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In the CFT we study the
dynamics after a perturbation

?. Thermalization” Revivals?
|
AdS/CFT
In AdS we study the %
with some Initial conditions

Bounces dual to revivals



S = /ddﬂx\/g (2—,12}2 — 2A — %(‘Lgb@“qﬁ)

With some initial conditions bounces are observed:

BH not forms at  Bounce oft bdry
first infall + new infall



With the time evolution of the

A series of Revivals and Collapse in CFT 2+1 and 1+1
The role of the symmetries: CFT 2+1 vs CFT 1+1
Simple model for entanglement propagation

Comparison with the phenomenology of some simple QFT
systems



Collapse and Revival in Holographic Quenches

Emilia da Silva, Esperanza Lépez, Javier Mas, Alexandre Serantes
IFT-UAM/CSIC, Universidad Santiago de Compostela \ : DE SANTIAGO.

DE COMPOSTELA

Aim 241 vs 141 : the role of the symmetries

» Holographic model for quantum revivals in a CFT CFT 2+1 CFT 1+1

Summary of AdS/CFT » Revivals only for small energies » Revivals also for higher energies

tev = (Rbdryzl) dual to: mass gap for AdS3 BH
Gravity CFT Gravity consistent with:
QFT d dimensions d-+1 dimensions conformal group is infinite
State Geometry
QFT » Vacuum » AdS
» Thermal State » Black Hole (BH) dual to grav. collapse at first infall >

» Thermalization » Gravitational
OFT process collapse S

» As energy grows: no revivals

» As energy grows: longer periods

QFT

Holographic Field theory

direction = scale Strong g and Large c| Classical Gravity

Holographic model for Thermalization of :
Finite Size Isolated Quantum System ‘ ; PV T

teol trev brew

Gravitational collapse of a matter shell  (shell mass)-(bdry volume) < 1 (S: EE of half the space) teot R /2 trey 2T

» Same pattern mantains along evolution:
BH formation — CFT Thermalization BH not forms at ~ Bounce off bdry
first infall + new infall S

08

06

boundary
shadow

04

02

BH can form after some bounces oot

imploding shell Collapse & revival

Dual to Quantum Revivals
AdS boundary

» CFT141 evoluion suggests a series of collapse and revivals

» Similar pattern found in experiments with coherent states
Holographic Entanglement Entropy (HEE)

BE condensate of photons coupled to a

EE QFT HEE atoms in an optical trap 2-level atom in a cavity

boundary Area(y,) @: atomic inversion O : matter wave field
S, =——

Sy=-Tr,(p,logp,) 4GN
py=Trp Y 4 : extremal surface

arXiv:0905.0932[hep-th]

Gravity
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The problem with (a canonical theory of) Quantum Gravity

Can Gravity be formulated as a Quantum Field Theory?

Z[J] = /[Dg,w]e%ﬁfd“x lgl R

@ It is not renormalizable, produces an infinite number of divergent diagrams and reduces the
theory to an EFT

@ A UV completion is required and normally assumed to be String/M Theory

@ However, it should be possible to study gravitational phenomena in a self-contained way

Adding higher derivatives (R?) solves the problem but adding more time derivatives produces
ghosts.

Causality or unitarity violations

@ Why not to add only space derivatives?

Mario Herrero-Valea (IFT-UAM-CSIC) H-L gravity in a nutshell Gong Show



Hotava-Lifshitz Gravity

1 )
S=55 / dt & Nv/[A] (K,-J-KU —AK? - v)

ADM variables

P. Hofava, (200¢

It is a Quantum Field Theory of Gravity in four dimensions
It is not Lorentz invariant
It is expected to run to GR in the IR

It is power counting renormalizable

@ V contains powers of the curvature up to dimension d =number of space dimensions

is invariant not under Diff but under FDiff

t — t(t), x — X(t, x)

Mario Herrero-Valea (IFT-UAM-CSIC) H-L gravity in a nutshell Gong Show



Hotava-Lifshitz Gravity

1 2 ij 2 2
Szg/dtde\/|’y| (K,-J-K’ff)\K 7}LR>

ADM variables

P. Hofava, (200¢

It is a Quantum Field Theory of Gravity in four dimensions
It is not Lorentz invariant
It is expected to run to GR in the IR

It is power counting renormalizable

@ V contains powers of the curvature up to dimension d =number of space dimensions

is invariant not under Diff but under FDiff

t — t(t), x — X(t, x)
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The scale M,

The Lorentz violating scale M is constrained in two ways

Hotava-Lifshitz Gravity

@ From the UV by cosmological and astrophysical data

M. < 10'°GeV
@ From the IR by Lorentz tests on fermions and binary pulsar observations

M. > 10'°GeV

v

Cosmology

o Dark energy can be accommodated (there is an extra degree of freedom in the IR).

o Dark matter is not required. We have a modified Newton's law

o There is no initial singularity. Bouncing universe

\
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Quantum??? Ho¥ava-Lifshitz Gravity

It is power counting renormalizable but it is a gauge theory

@ We work in a reduced case where N = 1 (projectable theory)

Naively fixing the gauge leads to non-local divergences
1 i
G(po, pi) ~ ? — G(t,x) ~ d(x")
(1

@ Do they cancel order by order?

