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The revival of the soft theorems

Soft theorems in gauge theories and gravity are quite old stuff…

For QED it was formulated by Low in 1958. In the limit in which a photon is 
emitted with momentum            the full amplitude factorizes as
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This means that in the soft limit the amplitude is dominated by 
bremsstrahlung from the external states
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In gravity, the soft theorem was formulated by Weinberg in 1964

Again, the dominant part of the amplitude is that in which the graviton is 
bremsgestrahlt from the external states 

where
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Both Low’s and Weinberg’s theorems have universal subleading 
corrections in powers of the soft momentum

(Cachazo & Strominger 2014)(Low 1958, Schwab & Volovich 2014, Casali 2014)

In both cases:
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For QED, we have

whereas the NLO and NNLO corrections to Weinberg’s theorem are
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1 Introduction

The scattering amplitudes of quantum field theories with massless intermediate gauge

bosons have an interesting infrared behavior, in particular in the soft limit where massless

bosons are emitted with very small momenta. In this context, it was proved by Low [1]

that in QED the leading behavior of an inelastic amplitude with an emitted soft photon

is dominated by those contributions in which the photon is bremsgestrahlt by the exter-

nal states (Low formulated the theorem for scalar charged particles, Burnett and Kroll

generalized it to the case of charged fermions [2]). Subleading corrections to this result,

sensitive to internal emissions, were also computed in [1] and found to have a particularly

simple form. In the case of gravity, Weinberg showed [3, 4] that a similar result holds for

scattering amplitudes in which a soft graviton is emitted.

More recently, there has been a renewed interest in these results stemming from the

realization that Weinberg’s soft-graviton theorem can be regarded as the Ward identity

associated with the symmetries of the gravitational theory at null infinity [5, 6]. This

has led to the formulation of a new soft-graviton theorem including next-to-leading and

next-to-next-to-leading order corrections which have a universal expression in terms of the

angular momentum of the hard particles [7]. Using obvious notation,
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Recently, soft-theorems became again fashionable because their relation to the 
asymptotic symmetries. (Strominger 2014)

In gravity, the relevant asymptotic symmetry is the BMS group:

BMS = S ⇥ SL(2,C)

(Bondi, van der Burg, Metzner 1962; Sachs 1962)

In the case of (gauge-fixed) gauge theories, one considers “large” residual 
gauge transformations that do not approach the identity at infinity

Low’s theorem is a Ward identity associated to these transformations.

Weinberg’s theorem is equivalent to the Ward identity for 
supertranslations.
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Recently, soft-theorems became again fashionable because their relation to the 
asymptotic symmetries. (Strominger 2014)

In gravity, the relevant asymptotic symmetry is the BMS group:

BMS = S ⇥ SL(2,C)

(Bondi, van der Burg, Metzner 1962; Sachs 1962)

supertranslations rotations of the 
transverse sphere

In the case of (gauge-fixed) gauge theories, one considers “large” residual 
gauge transformations that do not approach the identity at infinity

Low’s theorem is a Ward identity associated to these transformations.

Weinberg’s theorem is equivalent to the Ward identity for 
supertranslations.
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On the other hand, there are a number of hints that, in an “on-shell” sense, 
gravity = (gauge)2:

• Kawai-Lewellen-Tye (KLT) tree-level identities, e.g.

�is13s24A
(5 gauge)
L (1, 3, 2, 4, 5)A(5 gauge)

R (3, 1, 4, 2, 5)

A(5g)(1, 2, 3,4, 5) = �is12s34A
(5 gauge)
L (1, 2, 3, 4, 5)A(5 gauge)

R (2, 1, 4, 3, 5)

• Bern-Carrasco-Johansson (BCJ) color-kinematics duality:

Agauge = gn�2
X
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2
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j + n0
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This can be extended to loop diagrams (before integration).
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Let’s focus now on the scattering of two distinct scalar
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Does (soft graviton)=(soft gluon)2?
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Figure 1: Generic topologies contributing to the scattering of two distinct scalars with gluon
emission. The momenta p and q are taken incoming, while k, p0, and q

0 are outgoing.

