

### **BSM HIGGS @ LHC** MARÍA CEPEDA, CERN

XLIV International Meeting on Fundamental Physics, Madrid, April 2016

# Why search for BSM Higgs?

The Run I of the LHC brought the discovery of a new particle, and opened the quest for understanding its properties and decays, in the SM context, and beyond.

MSSM ?

**2HDM+S?** 

EWK Singlet?

**2HD** 

**Higgs Triplet?** 

### Is the new boson *really* the *minimal* SM Higgs?

- Is the *signal strength*, where seen, at the expected SM level?
- Is this a *scalar*, and not a pseudo-scalar or tensor?
- Does it *couple* to the SM particles at correct level?
  t,b,τ,μ
- Does it *couple to itself* ?
- Is this the *only* new non-vector boson, and not one of several?
- Does it *couple* unusually ?

### What has 13TeV data said so far?

# Outline

- Summary of Run I coverage
- 13TeV search for MSSM H→ττ
- DiHiggs results
- 2HDM
- Charged Higgs
- Exotic decays
- Invisible Higgs



### **Only recent results shown! For the full picture:**

<u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>

### What was the landscape at the start of Run II?

Before exploring 13TeV, a small stop to explore the view from the top of Run I:

- Many extra scalar searches performed at 7&8TeV by both experiments
- No hints of new physics in Run I
- But there is still a lot of uncovered phase-space specially at high mass!



competitive for some of these

### What was the landscape at the start of Run II?

Before exploring 13TeV, a small stop to explore the view from the top of Run I:

- Many extra scalar searches performed at 7&8TeV by both experiments
- No hints of new physics in Run I
- But there is still a lot of uncovered phase-space specially at high mass!



#### What was the landscape at the start of Run II? $\leq 5.1 \text{ fb}^{-1} (7 \text{ TeV}) + \leq 19.7 \text{ fb}^{-1} (8 \text{ TeV})$ **CMS** *Preliminary* ⊳d ATLAS 10 2HDM Type I tanß 2HDM Type II Obs. 95% CL • Also, the h(125) -10 √s = 7 TeV, 4.5-4.7 fb<sup>-1</sup> Best fit X 5 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ observation gives Exp. 95% CL 8 SM us indirect o tan β 10 2 constraints on new models 0.5 2 0.4 0.3 Observed 95% CL × 2 0.2 Expected 95% CL --SM Best fit Ω 0.1 0.4 -0.5 0 0.5 0.3 $\cos(\beta - \alpha)$ 2 Δ In Λ(BR<sub>BSM</sub>) 0.2 ATLAS and CMS <sup>7</sup>LHC Run 1 Preliminary Observed 10 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 ----- SM expected $\cos(\beta - \alpha)$ 5 3 BR<sub>BSM</sub> < 0.34 at 95% C.L. (assuming $k_V \le 1$ ) 0.5 0.1 0.2 0.3 0.4 ATLAS-CONF-2015-044 CMS-PAS-15-002 $\mathsf{BR}_{\mathsf{BSM}}$

# MSSM H→ττ

• 13 TeV !

 Key channel: HTT provides sensitivity in MSSM at high tanβ, and in 2HDM at the alignment limit

### ATLAS-CONF-2015-061

- Analysis targets three channels with different τ decay modes:
  - τ<sub>had</sub> τ<sub>had</sub> (Single τ<sub>had</sub> trigger, OS candidates, DeltaPhi>2.7)
  - τ<sub>I</sub> τ<sub>had</sub> (Single lepton trigger, OS candidate DeltaPhi>2.4, M<sub>T</sub> range)
- Misidentified leptons estimated on data
- Discriminant variable: total  $M_T$  of the system

$$m_{\rm T}(\ell, E_{\rm T}^{\rm miss}) \equiv \sqrt{2p_{\rm T}(\ell)E_{\rm T}^{\rm miss}(1-\cos\Delta\phi(\ell, E_{\rm T}^{\rm miss}))}$$



# MSSM H→TT

### Model independent and model dependent results in several MSSM benchmarks



No evidence for BSM Higgs

Sensitivity already exceeds ATLAS Run-1 for m<sub>A</sub>>700 GeV.

