$\mathcal{N}=3$ four dimensional field theories

Diego Regalado
Madrid, January 2016

Based on
[1512.06434] with I. García-Etxebarria

Motivation and outline

Motivation:

- Original motivation: F-theory at terminal singularities (no supersymmetric smoothing). O3-planes are examples of this.
- In particular, D3-branes probing codimension 4 terminal singularities.
- The simplest unknown cases turn out to lead to $\mathcal{N}=3$ theories on the worldvolume of the D3s.

Motivation and outline

Motivation:

- Original motivation: F-theory at terminal singularities (no supersymmetric smoothing). O3-planes are examples of this.
- In particular, D3-branes probing codimension 4 terminal singularities.
- The simplest unknown cases turn out to lead to $\mathcal{N}=3$ theories on the worldvolume of the D3s.

Outline:

- D3s probing an O3 from several perspectives:
- Worldsheet
- M/F-theory
- 4d field theory
- Generalize the O3-plane:
- M/F-theory
- 4d field theory ($\mathcal{N}=3$)

O3s in perturbation theory

- In 2d CFT, O3s are defined as the quotient of 10d Type IIB by $\mathcal{I}(-1)^{F_{L}} \Omega$
$\mathcal{I}:\left(z_{1}, z_{2}, z_{3}\right) \rightarrow\left(-z_{1},-z_{2},-z_{3}\right)$
$\left.\begin{array}{l}(-1)^{F_{L}}: \text { left moving spacetime fermion number } \\ \Omega: \text { orientation reversal on the worldsheet }\end{array}\right\}\binom{B_{2}}{C_{2}} \rightarrow\binom{-B_{2}}{-C_{2}}$
- When including N parallel D3s, we need to specify an action on the Chan-Paton factors.

Before the quotient
After the quotient

$$
\begin{aligned}
4 d \mathcal{N}=4 \mathfrak{u}(N) \xrightarrow{ } 4 d \mathcal{N}=4 \mathfrak{s o}(N) \\
4 d \mathcal{N}=4 \mathfrak{u s p}(N) \quad(N \in 2 \mathbb{Z})
\end{aligned}
$$

- There are different kinds of O3-planes.

O3s in M/F-theory (I)

- 10d Type IIB is given by the F-theory limit of M-theory on a torus.
$\begin{array}{llc}\text { M-th. on } \mathbb{R}^{1,2} \times \mathbb{C}^{3} \times T^{2} & \xrightarrow{T^{2} \rightarrow 0} & \text { IIB on } \mathbb{R}^{1,3} \times \mathbb{C}^{3} \\ \text { Complex structure of } T^{2} & \longrightarrow & \text { Axio-dilaton }\left(\tau \supset g_{s}\right)\end{array}$

O3s in M/F-theory (I)

- 10d Type IIB is given by the F-theory limit of M-theory on a torus.
M-th. on $\mathbb{R}^{1,2} \times \mathbb{C}^{3} \times T^{2}$
Complex structure of T^{2} $\xrightarrow{T^{2} \rightarrow 0}$ IIB on $\mathbb{R}^{1,3} \times \mathbb{C}^{3}$
\longrightarrow Axio-dilaton $\left(\tau \supset g_{s}\right)$
- The M-theory lift of the O 3 is given by

M-th. on $\mathbb{R}^{1,2} \times\left(\mathbb{C}^{3} \times T^{2}\right) / \mathbb{Z}_{2}$ with $\left(z_{1}, z_{2}, z_{3}, u\right) \rightarrow\left(-z_{1},-z_{2},-z_{3},-u\right)$
$(-1)^{F_{L}} \Omega \quad$ lifts to: $\quad \mathcal{M}_{(-1)^{F_{L} \Omega}}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \in S L(2, \mathbb{Z})$
This can be seen by looking at the action of the O 3 on $\binom{B_{2}}{C_{2}}$, which comes from reducing C_{3} along the one-cycles in the torus.

O3s in M/F-theory (II)

- Four fixed points, which locally look like $\mathbb{C}^{4} / \mathbb{Z}_{2}$.

This is a terminal singularity: no low-energy dynamics associated to O3.
[Morrison, Stevens; Anno]

- D3-branes parallel to the O3-plane lift to M2-branes.
- In M-theory, this is precisely ABJM (at level $k=2$).