emissions. The color factors are given by [15]
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where Tij and e
Tmn are the gauge group generators associated with the two scalar flavors. We

have also introduced the following kinematic invariants

s1 = 2 k · p, s2 = 2 k · q, s10 = 2 k · p0, s20 = 2 k · q0. (2.3)

The next step is to enforce gauge invariance. The gauge Ward identity reads,

c1 A4(p, q, p
0 + k, q

0)� c2 A4(p� k, q, p

0
, q

0) + c4 A4(p, q, p
0
, q

0 + k)� c5 A4(p, q � k, p

0
, q

0)

+
kµ

2

"
c3 Bµ

1 (k; p, q, p
0
, q

0) + c6 Bµ
2 (k; p, q, p

0
, q

0) + c7 Bµ
3 (k; p, q, p

0
, q

0)

#
= 0. (2.4)

4

c5 = T b
ij
eT b
m`

eT a
`n,

c6 = T b
ij
eT a
m`

eT b
`n + T b

ij
eT b
m`

eT a
`n,

c7 = ifabcT b
ij
eT c
mn

satisfying the Jacobi identities:

In the soft limit we expand this equation in powers of the gluon momentum. At leading

order in this expansion, the Ward identity is automatically satisfied due to the Jacobi identity

c1� c2+ c4� c5 = 0. In the linear approximation, on the other hand, we are led to the equation

kµ

"
2

✓
c1

@

@p

0µ + c2
@

@p

µ
+ c4

@

@q

0µ + c5
@

@q

µ

◆
A4(p, q, p

0
, q

0)

+c3 Bµ
1 (0; p, q, p

0
, q

0) + c6 Bµ
2 (0; p, q, p

0
, q

0) + c7 Bµ
3 (0; p, q, p

0
, q

0)

#
= 0. (2.5)
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Since c3, c6 and c7 are independent, we arrive at the equations to obtain the three undetermined
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0) we could add a function �µ
i satisfying kµ�
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i = 0. How-

ever, its tensor structure implies that such a function must be at least linear in k and therefore

can be ignored at this order.
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depends on seven color structures
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This structure is general: in principle, loop diagrams require new 
vertices (three- & four-gluon and “seagull” vertices) and one might 
encounter “new” color structures, e.g.

fabcf cdeT b
ij
eT d
mp

eT e
pn, . . .

This, however can be reduced to    ,    , and     by usingc3 c6 c7

fabcT b
ik = i[T a, T c]ik

together with closure relations 

T a
ikT

a
`j =

1

2

✓
�ij�k` �

1

N
�ik�`j

◆
. for SU(N)

fabcf cdeT a
i`T

b
`j
eT d
mn,



   M.A. Vázquez-Mozo             On the double copy structure of soft gravitons                            Iberian Strings 2016, IFT UAM-CSIC

(q, n)

(p, j)

(q0,m)

(p0, i)

(a, k)

+
(q, n)

(p, j)

(q0,m)

(p0, i)

(a, k)

(q, n)

(p, j)

(q0,m)

(p0, i)

(a, k)

+
(q, n)

(p, j)

(a, k)

(q0,m)

(p0, i)

+
(q, n)

(p, j)

(q0,m)

(p0, i)

(a, k)

Figure 1: Generic topologies contributing to the scattering of two distinct scalars with gluon
emission. The momenta p and q are taken incoming, while k, p0, and q

0 are outgoing.
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corresponding gravitational one. In Section 3 we analyze the gravitational scattering amplitude

of two scalars with the emission of a graviton in the soft limit. As in the gauge theory case, we

express the first correction in terms of derivatives with respect to the Mandelstam invariants

and find that the associated coe�cients have a double copy structure. This is interpreted in the

sense that the contribution of the soft graviton to the five-point gravitational amplitude can

be factored as the square of the contribution of the soft gluon to its gauge theory counterpart,

after removing the color factors. Section 4 is devoted to the study of the Gribov limit, which

allows for not necessarily soft bremsstrahlung, both in gauge theories and gravity. We find that

the first correction to the amplitude in this kinematic region computed in [13] can be obtained

from the corresponding correction to the Low/Weinberg theorems by dropping derivatives with

respect to the s Mandelstam invariant. Finally, in Section 5 we summarize our conclusions.

