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Motivation and outline

Motivation:

* Original motivation: F-theory at terminal singularities (no
supersymmetric smoothing). O3-planes are examples of this.

* |n particular, D3-branes probing codimension 4 terminal singularities.

e The simplest unknown cases turn out to lead to N = 3 theories on the
worldvolume of the D3s.



Motivation and outline

Motivation:

* Original motivation: F-theory at terminal singularities (no
supersymmetric smoothing). O3-planes are examples of this.

* |n particular, D3-branes probing codimension 4 terminal singularities.

e The simplest unknown cases turn out to lead to N = 3 theories on the
worldvolume of the D3s.

Outline:

e D3s probing an O3 from several perspectives:
e Worldsheet
e M/F-theory
e 4d field theory

e (Generalize the O3-plane:
e M/F-theory
e 4d field theory (N = 3)



O3s in perturbation theory

* In 2d CFT, O3s are defined as the quotient of 10d Type IIB by Z(—1)**Q

A58 (Zla <2, ZS) ~ (_Zla X2 _ZS)

(=1)"L : left moving spacetime fermion number } ( B, ) = ( — B )

(2 : orientation reversal on the worldsheet Cs =

e When including N parallel D3s, we need to specify an action on the
Chan-Paton factors.

Before the quotient After the quotient

% e e 4d N =4 so(N)
i sl S N =4 usp(N) (N € 27Z)

 There are different kinds of O3-planes.
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O3s in M/F-theory (1)

e 10d Type |IB is given by the F-theory limit of M-theory on a torus.

T2 =0
M-th. on RY2 x C3 x T2 = IBo R

Complex structure of T »  Axio-dilaton (= D gs)

 The M-theory lift of the O3 is given by

M-th. on R'? x ((C3 X TQ)/ZQ with (21, 22, 23, W) —> (- 21, 2o S

—

8% ' : =
ST O = ifits to: M(_1)FLQ—< R |

) e SL(2,7Z)

This can be seen by looking at the action of the O3 on ( gi ) which

comes from reducing Cs3 along the one-cycles in the torus.



O3s in M/F-theory (lIl)

e Four fixed points, which locally look like C*/Z,.

This is a terminal singularity: no low-energy dynamics associated to O3.

[Morrison, Stevens; Anno]

e D3-branes parallel to the O3-plane lift to M2-branes.

e In M-theory, this is precisely ABJM (at level k = 2).

The F-theory limit provides the 4d lift of ABJM.
k=1: 4d N =4 u(N)
N = 4 s0(N ), usp(N)

o
 QOrientifold variants: discrete flux . 037, 030105 0N
[Hanany, Kol]
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* Therefore, the orientifold corresponds to gauging Z$?° = Z%.75

e Supercharges: Qaq is charged under both Z4 and Z3 .

0., — Qu, (the O3 does not break SUSY further)
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Three different ways to look at the OS3:
» Worldsheet: quotient by Z(—1)"*Q) .
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Beyond the O3

Three different ways to look at the OS3:
» Worldsheet: quotient by Z(—1)"*Q) .
o M/F-theory: F-theory limit of RY? x (C? x T?)/Zs .

* 4d gauge theory: quotient by R-symmetry ( Z4) and SL(2,Z) ( Z3).

The last two admit a generalization: Lo — Zig
o M/F-theory: F-theory limit of RY? x (C? x T?)/Zy, .

* 4d gauge theory: quotient by R-symmetry ( Z:*) and SL(2,7Z) ( Z7 ).

We call the associated objects OF3;-planes. (OF35 = 03)



OF3s in M/F-theory (1)

 We want to consider M/F-theory on R'? x (C° x T?)/Zy
W2 1) > (Ch71, (k2o Crs, Cru) With G, = 272/ B (FESRC Ry

{ OF3,-planes exist only for some values of k.

Only well-defined for special values of the complex structure T (gi'%).

A

/

TQ/ZkI -

k = for— e (G
i /3 -

LI

T=E = ==

(Different kinds of singularities for a given k)



OF3s in M/F-theory (II)

e Similarly to k = 2, these do not have supersymmetric resolutions.
e Preserve twelve supercharges, Nzg =6 or Ngg=3. (k> 2)

 The charge of these objects can be computed from curvature coupling:

D) —/CgAfg(R) — QZ/Ig(R)ZX/QéL

 ABJM at level k > 2 preserves Nsq = 6. The lift only works for some
values of k because there has to be a torus in M-theory.

e M-theory geometry admits discrete flux » Different OF3;
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Restriction in both £ and 7. The theory is stuck at strong coupling.
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 The action on the supercharges shows that N/ = 3.

e The quotient does not act just on the elementary fields (mixes E&M).
Generalization of the action on Chan-Paton factors is unclear.
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N =3 and CPT invariance

e Having N = 3 in 4d is surprising. There is an argument saying that, in
the albsence of gravity,

M= L QR — Y = 4

Elementary field: vector multiplet.

e This only applies for theories with a weakly coupled description, which
is not the case here. For strongly coupled theories, N' = 3 is fine.

e For the case where the parent theory is 4d N =4 U (1), which is free,
we can check explicitly. Only A/ = 3 is found.



Large N limit

Holographic dual of the N = 3 theories?

e Large number of D3s probing an OF3;-plane.

RO = 1D
Without the OF3 » The usual AdS5 x S° o= 1l
For an O3 > |IB orientifold AdSs x S°/Z =12
ENer k> 2:

F-theory/lIB on AdSs x S°/Z;, with a Z-bundle over S°/Z;,.

Axio-dilaton is projected out » No marginal deformation.
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of N' = 4 SYM by particular R-symmetry and SL(2, Z) symmetries.
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The worldvolume theory of D3s probing OF3s (generalized orientifolds).
Can be thought of as the 4d version of ABJM (only for some k).

Large N limit as a quotient of AdSs x S° acting on the 1B coupling.

Outlook:

e Better understanding in 4d field theory (classifty, superconformal index).
e Better understanding in M-theory (BPS states).
e Other (less supersymmetric) terminal singularities.

Thank you!



Extra

e QOrientifold variants: discrete torsion.
The transverse space to the singularity is S7/Zg.
BiECieie Gy iluxin HY (S [Z3,7) = Zs .
Many fixed points —— many orientifolds (in 3d)
Some become equivalent/trivial in the F-theory limit ——— different O3s
O3, 03" 07 05
Z3° : (A, X, ¢) = (-4, =X, —¢)

fa— 6(8 e 4h0,2 = h1,1 s h1,3 — h1’2)

XC/2) = 57 (k- §)