The F-theory limit provides the 4d lift of ABJM.
$k=1: \quad 4 d \mathcal{N}=4 \mathfrak{u}(N)$
$k=2: \quad 4 d \mathcal{N}=4 \mathfrak{s o}(N), \mathfrak{u s p}(N)$

- Orientifold variants: discrete flux $\longrightarrow \mathrm{O3}^{-}, O 3^{+}, \widetilde{O 3}^{-}, \widetilde{\mathrm{O3}}{ }^{+}$.

O3s in field theory

- Before the quotient we have $4 d \mathcal{N}=4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\mathrm{YM}}=\tau_{\text {IIB }}$.

O3s in field theory

- Before the quotient we have $4 d \mathcal{N}=4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\mathrm{YM}}=\tau_{\text {IIB }}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_{2}^{R} \subset S O(6)_{R}$.

O3s in field theory

- Before the quotient we have $4 d \mathcal{N}=4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\mathrm{YM}}=\tau_{\text {IIB }}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_{2}^{R} \subset S O(6)_{R}$.
- We have seen that $(-1)^{F_{L}} \Omega$ maps to $\mathbb{Z}_{2}^{S} \subset S L(2, \mathbb{Z})$.
$S L(2, \mathbb{Z})$ is a duality, not a symmetry: $\quad \tau \rightarrow \frac{a \tau+b}{c \tau+d}$
However, $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \in \mathbb{Z}_{2}^{S}$ is a symmetry: $\tau \rightarrow \tau$

O3s in field theory

- Before the quotient we have $4 d \mathcal{N}=4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\mathrm{YM}}=\tau_{\mathrm{IIB}}$.
- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_{2}^{R} \subset S O(6)_{R}$.
- We have seen that $(-1)^{F_{L}} \Omega$ maps to $\mathbb{Z}_{2}^{S} \subset S L(2, \mathbb{Z})$.
$S L(2, \mathbb{Z})$ is a duality, not a symmetry: $\quad \tau \rightarrow \frac{a \tau+b}{c \tau+d}$
However, $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \in \mathbb{Z}_{2}^{S}$ is a symmetry: $\tau \rightarrow \tau$
- Therefore, the orientifold corresponds to gauging $\mathbb{Z}_{2}^{O 3}=\mathbb{Z}_{2}^{R} \cdot \mathbb{Z}_{2}^{S}$.
- Supercharges: $Q_{\alpha a}$ is charged under both \mathbb{Z}_{2}^{R} and \mathbb{Z}_{2}^{S}.

$$
\mathbb{Z}_{2}^{O 3}: Q_{\alpha a} \rightarrow Q_{\alpha a} \quad \text { (the O3 does not break SUSY further) }
$$

Beyond the O3

Three different ways to look at the O3:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_{L}} \Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} \times\left(\mathbb{C}^{3} \times T^{2}\right) / \mathbb{Z}_{2}$.
- 4d gauge theory: quotient by R-symmetry $\left(\mathbb{Z}_{2}^{R}\right)$ and $S L(2, \mathbb{Z})\left(\mathbb{Z}_{2}^{S}\right)$.

Beyond the O3

Three different ways to look at the O3:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_{L}} \Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} \times\left(\mathbb{C}^{3} \times T^{2}\right) / \mathbb{Z}_{2}$.
- 4d gauge theory: quotient by R-symmetry $\left(\mathbb{Z}_{2}^{R}\right)$ and $S L(2, \mathbb{Z})\left(\mathbb{Z}_{2}^{S}\right)$.

The last two admit a generalization:

$$
\mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{k}
$$

- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} \times\left(\mathbb{C}^{3} \times T^{2}\right) / \mathbb{Z}_{k}$.
- 4d gauge theory: quotient by R-symmetry $\left(\mathbb{Z}_{k}^{R}\right)$ and $S L(2, \mathbb{Z})\left(\mathbb{Z}_{k}^{S}\right)$.

We call the associated objects OF_{k}-planes. $\quad\left(\mathrm{OF}_{2}=\mathrm{O} 3\right)$

OF3s in M/F-theory (I)

- We want to consider M/F-theory on $\mathbb{R}^{1,2} \times\left(\mathbb{C}^{3} \times T^{2}\right) / \mathbb{Z}_{k}$

$$
\left(z_{1}, z_{2}, z_{3}, u\right) \rightarrow\left(\zeta_{k} z_{1}, \bar{\zeta}_{k} z_{2}, \zeta_{k} z_{3}, \bar{\zeta}_{k} u\right) \quad \text { with } \quad \zeta_{k}=e^{2 \pi i / k} \quad(k=2,3,4,6)
$$

$\left\{\mathrm{OF}_{k}\right.$-planes exist only for some values of k.
Only well-defined for special values of the complex structure $\tau\left(g_{s}^{I I B}\right)$.

