3$. (k > 2)
- The charge of these objects can be computed from curvature coupling:

$$S_M \supset -\int C_3 \wedge I_8(R) \implies Q = \int I_8(R) = \chi/24$$
 [Sethi]

- ABJM at level k > 2 preserves $\mathcal{N}_{3d} = 6$. The lift only works for some values of k because there has to be a torus in M-theory.
- M-theory geometry admits discrete flux \longrightarrow Different $OF3_k$

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_k quotient of $4d \ \mathcal{N} = 4 \ \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{OF} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_k quotient of $4d \ \mathcal{N} = 4 \ \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{OF} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$
- Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\tau \to \frac{a\tau + b}{c\tau + d}$.

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_k quotient of $4d \ \mathcal{N} = 4 \ \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{OF} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$

• Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$. However, for special values of τ there is a \mathbb{Z}_k^S symmetry (τ invariant). Restriction in both k and τ . The theory is stuck at strong coupling.

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_k quotient of 4d $\mathcal{N} = 4$ $\mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{OF} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$

- Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$. However, for special values of τ there is a \mathbb{Z}_k^S symmetry (τ invariant). Restriction in both k and τ . The theory is stuck at strong coupling.
- The action on the supercharges shows that $\mathcal{N} = 3$.

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_k quotient of 4d $\mathcal{N} = 4$ $\mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{OF} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$

- Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$. However, for special values of τ there is a \mathbb{Z}_k^S symmetry (τ invariant). Restriction in both k and τ . The theory is stuck at strong coupling.
- The action on the supercharges shows that $\mathcal{N} = 3$.
- The quotient does not act just on the elementary fields (mixes E&M). Generalization of the action on Chan-Paton factors is unclear.

$\mathcal{N}=3$ and CPT invariance

• Having $\mathcal{N} = 3$ in 4d is surprising. There is an argument saying that, in the absence of gravity,

$$\mathcal{N} = 3 + CPT \implies \mathcal{N} = 4$$
 [e.g. Weinberg]

Elementary field: vector multiplet.

$\mathcal{N}=3$ and CPT invariance

• Having $\mathcal{N} = 3$ in 4d is surprising. There is an argument saying that, in the absence of gravity,

$$\mathcal{N} = 3 + CPT \implies \mathcal{N} = 4$$
 [e.g. Weinberg]

Elementary field: vector multiplet.

• This only applies for theories with a weakly coupled description, which is not the case here. For strongly coupled theories, $\mathcal{N} = 3$ is fine.

[Aharony, Evtikhiev]

$\mathcal{N}=3$ and CPT invariance

• Having $\mathcal{N} = 3$ in 4d is surprising. There is an argument saying that, in the absence of gravity,

$$\mathcal{N} = 3 + CPT \implies \mathcal{N} = 4$$
 [e.g. Weinberg]

Elementary field: vector multiplet.

• This only applies for theories with a weakly coupled description, which is not the case here. For strongly coupled theories, $\mathcal{N} = 3$ is fine.

[Aharony, Evtikhiev]

• For the case where the parent theory is $4d \mathcal{N} = 4 U(1)$, which is free, we can check explicitly. Only $\mathcal{N} = 3$ is found.

Large N limit

Holographic dual of the $\mathcal{N} = 3$ theories?

- Large number of D3s probing an $OF3_k$ -plane.
- For k = 1, 2: Without the OF3 \longrightarrow The usual $AdS_5 \times S^5$ (k = 1)For an O3 \longrightarrow IIB orientifold $AdS_5 \times S^5/\mathbb{Z}_2$ (k = 2) [Witten]
- For k > 2:

F-theory/IIB on $AdS_5 \times S^5/\mathbb{Z}_k$ with a \mathbb{Z}_k -bundle over S^5/\mathbb{Z}_k . Axio-dilaton is projected out \longrightarrow No marginal deformation.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N} = 3$ field theories in 4d as quotients of $\mathcal{N} = 4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N} = 3$ field theories in 4d as quotients of $\mathcal{N} = 4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling.

Outlook:

- Better understanding in 4d field theory (classify, superconformal index).
- Better understanding in M-theory (BPS states).
- Other (less supersymmetric) terminal singularities.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N} = 3$ field theories in 4d as quotients of $\mathcal{N} = 4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling.

Outlook:

- Better understanding in 4d field theory (classify, superconformal index).
- Better understanding in M-theory (BPS states).
- Other (less supersymmetric) terminal singularities.

Thank you!

Extra

• Orientifold variants: discrete torsion.

The transverse space to the singularity is S^7/\mathbb{Z}_2 . Discrete G_4 flux in $H^4(S^7/\mathbb{Z}_2, \mathbb{Z}) = \mathbb{Z}_2$. Many fixed points \longrightarrow many orientifolds (in 3d) Some become equivalent/trivial in the F-theory limit \longrightarrow different O3s $O3^-, O3^+, \widetilde{O3}^-, \widetilde{O3}^+$

 $\mathbb{Z}_{2}^{O3} : (A, \lambda, \phi) \to (-A, -\lambda, -\phi)$ $\chi = 6(8 + 4h_{0,2} + h_{1,1} + h_{1,3} - h_{1,2})$ $\chi(\mathbb{C}^{4}/\mathbb{Z}_{k}) = \frac{1}{24} \left(k - \frac{1}{k}\right)$