2 Soft gluons in scalar QCD

It has been shown in [14] that in scalar QED the first subleading correction to Low’s theorem

is completely fixed by gauge invariance. In this section we extend this result to the nonabelian

case by considering scalar QCD (sQCD) with two flavors and the scattering amplitude of two

distinct scalars in an arbitrary representation with radiation of a gluon. The five generic

topologies contributing to this process are shown in Fig. 1: four of them correspond to the

bremsstrahlung of a gluon by the external scalars, while in the fifth one the gluon is emitted

from an internal propagator. Based on Lorentz and color covariance, the amplitude can be

written as
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Figure 1: Generic topologies contributing to the scattering of two distinct scalars with gluon
emission. The momenta p and q are taken incoming, while k, p0, and q

0 are outgoing.
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To find the soft-gluon theorem, we implement gauge invariance

 and expand in powers of the gluon momentum.
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After a few manipulations, this can be recast in terms of the angular momentum operators as
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We have shown that the first correction to the amplitude in the soft limit is completely fixed

by the requirement of gauge invariance. Compared to the scalar QED case analyzed in [14],

we have a larger number of unknown functions associated with the di↵erent color structures in

the internal emission diagrams. However, this very fact implies that there is an equally larger

number of independent constraints to determine these functions. At linear order in the gluon

momentum, we have again three equations for the first derivatives of Bi(k; p, q, p0, q0) at k = 0,

but as in the Abelian case these relations leave the curls
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undetermined.

The corrections to Low’s theorem in Eq. (2.10) can be rewritten using the Mandelstam

invariants s and t, that we define in the following symmetric form
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where, since we are scattering scalar particles

(only “orbital” angular momentum)J (i)
µ⌫ = pi,µ

@
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� pi,⌫
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A4(p, q, p
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In this form, the tensor structure of the soft gluon prefactor is entangled with 
the derivatives of the four-point amplitude.
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However, using the four-particle invariants s and t we can write
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where
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The advantage of this expression is that now the whole tensor structure is 
confined to the coefficients of the derivatives

The combinations containing the angular momentum operators can then be expressed in terms
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Besides, due to the Jacobi identities it enjoys a “generalized invariance”

In this expression gauge invariance follows trivially from the invariance of the coe�cients

Ai and Bi. It is important to note that there exists a larger set of transformations of these

coe�cients that leaves the first correction to Low’s theorem invariant. These are given by the

shifts

A10 �! A10 + s10 ↵(p, q, p
0
, q

0),

A1 �! A1 � s1 ↵(p, q, p
0
, q

0),

A20 �! A20 + s20 ↵(p, q, p
0
, q

0), (2.17)

A2 �! A2 � s2 ↵(p, q, p
0
, q

0),

and

B10 �! B10 + s10 �(p, q, p
0
, q

0),

B1 �! B1 � s1 �(p, q, p
0
, q

0),

B20 �! B20 + s20 �(p, q, p
0
, q

0), (2.18)

B2 �! B2 � s2 �(p, q, p
0
, q

0),

where ↵(p, q, p0, q0) and �(p, q, p0, q0) are two arbitrary functions of the scalar momenta, not nec-

essarily local. Note that these transformations resemble those of the original color-kinematics

duality [17], although they are only a↵ecting the factorizing soft factors and not the full am-

plitude. Moreover, we have not identified any relevant role for the Jacobi identities when

investigating the double copy structure in the gravitational case. This is likely to be a feature

of the soft limit alone.

3 The gravitational amplitude and its double copy struc-

ture

The amplitude for the scattering of two distinct scalars with emission of a graviton can be

computed in the soft limit by considering the five generic topologies shown in Fig. 1 with the
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for arbitrary functions                      and          ↵(p, q, p0, q0) �(p, q, p0, q0)
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In the soft limit, we know 
that the first correction to 
Weinberg’s theorem can 
be written in terms of the 
angular momentum 
operators of the four 
scalars
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gluon replaced by a graviton. Following the general arguments given in [14], the result is
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Ai and e
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Let us move to gravity.
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where
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Similarly to the gauge theory case, the gravitational amplitude also remains invariant under
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We exploit this invariance to write gravity coefficients can be written as 
product of the gauge theory coefficients!