[1512.02250] Renormalization of Hotava Gravity

o We show that it is possible to take the non-localities to the ghost sector
@ Then we prove that they are gauge artefacts

o When N # 1 non-localities persist and will require new techniques

o Work in progress suggest that it is asymptotically free

Projectable Horava-Lifshitz Gravity is the first known example of a UV complete theory of
gravity in four dimensions where we can compute. J

Mario Herrero-Valea (IFT-UAM-CSIC) H-L gravity in a nutshell Gong Show 6/6
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What is T-duality about?

11d M-theory

. ay /\f\
e — ma | m l;!q I |—| Het SO(32) |—| Hel EyxEy |—
N A N

5 by

Just need a compact direction with an

(U(l) isometry group}
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What is T-duality about?

St version of T-duality (Abelian)

@ Invertible transformation (two T-dualities in a row give back original
background). Duals keep the U(1) isometry.

o T-duality is a symmetry of full (perturbative) string theory!

S* version of T-duality (non-Abelian)

@ Non-invertible transformation: applying 2 NATDs in a row won't yield the
original background. SU(2) isometry partially destroyed for the dual.

@ Only proven to be a symmetry at tree level.

Iberian Strings 2016 (IFT, Madrid)
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Generating new SUGRA solutions

AdS/CFT

NAT D-related backgrounds need not have
equivalent CFTs.

anti-de Sitter space -
conformal

boundary

We can find not only new SUGRA
solutions, but also quite different dual
CFTs.

Iberian Strings 2016 (IFT, Madrid)



Probing the generality of an M-theory classification

(Gauntlett, Mac Conamhna, Mateos, Waldram '06) classified AdS geome-
tries coming from M5-branes wrapping supersymmetric cycles.

NS

(Kim, Kim, Kim '07) gave an analogue of the

AdSs Toda eq. (Lin, Lunin, Maldacena '04) for
:I; AdS3 geometries with an SU(2)-structure for the

internal manifold and dual to N = (0,4) 2D SCFTs.

Iberian Strings 2016 (IFT, Madrid)
J. Montero Challenging AdS3 LLM



Probing the generality of an M-theory classification

(Kim, Kim, Kim '07) gave an analogue of the

AdSs Toda eq. (Lin, Lunin, Maldacena '04) for

AdS;3 geometries with an SU(2)-structure for the
internal manifold and dual to N = (0,4) 2D SCFTs.

Some new AdS; solutions

o NATD-uplift of AdS; x S3 x T*: 1st explicit example.

o T-T-uplift of AdS; x S3 x S3 x S!: outside the (Kim, Kim, Kim '07)
classification, possibly coming from a new M5 configuration (work in
progress).

o NATD-T-T-uplift of AdS; x S3 x S3 x S1: even worse, also electric G, flux!

Iberian Strings 2016 (IFT, Madrid) 68/
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Your baggage from this talk:

T-duality techniques allow us to
generate new AdS/CFT solutions
which are hardly reachable by
other means.

ORK | Wider classification needed for
N = (0,4) AdS; x 52
geometries.
PROGRESS,
S Monters Challenging AdS3 LLM Iberian Strings 2016 (IFT, Madrid) 78/



Hope you
ask me
around!

STRING THEORY RESEARCH

J. Montero Challenging AdS3 LLM
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Motivation

@ Inflation: Transplanckian field range for sizeable r.
@ Need to control Planck-suppressed terms in the potential

o ()

@ Good idea: Use axions with shift symmetry ¢ — ¢ + ¢
broken to ¢ — ¢ + 2xf by nonperturbative effects.

M. Montero Relaxions & WGC



A tale of two models

Axion large-field inflation models fall in one of two categories:

Natural inflation Monodromy
A*(1 = cos(o/f)) Fm e

M. Montero Relaxions & WGC



Monodromy

V(@)

10

@ ¢ traverses several
fundamental periods

@ Instantons very \ /
suppressed y /

@ Easy to obtain in string \ /
theory N ’ 7

< >

Monodromy looks better \

) f
2 -1

Kaloper-Sorbo '08, McAIIister—SiIverstein—WestphaI ’68,’14, Marchesano-
Shiu-Uranga ’'14, Ibafiez-Valenzuela '14, Retolaza-Uranga-Westphal '15. ..