(Different kinds of singularities for a given k)

OF3s in M/F-theory (II)

- Similarly to $k=2$, these do not have supersymmetric resolutions.
- Preserve twelve supercharges, $\mathcal{N}_{3 d}=6$ or $\mathcal{N}_{4 d}=3 . \quad(k>2)$
- The charge of these objects can be computed from curvature coupling:

$$
S_{M} \supset-\int C_{3} \wedge I_{8}(R) \quad \Longrightarrow \quad Q=\int I_{8}(R)=\chi / 24
$$

- ABJM at level $k>2$ preserves $\mathcal{N}_{3 d}=6$. The lift only works for some values of k because there has to be a torus in M-theory.
- M-theory geometry admits discrete flux \longrightarrow Different $\mathrm{OF} 3_{k}$

OF3s in field theory

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_{k} quotient of $4 d \mathcal{N}=4 \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_{k}^{\mathrm{OF}}=\mathbb{Z}_{k}^{R} \cdot \mathbb{Z}_{k}^{S}$ with

$$
\mathbb{Z}_{k}^{R} \subset S O(6)_{R} \quad \text { and } \quad \mathbb{Z}_{k}^{S} \subset S L(2, \mathbb{Z})
$$

OF3s in field theory

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_{k} quotient of $4 d \mathcal{N}=4 \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_{k}^{\mathrm{OF}}=\mathbb{Z}_{k}^{R} \cdot \mathbb{Z}_{k}^{S}$ with
$\mathbb{Z}_{k}^{R} \subset S O(6)_{R} \quad$ and $\quad \mathbb{Z}_{k}^{S} \subset S L(2, \mathbb{Z})$
- Again, $S L(2, \mathbb{Z})$ is not a symmetry, $\quad \tau \rightarrow \frac{a \tau+b}{c \tau+d}$.

OF3s in field theory

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_{k} quotient of $4 d \mathcal{N}=4 \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_{k}^{\mathrm{OF}}=\mathbb{Z}_{k}^{R} \cdot \mathbb{Z}_{k}^{S}$ with

$$
\mathbb{Z}_{k}^{R} \subset S O(6)_{R} \quad \text { and } \quad \mathbb{Z}_{k}^{S} \subset S L(2, \mathbb{Z})
$$

However, for special values of τ there is a \mathbb{Z}_{k}^{S} symmetry (τ invariant). Restriction in both k and τ. The theory is stuck at strong coupling.

OF3s in field theory

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_{k} quotient of $4 d \mathcal{N}=4 \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_{k}^{\mathrm{OF}}=\mathbb{Z}_{k}^{R} \cdot \mathbb{Z}_{k}^{S}$ with

$$
\mathbb{Z}_{k}^{R} \subset S O(6)_{R} \quad \text { and } \quad \mathbb{Z}_{k}^{S} \subset S L(2, \mathbb{Z})
$$

However, for special values of τ there is a \mathbb{Z}_{k}^{S} symmetry (τ invariant). Restriction in both k and τ. The theory is stuck at strong coupling.

- The action on the supercharges shows that $\mathcal{N}=3$.

OF3s in field theory

- The theory on N D3s probing an OF3 should arise as a \mathbb{Z}_{k} quotient of $4 d \mathcal{N}=4 \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_{k}^{\mathrm{OF}}=\mathbb{Z}_{k}^{R} \cdot \mathbb{Z}_{k}^{S}$ with

$$
\mathbb{Z}_{k}^{R} \subset S O(6)_{R} \quad \text { and } \quad \mathbb{Z}_{k}^{S} \subset S L(2, \mathbb{Z})
$$

 However, for special values of τ there is a \mathbb{Z}_{k}^{S} symmetry (τ invariant). Restriction in both k and τ. The theory is stuck at strong coupling.

- The action on the supercharges shows that $\mathcal{N}=3$.
- The quotient does not act just on the elementary fields (mixes E\&M). Generalization of the action on Chan-Paton factors is unclear.