we find the new coe�cients e
A

0
i and e

B

0
i given by

e
A10 �! e

A

0
10 = 2

(p0 · " · p0)(q0 · k)2 � 2(p0 · " · q0)(p0 · k)(q0 · k) + (q0 · " · q0)(p0 · k)2
s10 + s20

,

e
A1 �! e

A

0
1 = 2

(p · " · p)(p · k)2 � 2(p · " · q)(p · k)(q · k) + (q · " · q)(q · k)2
s1 + s2

, (3.9)

e
A20 �! e

A

0
20 = 2

(p0 · " · p0)(q0 · k)2 � 2(p0 · " · q0)(p0 · k)(q0 · k) + (q0 · " · q0)(p0 · k)2
s10 + s20

,

e
A2 �! e

A

0
2 = 2

(p · " · p)(q · k)2 � 2(p · " · q)(p · k)(q · k) + (q · " · q)(p · k)2
s1 + s2

,

and

e
B10 �! e

B

0
10 = � 2

(p0 · " · p0)(p0 · k)2 � 2(p0 · " · p)(p · k)(p0 · k) + (p · " · p)(p0 · k)2
t1 � t2

,

e
B1 �! e

B

0
1 = 2

(p · " · p)(p · k)2 � 2(p · " · p0)(p · k)(p0 · k) + (p0 · " · p0)(p · k)2
t1 � t2

, (3.10)

e
B20 �! e

B

0
20 = 2

(q0 · " · q0)(q · k)2 � 2(q · " · q0)(q · k)(q0 · k) + (q · " · q)(q0 · k)2
t1 � t2

,

e
B2 �! e

B

0
2 = � 2

(q · " · q)(q0 · k)2 � 2(q · " · q0)(q · k)(q0 · k) + (q0 · " · q0)(q · k)2
t1 � t2

.

Here, to simplify the notation, we have introduced the invariants

t1 = (p� p

0)2, t2 = (q � q

0)2. (3.11)

This transformation is interesting because if we compare the new set of coe�cients with the

Ai’s and Bi’s of the gauge theory amplitude given in Eqs. (2.14) and (2.15) we find the relations

e
A

0
10 =

2"µ⌫A
µ
10A

⌫
10

s10 + s20
,

e
A

0
1 =

2"µ⌫A
µ
1A

⌫
1

s1 + s2
, (3.12)

e
A

0
20 =

2"µ⌫A
µ
20A

⌫
20

s10 + s20
,

e
A

0
2 =

2"µ⌫A
µ
2A

⌫
2

s1 + s2

11

and

and

e
B

0
10 = �2"µ⌫B

µ
10B

⌫
10

t1 � t2
,

e
B

0
1 =

2"µ⌫B
µ
1B

⌫
1

t1 � t2
, (3.13)

e
B

0
20 =

2"µ⌫B
µ
20B

⌫
20

t1 � t2
,

e
B

0
2 = �2"µ⌫B

µ
2B

⌫
2

t1 � t2
.

Thus, up to a common kinematic denominator and a phase (which can be absorbed in a

redefinition of the Bi’s), the coe�cients of the gravity amplitude can be written as a double

copy of the ones of the gauge theory. This structure is manifest if we rewrite the scalar amplitude

in the gauge theory

A5 = 2 g ✏µ


c1
p

0µ

s10
� c2

p

µ

s1
+ c4

q

0µ

s20
� c5

q

µ

s2
(3.14)

+

✓
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µ
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B

µ
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◆
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A4(s, t)

and compare with the gravitational amplitude written as

M5 =  "µ⌫
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0µ
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s10
� p

µ
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+

q
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s20
� q

µ
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⌫
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+ 2
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µ
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⌫
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+

A

µ
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⌫
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⌫
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⌫
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⌫
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B
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B
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� B

µ
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(t1 � t2)2
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s2
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(t1 � t2)

@

@t

�
M4(s, t).

We have used momentum conservation s1 + s2 = s10 + s20 .