£ X
2 3
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Review of monodromy

In monodromy, fundamental d.o.f are ¢, C5 such that
xFy =dC3 =m¢ + ¢

The potential is
1 2 _ 1 2
—5|Faf = 5 (m +c)

Difference with natural inflation: there are membranes

2 mf / C3
membrane

which shift ¢ — ¢ + 2xnf

M. Montero Relaxions & WGC



Review of monodromy

Bubble nucleation

Membrage @ Bubbles nucleate with rate
p (—B), B 2772 T4
~ exp(— =
~ P2, 2 (AV)
( F4=0
[Coleman '78, Coleman-Deluccia '80]
@ T unknown
@ Gravitational corrections can

Fé=q modify formula significantly

M. Montero Relaxions & WGC



Review of monodromy

What is the value of 77

T can be estimated if the bubble is field-theoretical. Not our
case. Two main avenues:

@ Explicit stringy embedding available; bubble is usually a
D-brane or other controlled object. Approach used e.g.
[Brown-Cottrell-Shiu-Soler ’15,
Retolaza-Uranga-Westphal’15].

@ Or from the Weak Gravity Conjecture [Arkani-Hamet et al.
'06] for 3-forms, which implies

T < 2mmfMp.

M. Montero Relaxions & WGC



Relaxion

Relaxion: Solution to the hierarchy problem

We do not want too many bubbles!

@ Using the WGC value T = 2mmfMp, we find a constraint
m < /fMp easily satisfied in monodromy.

@ Apply to the relaxion[1512.00025, Relaxion Monodromy
and the Weak Gravity Conjecture, Luis E. Ibanez, MM,
Angel Uranga, Irene Valenzuela).

M. Montero Relaxions & WGC



Relaxion

Relaxion: Solution to the hierarchy problem

@ Axion with potential

1
VD 58207+ (-M? + g0)|nf?

+ A% cos (f)

@ At ¢ ~ M?/g it triggers EW
symmetry breaking,
turning on nonperturbative
effects which stabilize A.

M. Montero Relaxions & WGC



Relaxion

Relaxion and monodromy

Only one known consistent way of breaking discrete symmetry
of ¢: Monodromy

m<> g
The relaxion potential can be rewritten in KS-fashion
Vs = (8¢ —nlh*)Fy

But then the membranes are back. One caveat: Gravitational
effects are very important, so this time

T

BN?

M. Montero Relaxions & WGC



Relaxion

Relaxion constraints

@ The constraint B > N (not
too many bubbles)
translates to

1
673\ 8
M§<AVfA/IP> ~ 300TeV 4

@ If also QCD axion+inflaton 10 -8 6 2 - 0
coupling, M < 500 GeV. Log[H](GeV)

Log[M] (GeV)
(]

OB>10B>N g—;<H</\QCD

M. Montero Relaxions & WGC



Relaxion

Stringy embedding

Now that we have killed
relaxion. . .it's time to embed it
in ST!
@ Way to know if we can Kill
more generic models or if

some survive os X
@ No need of WGC
@ Relaxion hierarchy difficult

to obtain

@ B) = ¢wsy, (original axion
monodromy proposal)

Minkowski

@ D5’s wrapping X provides
monodromic potential and
SU(2) x U(1) sector.

M. Montero Relaxions & WGC



Relaxion

Summary

@ Monodromy is a popular idea for large field inflation
@ Membranes generically present (WGC)

@ Monodromy inflation is OK with bubble nucleation
@ Relaxion is not

°

First steps towards stringy embedding of relaxion, to
analyze in more detalil.

M. Montero Relaxions & WGC



Relaxion

Thank you very much!
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Introduction

@ The study of gauge theories on curved background — partition
functions, index ... [V.Pestun (2012)]...

@ Partition function (e.g. 4d on S* or 5d on S* x S*, §°)
Z= ZpertZinst

pure gauge theories with 8 supercharges.
Zinst < Hilbert Series of the instanton moduli space.
[D. Rodriguez-Gémez and G.Zafrir (2014)],[ C.A.Keller,N. Mekareeya, J.Song and Y.Tachikawa (2012)]

@ Instantons are very interesting objects in 4d and 5d gauge theories —
study of instanton moduli spaces.

<

We analysed the ADHM construction for instantons on CP?/Z,, and
the corresponding moduli space using the Hilbert Series.