The most stringent constraints on  $tan\beta$  for the search excludes  $\tan\beta > 10$  for m<sub>A</sub>=200 GeV

### **ATLAS-CONF-2015-061**

m₄ [GeV]

# DiHiggs Searches

- Non-Resonant production (self-coupling)
  - First results starting to arrive
  - SM production requires ~O(3/ab)@14TeV
  - Excesses of non resonant hh production —> new physics
- Resonant production
  - Predicted in the 2HDM: for some parameters of these models H—>hh is the dominant decay channel (low tan $\beta$  and 2m<sub>h</sub><m<sub>H</sub><2m<sub>t</sub>)
  - Radion (spin-0) and Graviton (spin-2) interpretation (M>250 GeV)



# DiHiggs Searches

### Large number of final states being probed



### ATLAS-CONF-2016-017

CMS-PAS-HIG-16-002

# hh-+>4b

- Targets different mass regimes (resolved 4b /boosted 2j)
- Event selection selects 3/4 b-tagged jets such that two di-jet pairs are consistent with the Higgs mass.
- Data driven background estimations
- Non-resonant production of Higgs-boson pairs —> less than 1.22 pb @ 95%CL



CMS: upper limits at a 95% confidence level in the mass range from 260 to 1200 GeV



# hh-→WWbb

- Final state: 2I + 2b (m<sub>II</sub> not in the Z mass range)
- Based on the invariant mass distribution of the b-jet pair

CMS-PAS-HIG-16-011

 S/B discrimination through a BDT with kinematic variables

![](_page_11_Picture_4.jpeg)

![](_page_11_Figure_5.jpeg)

# hh⊸bbττ

CMS-PAS-HIG-15-013

![](_page_12_Picture_2.jpeg)

- New resonant and non-resonant interpretations
- Categories: bbτ<sub>h</sub>τ<sub>h</sub> x (0-1-2 bjets)
- Best single observed limit on non-resonant di-Higgs production @ 8TeV, 0.59(0.94) pb → 53 (84) x SM (\*)

![](_page_12_Figure_6.jpeg)

# hh-→bbττ

### CMS-PAS-HIG-16-012 CMS-PAS-HIG-16-013

- Resonant and non-resonant interpretations
- Categories:  $bb\tau_e\tau_h$ ,  $bb\tau_\mu\tau_h$ ,  $bb\tau_h\tau_h$
- Model independent search: Resonant limit: <1.53-0.082 pb (2.53-0.063) @95%CL</li>
- Non Resonant limit as a function of  $\kappa_{\lambda_{-}}$  8.8 (7.2) pb (200xSM) for  $\kappa_{\lambda}=1$

![](_page_13_Figure_6.jpeg)

# hh⊸bbγγ

high bb branching ratio + excellent γγ mass resolution

ATLAS-CONF-2016-004

![](_page_14_Figure_2.jpeg)

# hh⊸bbγγ

CMS: arXiv:1603.06896

![](_page_15_Picture_2.jpeg)

high bb branching ratio + excellent yy mass resolution

![](_page_15_Figure_4.jpeg)

### **Resonant Analysis:**

- radion (ΔΓ=1TeV) excluded for M<980 GeV</li>
- RS1 KK graviton excluded for 325 GeV-450 GeV (k/MPI=0.2)

![](_page_15_Figure_8.jpeg)

### **Non-Resonant Analysis:**

- SM-like limit on the  $\sigma(gg \rightarrow HH \rightarrow bb\gamma\gamma) < 1.85(1.56)$ fb (74x $\sigma_{SM}$ )
- Anomalous couplings interpretation: values of the self coupling excluded for  $\kappa_{\lambda}$ <-17 and  $\kappa_{\lambda}$ >25

# 2HDM searches

![](_page_16_Figure_1.jpeg)

 Most of the analyses in this talk can be interpreted in terms of 2HDM, but the following target these models specifically

### CMS-PAS-HIG-16-010

2.3 fb<sup>-1</sup> (13 TeV)

± 2 std. deviation

600 700

m₄ [GeV]

 $\sigma_{th}$  (tan  $\beta = 1$ )

![](_page_17_Figure_1.jpeg)

- Interpretation in the context of Higgs-doublet-model with twisted custodial symmetry, leading to a mass triplet  $m_{H\pm} \sim m_H$ , and pseudoscalar A
- 2l+2b final state
- Final discriminant: mass of the full system (IIbb)
- Limits are set on cross section times branching ratio for three m<sub>H</sub> hypotheses, as a function of m<sub>A</sub>.