Some remarks on the expressions (3.14) and (3.15) are in order. Factoring out s1 + s2 and

t1 � t2 might seem a mere analytic trick to get the double copy to work better. However, this

way of writing the amplitudes is quite natural once we take into account that these two terms

are the expansion parameters in the soft limit around s and t, so the double copy representation

12
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Comparing the gauge theory and the gravity amplitude we can do better:
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We have used momentum conservation s1 + s2 = s10 + s20 .

Some remarks on the expressions (3.14) and (3.15) are in order. Factoring out s1 + s2 and

t1 � t2 might seem a mere analytic trick to get the double copy to work better. However, this
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We expand now Eq. (7.65) in powers of k. We have to take into account that
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At leading order we have that Eq. (7.65) reduces to
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which is identically satisfied because of the Jacobi identities. At linear order, the coe�cient of
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s1 + s2 = s10 + s20 = k · (p+ q � p0 � q0)
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This structure is very similar to the “double copy” of KLT and BCJ

• It only affects the “soft prefactor”, not the full amplitude.

• The double copy structure does not require the gauge theory numerators 
to satisfy any “Jacobi-like” identities.

color factors second copy of the numerator

However, there are very important differences:

• Moreover, our five-point scalar amplitude does not satisfy BCJ duality.

(soft graviton) = (soft gluon)2

Our result can be interpreted as



   M.A. Vázquez-Mozo             On the double copy structure of soft gravitons                            Iberian Strings 2016, IFT UAM-CSIC

Our results have been derived in the soft gluon/graviton limit…

However, in 1967 Gribov pointed out that the factorization is valid in a 
larger kinematic domain. For two colliding hadrons of mass µ with 
momenta p and q this regime is:

encoded in terms of the angular momentum operator acting on the n-point amplitude [9, 10]:

An+1(k; p1, . . . , pn) = g

 
nX

i=1

✏ · pi
pi · k +

nX

i=1

✏

µ
k

⌫
J

(i)
µ⌫

pi · k

!
An(p1, . . . , pn). (1.3)

In QED, the subleading corrections also admit an interpretation in terms of the asymptotic

symmetries of the theory at null infinity [11].

Low’s theorem was originally derived in the limit in which the momentum of the photon is

taken to be very small, k ! 0. It was later realized by Gribov [12] that the expression found by

Low has a broader range of validity if the scattering takes place at a large center-of-mass energy

of the colliding particles,
p
s. In this case the factorization can also hold for hard emissions as

long as their transverse momentum with respect to the radiating particle is small compared to

the momentum transfers typical of the scattering process. Thus, for two colliding hadrons of

typical mass µ and momenta p and q, the amplitude is dominated by external bremsstrahlung

in the kinematic region defined by

2 p · k, 2 q · k ⌧ s k

2
? ⇡ (2 p · k)(2 q · k)

s

⌧ µ

2
, (1.4)

with k? the transverse momentum of the photon. The main di↵erence with respect to the

regime of validity of Low’s theorem (which applies in the region 2 p · k, 2 q · k ⌧ µ

2) is that now

we assume a large center-of-mass energy
p
s � µ, without requiring the photon momentum to

be soft. The theorem was generalized by Lipatov in [13] to the case of a Yang-Mills field or a

graviton coupled to scalars.

In this note we study the corrections to soft gluon and graviton theorems for amplitudes

containing scalar fields, and investigate the double copy structure of the latter one. In Section 2,

we generalize the analysis of [14] to the nonabelian case for the scattering amplitude of two

di↵erent scalars with the emission of a gluon, showing that the first correction to Low’s leading

result is completely fixed by gauge invariance, as it happens in QED. Writing the action of

the angular momentum operators on the four scalars amplitude using derivatives with respect

to the Mandelstam s and t invariants, we find that the amplitude has a particularly simple

form in terms of a set of gauge invariant coe�cients. Due to the Jacobi identity satisfied by

the color factors, these coe�cients admit shift transformations that preserve the value of the

amplitude and do play an important role when connecting the gauge theory amplitude to the

2

whereas Low’s theorem is valid when

2p · k ⌧ µ2, 2q · k ⌧ µ2

In our notation, Gribov’s limit corresponds to

a↵ects the coe�cients of the series expansion around the k = 0 term. Written in this way, it

is clear how the contribution of the soft graviton to the five-point amplitude can be obtained

by replacing the color factors in the gauge amplitude with a second copy of the corresponding

kinetic coe�cient. This prescription works not only for the correction but for the leading term

as well, where the kinematic coe�cient is just the momentum.