Alessandro Pini Aspects of the moduli space of instantons on cp? 27 January, 2016 2 /7



ADHM construction for U(N) instantons on CP?  ia king assoy

0 3d N =2, U(1)rx[(SUQ))x UN)
@ Superpotential

w = (A8 4B - A'(B2)A(BY) + (g A @],

@ Instanton branch of the moduli space

[N. Mekareeya and D. Rodriguez-Gémez (2013)]

‘T=0, T=0, A =0,
monopole operators

[F.Benini, C.Closset and S.Cremonesi (2010)] ° aA W _ O -,—7"‘— _ AN
1 - ' -M

HS[(kLv kR)>SU(N)7(CP2](t7X7}7) = Hs[min(kLa kR),SU(N),(C2](t3,X,}7),

[H.Nakajima and K.Yoshioka (2005)]

Alessandro Pini Aspects of the moduli space of instantons on cpP? 27 January, 2016 3 /7



| aSpeCt ran k one a nd Ad54/ CFT3 [F.Benini, C.Closset and S.Cremonesi (2010)]

ki = kg,

k, M2 Branes

N=1

ds?

cone

=dp? +p?ds® 'y, CxC

Near horizon @ limit p > 0

dsty = L2(dsf\d54 + dsiy)

Mesonic branch constructed
from {B,‘, A2}

dual geometry
dual giant graviton

Alessandro Pini

Aspects of the moduli space of instantons on cpP?

27 January, 2016
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Il aspect: CP?/2, = C?/ 2,

U(N,
Ky = min(ky, k)

s "\
U(k) U(kz)

U(ks) U(ks)
\\m/ Ky = min(ks, ks)

[ HS[(ki, ko, k3, ks), (N1, No), CP?/Z5] = HS[ (K1, K2, (N1, Np),C?/Z5)] ]

Alessandro Pini Aspects of the moduli space of instantons on cpP? 27 January, 2016 5 /7



Conclusions

We discussed several aspects of the moduli space of instantons on CP?:

o ADHM construction for the moduli space of the instantons on CP?.
@ Dual giant graviton < mesonic subranch of the moduli space.
o Hilbert Series for the moduli space of instantons on CP?/Z, with

gauge group G = U(N), O(N), Sp(N) < Hilbert Series for the moduli
space of instantons on C2/Z,.

Alessandro Pini Aspects of the moduli space of instantons on cp? 27 January, 2016 6 / 7
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De Sitter in String Theory

Problem: observations tell us that Universe is de Sitter, but in
String Theory (ST) compactifications one usually finds A < 0.

General proposal: add a sector in the compactification to
obtain 0 < A <« . Many proposals:

@ Anti-branes in a throat (issues with EFT) KKLT

@ Nilpotent goldstino Kallosh, Quevedo, Uranga 15

@ T-branes Cicoli, Quevedo, Valandro ’15

@ ... Bergshoeff, Braun, Burgess, Dasgupta, Louis,
Maharana, Rummel, Saltman, Silverstein, Sumitomo, Van
Proeyen, Westphal, Wrase ...

Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking

Our proposal: add a sector with Dynamical Susy Breaking
(DSB)

0<A

An example of DSB: "A/ = 1” SU(5) with 5+10 and W = 0.
Affleck, Dine, Seiberg ’84

ST embedding: find a toric CY singularity whose holographic

dual includes this gauge theory

Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking

Our proposal: add a sector with Dynamical Susy Breaking
(DSB) on the bottom of a warped throat in ST.

(generalization of the Randall, Sundrum idea in ST)
Klebanov, Strassler; H. Verlinde; Giddings, Kachru, Polchinski

0< Ak

An example of DSB: "A/ = 1” SU(5) with 5+10 and W = 0.
Affleck, Dine, Seiberg ’84

ST embedding: find a toric CY singularity whose holographic

dual includes this gauge theory and UV complete it as a

complex deformation of a "more singular” toric CY.

Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking
Theory with DSB: "A/ = 1" SU(5) with 5+10 and W =0

The toric CY singu where to embed this gauge theory is an
orientifold of C3/(Z, x Z3)  Franco et al. ‘07

@ Gauge group: SO(ny1) x SU(n2) x SU(n3) x Sp(ny)
@ From anomaly cancellation: ny +n. +4 = n3 + ny

@ Matter content: many chiral superfields in bifundamental
and (anti)symmetric representations

@ In principle, it has a superpotential

Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking
Theory with DSB: "A/ = 1" SU(5) with 5+10 and W =0

The toric CY singu where to embed this gauge theory is an
orientifold of C3/(Z, x Z3)  Franco et al. ‘07

@ Gauge group: SO(ny1) x SU(n2) x SU(n3) x Sp(ny)
@ From anomaly cancellation: ny +n. +4 = n3 + ny

@ Matter content: many chiral superfields in bifundamental
and (anti)symmetric representations

@ In principle, it has a superpotential
= Takingno=n,=0,ny=1and n3 =5:
@ "SO(1)" x SU(5) with (O, T)+(1,H) and W=0

Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking

Small A: embed on a warped throat (generalization of
Klebanov, Strassler)

Cz,x 2,)

Worse singularity” can be found using toric geometry tools:
web diagrams

See e.g. Franco, Hanany, Uranga '10
Ander Retolaza

De Sitter uplift with Dynamical Susy Breaking




De Sitter with Dynamical Susy Breaking

Small A: embed on a warped throat using web diagrams.

@ The orientifold requires new technology
A.R., Uranga (in progress)

(a) (b

N

C3/(Z3 x Zy) UV completion

Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking

DSB

o = = = = 9ae
Ander Retolaza De Sitter uplift with Dynamical Susy Breaking



De Sitter with Dynamical Susy Breaking

DSB

Thank You!
o = = = = 9Dae
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Drude weight, K and Mazur Suziki bound

ijlfl (&J} G’) B ij?lfl (“ Q)

.= —Re i
9DC © u%(l}l,];—m -.'E(w -+ 'i{-i)
1 K 1 _ R
opc = 0g — Re- —=0g—Re|P|— | (—)K —7Kdé(w)| =
1 W+ 1€ W
=o0q + 7Kd(w) p?
'Universal' result Ky =
YT exp
Given a Hamiltonian, H , consider all conserved 2 ¢
(Qz@*}) = Qf 3’:@,-,:‘

quantities and define orthogonal ones:
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Introduction
SS
AdS; x> NATD 5.  Gaiotto theory
sz 2 Sfetsos - Thompson —
=) O O O
SuSy SuSy
breaking by breaking by
mass terms mass terms
A 4
Benini-Tachikawa-
AdS xT"!
N=1 ’ NATD > Wecht
E=® INST W
Compactification Compactification
onz, onz,
Y y
NATD QFT duals to the
Prosent SUGRA solutions
work of Sec. 3

[Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016




Donos-Gauntlett solution: KW on 72

de; = A(—dyd +dy})+e*B(da® +dB?) +dr? +e?Ydsie +e*Vn?
By,F3,Fs # 0
o |
0 T — ¥
08 <
0.0l — - .“'““_" -
-0.5] e
T Sy
S 0 i 3 3

IR to UV warp factors. Dimensionality flows.
@ BPS solution. (0,2) Poincare SUSY by construction

© Regular everywhere

Q As ‘;—i — 0 in the IR becomes effectively 2 dimensional.

[Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016 3/8




Non-Abelian T-duality as generating technique. An example

Abelian T-duality: U(1)  Non-Abelian T-duality: SU(2)

ds? = R?’do? ds? = d02+d¢>+2cosOdedy+ dy?
e’ =1 e =1
B, =0 B, =0
- L ds? = dp’+ (dx?+sin® x d£?)
R 1+ 2
6_2(1> = R2 e_2€13 = ]_—|-p
B, = 0 =~ _ P 2
B = T4 p2 vol(S57)

@ p range is unknown!

J.A. Sierra-Garcia (USC) [Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016 4/8



]
Non-Abelian T-dual of DG solution

ds* 240 42 2 2B 4.2 2 2, 0% 5k
T (—dyg +dyi)+e®(da”+dB~)+dr" + Ads (M?)
20 [?
B = —A, A=A
€ 324&’3 ) (p717§)
By,Fa,Fs # 0

Q A(—dyg +dy?) +e*B(da® +dB?) +dr? is preserved
© (0,2) Poincare SUSY is preserved
© Regular everywhere

J.A. Sierra-Garcia (USC) [Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016 5/8




Wilson Loop, Entanglement Entropy and c-function

by B -
—E(d) = L2 = cons
Se(d) _ Pvollp.x.8) _
Se(d) B 16w ot
e(r) _ IBvol(p,x.8) _
()~ IE wel(Tiy O™t

@ No phase transition
© Arealaw for dim = 4,2 for UV, IR.

J.A. Sierra-Garcia (USC) [Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016 6/8



-
Dual CFT guess. Page charges and p range

Perform large gauge transformation

By — By+d'nusinydy ANdé fornm<p<(n+l)x =

Qnss = n+1
AQps = nNpg
AQps = 0

3 2
¢ o< NyssNpe

Q@ Qpss induced only by g.t.
Q c < N3 N3, like (1,0) Gaiotto-Tomasiello QFT.