$\mathcal{N}=3$ and CPT invariance

- Having $\mathcal{N}=3$ in $4 d$ is surprising. There is an argument saying that, in the absence of gravity,

$$
\mathcal{N}=3+\mathrm{CPT} \quad \Longrightarrow \quad \mathcal{N}=4 \quad[\text { e.g. Weinberg }]
$$

Elementary field: vector multiplet.

$\mathcal{N}=3$ and CPT invariance

- Having $\mathcal{N}=3$ in 4 d is surprising. There is an argument saying that, in the absence of gravity,

$$
\mathcal{N}=3+\mathrm{CPT} \quad \Longrightarrow \quad \mathcal{N}=4 \quad \text { [e.g. Weinberg] }
$$

Elementary field: vector multiplet.

- This only applies for theories with a weakly coupled description, which is not the case here. For strongly coupled theories, $\mathcal{N}=3$ is fine.
[Aharony, Evtikhiev]

$\mathcal{N}=3$ and CPT invariance

- Having $\mathcal{N}=3$ in $4 d$ is surprising. There is an argument saying that, in the absence of gravity,

$$
\mathcal{N}=3+\mathrm{CPT} \quad \Longrightarrow \quad \mathcal{N}=4
$$

[e.g. Weinberg]
Elementary field: vector multiplet.

- This only applies for theories with a weakly coupled description, which is not the case here. For strongly coupled theories, $\mathcal{N}=3$ is fine.
[Aharony, Evtikhiev]
- For the case where the parent theory is $4 d \mathcal{N}=4 U(1)$, which is free, we can check explicitly. Only $\mathcal{N}=3$ is found.

Large N limit

Holographic dual of the $\mathcal{N}=3$ theories?

- Large number of D3s probing an $\mathrm{OF} 3_{k}$-plane.
- For $k=1,2$:

Without the OF3 \longrightarrow The usual $\operatorname{AdS} S_{5} \times S^{5} \quad(k=1)$
For an $\mathrm{O} 3 \longrightarrow$ IIB orientifold $A d S_{5} \times S^{5} / \mathbb{Z}_{2} \quad(k=2)$

- For $k>2$:

F-theory/IIB on $A d S_{5} \times S^{5} / \mathbb{Z}_{k}$ with a \mathbb{Z}_{k}-bundle over S^{5} / \mathbb{Z}_{k}.
Axio-dilaton is projected out \longrightarrow No marginal deformation.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N}=3$ field theories in $4 d$ as quotients of $\mathcal{N}=4$ SYM by particular R-symmetry and $S L(2, \mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $A d S_{5} \times S^{5}$ acting on the IIB coupling.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N}=3$ field theories in $4 d$ as quotients of $\mathcal{N}=4$ SYM by particular R-symmetry and $S L(2, \mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $A d S_{5} \times S^{5}$ acting on the IIB coupling.

Outlook:

- Better understanding in 4d field theory (classify, superconformal index).
- Better understanding in M-theory (BPS states).
- Other (less supersymmetric) terminal singularities.

Conclusions and outlook

Conclusions:

- We have built the first examples of $\mathcal{N}=3$ field theories in $4 d$ as quotients of $\mathcal{N}=4$ SYM by particular R-symmetry and $S L(2, \mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $A d S_{5} \times S^{5}$ acting on the IIB coupling.

Outlook:

- Better understanding in 4d field theory (classify, superconformal index).
- Better understanding in M-theory (BPS states).
- Other (less supersymmetric) terminal singularities.

Thank you!

Extra

- Orientifold variants: discrete torsion.

The transverse space to the singularity is S^{7} / \mathbb{Z}_{2}.
Discrete G_{4} flux in $H^{4}\left(S^{7} / \mathbb{Z}_{2}, \mathbb{Z}\right)=\mathbb{Z}_{2}$.
Many fixed points \longrightarrow many orientifolds (in 3d)
Some become equivalent/trivial in the F-theory limit \longrightarrow different O3s

$$
O 3^{-}, O 3^{+}, \widetilde{O 3}^{-}, \widetilde{O 3}+
$$

$$
\begin{aligned}
& \mathbb{Z}_{2}^{O 3}:(A, \lambda, \phi) \rightarrow(-A,-\lambda,-\phi) \\
& \chi=6\left(8+4 h_{0,2}+h_{1,1}+h_{1,3}-h_{1,2}\right) \\
& \chi\left(\mathbb{C}^{4} / \mathbb{Z}_{k}\right)=\frac{1}{24}\left(k-\frac{1}{k}\right)
\end{aligned}
$$