We should also stress the importance of using derivatives with respect to the kinematic

invariants in uncovering the double copy structure of the subleading corrections in the soft limit.

In this case, the tensor structure of the amplitude is completely codified in the coe�cients of

these derivatives, in which the double copy is glaring. Expressing the amplitude in terms of

derivatives with respect to the momenta obscures this feature.

4 Gribov’s limit

We have considered so far amplitudes in the standard soft gluon and graviton regimes, as well

as their first corrections. As explained in the Introduction, Gribov found that Low’s result is

valid in a kinematic region larger than the strict kµ ! 0 limit. In our notation this is given by

s1, s2 ⌧ s, k

2
? ⌧ µ

2 ⌧ s, (4.1)

with µ the mass of the scalars. Moreover, in this limit it is also satisfied [12]

|t1 � t2| ⌧ µ

p�t1 ⇡ µ

p�t2. (4.2)

It is remarkable that in this region the associated radiation can be hard, i.e., we are not

just limited to emission of soft particles. Gribov’s result was extended in [13] to the scattering

amplitude of two scalar flavors in nonabelian gauge theories in the high energy limit s � t ⇠ µ

2.

This inequality has important consequences for the form of the amplitude. Since the four-scalar

amplitude A4(s, t) is dimensionless, it has to be a homogeneous function of degree zero of its

two arguments. This means that in this kinematic regime, derivatives with respect to s are

much smaller than the derivatives with respect to t, due to a suppression factor t/s:
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In the four-point function, the Gribov limit implies

s � t ⇠ µ2

Now, the four point gauge amplitude is a homogeneous function of 
degree 0

s

t
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Thus, in the Gribov limit derivatives with respect to s are suppressed. In 
practical terms, we can consider the four-point amplitude to be constant in s
As a consequence, writing Eq. (2.1) in terms of the kinematic invariants, the momentum shifts

in the expression only a↵ect the second argument of A(s, t), i.e.,

A5 = 2g
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Again, to determine the unknown functions associated with internal gluon emission we write

the gauge Ward identity and take into account that in our kinematic regime

t1 � t2

2
⌧ t1 + t2

2
⌘ t. (4.5)

Then, we expand the expression to first order in t1� t2. Since this parameter is proportional to

k, the leading contribution of the functions Bµ
i (k; p, q, p

0
, q

0) to the Ward identity comes from

setting k = 0 in the argument. Proceeding as in Section 2, we find that gauge invariance fixes

the unknown functions and the result of [13] is recovered in a slightly di↵erent notation:
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A similar calculation can be carried out for the gravitational amplitude. The only caveat

lies in whether we can neglect derivatives with respect to s, since now due to the dimensionful

coupling  it is no longer true that the amplitude is a function of s/t. Nevertheless, at a fixed

order in perturbation theory the amplitude has the generic form

M4(s, t) = (2
s)

n
2
f

⇣
s

t

⌘
. (4.7)

However, if at large energies f(s/t) ⇠ (s/t)↵, the s-derivative of M4(s, t) is suppressed with

respect to its t-derivatives by a power of t/s. This is indeed the case of the tree-level amplitude

(with ↵ = 1), so we can take the amplitude as constant with respect to s and retrieve the
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coupling  it is no longer true that the amplitude is a function of s/t. Nevertheless, at a fixed

order in perturbation theory the amplitude has the generic form

M4(s, t) = (2
s)

n
2
f

⇣
s

t

⌘
. (4.7)

However, if at large energies f(s/t) ⇠ (s/t)↵, the s-derivative of M4(s, t) is suppressed with

respect to its t-derivatives by a power of t/s. This is indeed the case of the tree-level amplitude

(with ↵ = 1), so we can take the amplitude as constant with respect to s and retrieve the
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and we can drop s-derivatives in the amplitude.
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The gravitational amplitude in the Gribov limit isexpression found in [13]:
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We see how Gribov’s limit of the gauge and gravitational scattering amplitudes (4.6) and (4.8)

can be respectively obtained from our expressions for the corrections to the Low and Weinberg

limits (2.16) and (3.5) by just ignoring derivatives with respect to s.