J.A. Sierra-Garcia (USC) [Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016
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Take away message

© Start with KW CFT on deformed on 72 (Donos-Gauntlett)

@ Generate AdS; solution with Non-Abelian T-duality!

© New and regular
O (0,2) SUSY is preserved

© Compute its observables and guess CFT.

@ Invariant WL, Sg and ¢
© c o N3,N3ss — Gaiotto, Tomasiello QFT?

© Similar results hold for AdS3 x Hs x M.

J.A. Sierra-Garcia (USC) [Klebanov-Witten CFT on X3 and its Non-Abelian January 27th, 2016
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In collaboration with Bartomeu Fiol (UB) and Blai Garolera (UCR)

Talk based on Fiol, Garolera, GT 1511.00616



http://arxiv.org/pdf/1511.00616.pdf

Probing N=2 SCFT with localization

AdS/CFT holographic conjecture

Large N, A predictions from
semiclassical geometry

\|
String theory SYM Gauge
realization theory
. |

String theory and quantum
geometry from ?7?7?

c>1
How is geometry encoded lc — al |
in the field theory? Semiclassical c <
Q: What makes theories with EH+ gradient exp. A > N2/3
semiclassical duals special? Buchel, Myers, Sinha 0812.2521

Genis Torrents (U. Barcelona) Madrid, Jan 27, 2016


http://arxiv.org/pdf/0812.2521

Probing N=2 SCFT with localization

c—a c — a
Yy

Set of SCFTs with examples of both <1 1

C C

Lagrangian 4D N=2 SYM with classical Lie algebra (SU/SO/SP)

Localization Large N (c)

After localization, theory of the eigenvalues of an NxN matrix

Equivalent to N interacting 1D particles

Confining background potential 7 (x)

Vi

E As

X

<>
Repulsive short-distance interaction

At large N, eigenvalue density

Genis Torrents (U. Barcelona) Madrid, Jan 27, 2016



Results:
c—d c—al |
C C

Scaling distribution Limiting shape
VA AN\
Wy~ x2e -~ ()

¢ = arccos (1 — v)



~ Probing N=2 SCFT with localization
Hints of geometry?

Correlation does not imply causality

Few fundamental matter multiplets is not sufficient

Large A condition plays a major role

Relation between bubbling geometries and matrix models

Wilson loops dual to minimal area problems

Outlook

Extension to other theories (quivers, d#4)

Alternative aproaches (integrability, resurgence, ...)






Shock wave collisions in a family
of non-conformal field theories

Miquel Triana i Iglesias - Universitat de Barcelona

lberian Strings 2016 - Gong show

In collaboration with: Maximilian Attems, Jorge Casalderrey-Solana, David Mateos,
loannis Papadimitriou, Daniel Santos, Carlos Sopuerta and Miguel Zilhao



Holographic shock wave collisions in pure gravity

Heavy ion colliders

* Quark-gluon plasma is created after collision

e - N L  Plasma is quickly very well described by

L o
BOOSTER

. X,

hydrodynamics

Captures fast hydrodynamization!




Non-conformal holographic models

However... quark gluon plasma in heavy ion colliders is nhon-conformal!

Minimalistic setup: 1
Gravity + scalar field with a potential [ = §R = (8¢)2 4 QV(qﬁ)
Lagrangian
200 S N W v
100
The potential has a maximum and a 0

minimum: interpolates two AdS regions Ve

% 200

It is dual to an RG flow between -300

V(¢)

' in dpop AP / B V8
two fixed points 00, - e -

¢
The potential has a free parameter to
control non-conformality



Non-conformal holographic near equilibrium dynamics

Quasi-normal modes: perturbations on a black brane dual to modes being
thermalized

Imaginary QNM frequencies for pM=100
w

gnT

Im[

]

2

— thydro

Im(wq)

0 5 10 15 20 25 30 1/T
e ———

Main result: hydrodynamization time at a linear level increased by factor 2 at most
when non-conformality is increased

4




Non-conformal holographic shock wave collisions

Tnon—conformall Tconformal

Blue dots
Non linear hydro time

I

\

|

Green dots
Linear hydro time

0.0

0.1 0.2 0.3

non-conformality

0.4

0.5

Main result: non-linear hydrodynamization times get notably increased
by non-linearities. More studies required.