5 Concluding remarks

The idea of the existence of a double copy representation of gravity has received strong support,

ranging from KLT identities [16] to color-kinematics duality [17] (see [18] for a recent review).

In the context of the soft limit, it was found in [19] that the infrared behavior of both gauge

theories and gravity is consistent with an underlying double copy provided by color-kinematics

duality to all orders in perturbation theory.

In this paper we have studied the double copy structure in the context of the soft gluon

and graviton theorems. Our analysis shows clear evidence that there is a sense in which we

can state that (soft graviton) = (soft gluon)2: the contribution of a soft graviton in a scalar

scattering amplitude can be written as the double copy of the corresponding contribution of a

soft gluon.

Let us try to be more precise. Our proposal strongly resembles color-kinematics duality of

gauge theory amplitudes, in which the gravity amplitude is obtained by replacing color factors

by a second copy of a kinematic factor. It has however the peculiarity that it does not a↵ect

the whole five-point amplitude, but just the coe�cients of the operator acting on the amplitude

of the four hard particles. The rationale behind this is that it is this prefactor which contains

all the information about the emitted gluon/graviton. This is precisely the sense of the moral

equation (soft graviton)=(soft gluon)2.

Interestingly, in the case of the scalar QCD five-point amplitude studied here, it was shown

in [20] that a naive application of color-kinematics duality does not render the full gravitational
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A similar calculation can be carried out for the gravitational amplitude. The only caveat

lies in whether we can neglect derivatives with respect to s, since now due to the dimensionful

coupling  it is no longer true that the amplitude is a function of s/t. Nevertheless, at a fixed

order in perturbation theory the amplitude has the generic form
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However, if at large energies f(s/t) ⇠ (s/t)↵, the s-derivative of M4(s, t) is suppressed with

respect to its t-derivatives by a power of t/s. This is indeed the case of the tree-level amplitude

(with ↵ = 1), so we can take the amplitude as constant with respect to s and retrieve the
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Conclusions

• Using a five-point scalar identity we have found a “moral” identity

• This double-copy only affects the contribution of the soft gluon/
graviton, not the “hard piece of the amplitude.

• This might be reminiscent of BCJ but very it is quite different in other 
aspects: no need to implement Jacobi identities.

• The gravitational amplitude is obtained by replacing color factors by a 
second copy of the kinematic numerator.

(soft graviton) = (soft gluon)2
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Some work in progress: Does the double copy structure survives for 
higher-point scattering amplitudes and higher loops?

• For higher-point amplitudes we have to work with a larger number of 
redundant kinematic invariants

Soft-Graviton=(Soft-Gluon)

2
:

The General Case

September 18, 2015

1 The double copy structure of the general amplitude

The aim of these notes is to extend the double copy result of Ref. [1] to general amplitudes.
Following Ref. [2], we express a general gluon/graviton amplitude in terms of the invariants

sij = (pi + pj)
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With this expression we have factored out the tensor structure from the derivative.
Now we consider the gauge theory amplitude in the soft limit in QED
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At the same time, turning to the gravity amplitude
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we find that the numerators for the subleading corrections have the following form in terms of
derivatives with respect to the kinematic invariants
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2One needs to find an efficient parametrization of the “kinematic 
submanifold” in order to uncover any double copy structure.
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Some work in progress: Does the double copy structure survives for 
higher-point scattering amplitudes and higher loops?

• For higher-point amplitudes we have to work with a larger number of 
redundant kinematic invariants

Soft-Graviton=(Soft-Gluon)

2
:

The General Case

September 18, 2015

1 The double copy structure of the general amplitude

The aim of these notes is to extend the double copy result of Ref. [1] to general amplitudes.
Following Ref. [2], we express a general gluon/graviton amplitude in terms of the invariants
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?

One needs to find an efficient parametrization of the “kinematic 
submanifold” in order to uncover any double copy structure.
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• Do “Gribov gravitons/photons” have anything to say about about 
asymptotic symmetries at null infinity?

Gribov gravitons are not soft, still Low’s factorization holds

Can it still be interpreted as a Ward identity?
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THANK YOU