Shock wave collisions in a family
of non-conformal field theories

Maximilian Attems, Jorge Casalderrey-Solana, David Mateos, loannis Papadimitriou,
Daniel Santos, Carlos Sopuerta, Miquel Triana and Miguel Zilhao

Departament de Fisica Fonamental, Universitat de Barcelona
E-mail: mtriana@ffn.ub.edu

UNIVERSITAT o
BARCELONA

Holographic shock wave collisions provide a
compelling toy model for the quark-gluon
plasma (QGP) created in heavy ion colliders. De-
spite the simplicity of the set-up and the differ-
ences in the theories, shock wave collisions have
been able to reproduce some of the key features
of the QGP present in the colliders: the existence
of a hydrodynamic regime and the fast hydrody-

namization.

So far, most holographic far from equilibrium dy-
namics computations have been performed for
conformal models. However, the QGP created
in colliders still has a significant amount of non-
conformality as lattice QCD calculations show
(see plot), making a good case for non-conformal
holographic set-ups.

200

'''''''' 414
3 -

L — 2__ 3
\ B 1 -
S — -
— ; _a | _

\:ﬁ | L1 11 L1 11 L1 11 L1 1 | 2
_ 100 150 250 300 -

o
\!'_\

"
-.___‘:--_
By o, o
e T T
‘h"--- ;;;;

[ ——
EhEnerresnEaEnEY

| I | | | I | | | I | | | I |
200 400 600 800
T[MeV]

[S. Borsanyi et alii arXiv:1007.2580 [hep-lat]]

1000

eGravity + scalar field with a potential

L =3R—(0¢)* —2V(¢)

_ 3.2 1.4, ¢f° ¢°
V=797 207 — 300 ggr +agr

1 48
12¢%, ¢

where ¢, controls the non-conformality.

The near-equilibrium perturbations are de-
scribed on the gravity side of the duality by

quasi-normal modes (QNMs) on top of a static
black brane.

1qr1 —1tw

Juv — YJthermal + Gh;u/ (7“)6
¢ — ¢th6rmal =+ Eéf(r)eiqxl_itw

The imaginary part of the frequency of the low-
est ONM gives an estimation for the hydrody-
namization time at a linear level.

Imaginary QNM frequencies for pM=1

W
Im[g_n_T]

Imaginary QNM frequencies for pM=100

W
Im[g_ﬂ_T]

Main result: hydrodynamization time at a lin-
ear level increased by factor 2 at most when
on-conformality is increased.

eThe potential selected has a maximum and a
minimum, which provides a vacuum geometry
interpolating between two AdS spaces. This is
dual to an RG flow between two fixed points.

eThe interaction measure given by I = € — 3p
gives a meaningful parameter to characterize the
degree of non-conformality (see plot).

The initial state for the evolution is given by two

infinite sheets of energy travelling at the speed

of light, the shock waves. The evolution is com-

puted numerically in a set-up with 2+1 dynamic

directions.
1

ds? = = du?+e2 M (dx2 —dx L dz_ )+ flu]h[zi]dz?

U2

The outcome from the computation are magni-
tudes such as the energy density, the pressure or

the fluid velocity for the dual plasma.

0.1

0.01

Energy density in terms of time and the longitudinal direc-

tion of the collision.

eHydrodynamics works early
Despite non-trivial equation of state
Despite non-zero bulk viscosity

eHydrodynamization time slowed by > 3

eFirst simulation of a holographic non-conformal model for heavy ion collisions

— ¢M=1O

. $y=0.8

— ¢M=O-5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

The plasma created also shows a hydrodynamic
regime and hydrodynamization times of or-

der =, although they increase with the non-

conformality of the model.

Blue dots
Non linear hydro time

W

N
o
> @

Tnon-conforma Tconformal

o,
1e T |
T —— Green dots
Linear hydro time
0 ,
0.0 0.1 0.2 0.3 0.4 0.5

non-conformality

Main result: non-linear hydrodynamization
times get notably increased by non-linearities.
More studies are required to assess if the hydro
times can be made parametrically big.

eHydrodynamics applies while non-conformal modes are still fully out of equilibrium

eMore studies are on the way

Systematic exploration of the parameter space

Asymmetric collisons
Different potentials are possible
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Fermion hierarchies in
F-theory GUTs

Gianluca Zoccarato Instituto de Fisica Tedrica, UAM/CSIC

iStrings 2016, IFT Madrid, January 2/7th 2016

Based on: Marchesano, Regalado, §.Z. ‘15
carta, Marchesawno, G.z. ‘1.5

Related work: Fowt, thairez, Marchesano, Regalado ‘12

Fownt, Marchesano, Regalado, G.z. ‘13



Yukawa couplings MSSM

In the MSSM the Yukawa couplings are

Warssm Dyl HuQ + yfs HiQ'd? + y; HqL'e’

N/

Wsus) D Y2 10a - 104 - 5y + V5 ° 10,

Need a local enhancement to generate couplings in F-theory

Not Possible n

- Ee enhancement for 10ps - 107 - Oy +— type 1B

- SO(12) enhancement for  10a7 - Bas - 5p



Eg + 30(12) — ... Heckman, Tavanfar, Vafa ‘09
|dea: generate both couplings at a single point
- Possible to compute all couplings using the same local model

|. Compute CKM matrix elements

l. Find preferred value for some MSSM parameters ( tan 3 )

- Large separation induces large mixing angles

Er7
A group containing both Eg and SO(12)
\ E8



| ocal E7/Eg models

Detining data of the local model

1. Vev of the adjoint Higgs

- Describes the configuration of 7-branes
- Breaks E,, downto SU(5)

- It reconstructible defines the local spectral cover
2. Open string fluxes

- Generate chirality in 4d

-Break SU(H) downto SU(3) x SU(2) x U(1)y



Yukawa couplings in 8d SYM

Yukawa couplings can be computed by dimensional reduction
of the 8d superpotential

W:/F(O’Z)ACD:/(§AA¢+/AAAA®
S S S

Beasley, Heckman, vafa 08



Yukawa couplings in 8d SYM

Yukawa couplings can be computed by dimensional reduction

Q/AAAA@
S —

Beasley, Heckman, vafa 08

of the 8d superpotential

W:/F(O’Z)A®:/5AA®+
S S

- Yukawa matrix has rank 1

—» Non perturbative corrections deform the superpotential

Marchesano, Martuect ‘09

W:/F(O’Q)/\CI)—I—%Z/HnSTr(CD”F/\F)
S S

neN

Yukawa matrix has rank 3 and possibly a hierarchy in the eigenvalues

(0(e),0(e), O(1))




Fermion masses at GUT scale

Possible to accommodate GUT scale masses for tan3~ 10 - 20

Ross, Serna ‘OF

10

38

20

2.7+0.6 x 1073
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0.37 £ 0.02

0.48 £+ 0.02

0.49 + 0.02

0.51 +£0.04




Fermion masses at GUT scale

Possible to accommodate GUT scale masses for tan3~ 10 - 20

Ross, Serna ‘OF

10

38

20

2.7+0.6 x 1073
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1.94+0.2 x 1072
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0.070 £ 0.003

0.32 £ 0.02

0.51 +0.04

0.051 + 0.002

0.23 + 0.01

0.37 +£0.02

0.48 £+ 0.02

0.49 + 0.02

0.51 +£0.04




Conclusions

- In F-theory models Yukawa matrix has rank 1

- Inclusion of non-perturbative effects increases the rank and
may generate favourable hierarchies

- Not all E7/Es models accommodate a good hierarchy

- Computation of physical coupling shows that GUT scale masses
can be accommodated



Conclusions

- In F-theory models Yukawa matrix has rank 1

- Inclusion of non-perturbative effects increases the rank and
may generate favourable hierarchies

- Not all E7/Es models accommodate a good hierarchy

- Computation of physical coupling shows that GUT scale masses
can be accommodated

Thank you!
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Separating the points

Small separation between Yukawa points




Separating the points Ee

Small separation between Yukawa points
SO(12)

Change of wavefunction basis —» Effect on CKM matrix

rRandall, Stimmons-Duffin ‘09

Vud Vus Vub
VC KM — Vcd Vcs Vcb
Via  Vis | Vi

Vip| 1 —— |&|~107% 107"



Separating the points Ee

Small separation between Yukawa points 50(12)

Change of wavefunction basis —» Effect on CKM matrix

rRandall, Stimmons-Duffin ‘09

Vud Vus Vub
VC KM — Vcd Vcs Vcb
Via  Vis | Vi

Vip| 1 —— |&|~107% 107"

Only very small separation of points is possible in this scheme



Yukawa matrices

Up Yukawa matrix:

Y10,1

2Pu'710,3

[ 0 0
2 Q U
v T YU 710,3710,3 0 I AL A
U p— 6 ) ’
2,0m,0,u . 2/0“'71%,3'71(]0,3
V10,1 0

€
\ 2017103

Down Yukawa matrix:

( 0 g/'% 7%,1’752
dp2 Q D
2 Q D P1710,375,3
T D703 75,3 | .. vihovis - Vs
Yp = - ek 5@ .o € QT D
2d PmPu 2dpu718,3'75,3 2dpuY10,375 3
’75,1 0

—€
\ 2dps s

0 + O

€

+ O(

€
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