![](_page_17_Figure_6.jpeg)

![](_page_17_Figure_7.jpeg)

CMS Preliminary

Evt / 60 GeV

Data / MC

# A⊸>Zh

- 2I+2b and 2v+2b final states
- 2I+2b is similar final state to the CMS search, but different interpretation and analysis! CP odd scalar decaying to Z h(125)
- Categorised as a function of #leptons, #bs, and divided in resolved/boosted
- Final discriminant: mass of the full system (2l2b) or transverse mass of the system (2v2b)
- Interpretation in the 2HDM plane

![](_page_18_Picture_6.jpeg)

![](_page_18_Figure_7.jpeg)

# $H \rightarrow ZZ \rightarrow 4I$

#### CMS-PAS-HIG-15-004

- Extension at high mass of the SM analysis shown yesterday by Luca Fiorini
- Narrow resonance search: up to 1 TeV
- Includes interpretation in 2HDM ( $m_H$  vs tan( $\beta$ ), type1 and type2)

![](_page_19_Figure_5.jpeg)

## H→ZZ→4I

#### CMS-PAS-HIG-15-004

- Extension at high mass of the SM analysis shown yesterday by Luca Fiorini
- Narrow resonance search: up to 1 TeV
- Includes interpretation in 2HDM ( $m_H$  vs tan( $\beta$ ), type1 and type2)

![](_page_20_Figure_5.jpeg)

# $H \rightarrow ZZ \rightarrow 2I2v$

![](_page_21_Picture_1.jpeg)

- 2 leptons + E<sub>T</sub><sup>miss</sup> / M<sub>T</sub>
- Data driven modelling of backgrounds —> good prediction of tails
- ATLAS: Limits on narrow width high mass resonance and RS graviton
- CMS: high mass resonance + EW Singlet and 2HDM

![](_page_21_Figure_6.jpeg)

# $H \rightarrow ZZ \rightarrow 2I2v$

- 2 leptons +  $E_T^{miss}$  /  $M_T$
- Data driven modelling of backgrounds —> good prediction of tails
- ATLAS: Limits on narrow width high mass resonance and RS graviton

CMS-PAS-HIG-16-001

ATLAS-CONF-2016-012

CMS: high mass resonance + EW Singlet and 2HDM

![](_page_22_Figure_5.jpeg)

# $H \rightarrow ZZ \rightarrow 2I2q$

- Search for high mass Spin0 and Spin2 resonances
- Competitive above 500 GeV
- Both resolved (jj, tagged and untagged) and boosted (J) analysis
- Simultaneous fit to m<sub>llj</sub> and m<sub>lljj</sub> SR and CR for merged and resolved analysis

![](_page_23_Figure_5.jpeg)

![](_page_23_Figure_6.jpeg)

# Charged Higgs

- Predicted in 2HDM/MSSM:
- Dominantly produced in association with a top quark
  - Direct production searches for m<sub>H±</sub>>m<sub>t</sub>-m<sub>b</sub>
  - Top quark decay searches for  $m_{H\pm <}m_t-m_b$

ATLAS: JHEP03(2016)127 ; JHEP 03 (2015) 088; Phys. Rev. Lett. 114, 231801 (2015)

> CMS: JHEP11 (2015) 018 JHEP 12 (2015) 1

• Large variety of H<sup>±</sup> decays probed in Run I: tb, cs,  $\tau v$ ; VBF H<sup>±</sup>->W<sup>±</sup>Z -> No surprises

![](_page_24_Figure_8.jpeg)

### ATLAS: JHEP 03(2016)127

### CMS: JHEP 11(2015)018

8TeV

![](_page_25_Figure_2.jpeg)

H±→th

- Dominant decay mode at High Mass
  - Lepton+Jets final state  $\rightarrow$  Fit to 5 regions (4 control regions based on #jets/bjets + 1 signal region)
- Signal/Background discrimination through a BDT trained for  $M_{H\pm}$ =300 GeV, 500 GeV

![](_page_25_Figure_6.jpeg)

m<sub>tb</sub> [GeV]

# $H^{\pm}$ —>TV

 H—>τν decay channel represents a clean signature and substantial BR (~10%) in several MSSM benchmarks.

### Event Selection

- $E_T^{miss}$  trigger &  $E_T^{miss} > 150 \text{ GeV}$
- ≥3 jets including ≥1 b-tagged jet
- 1  $\tau$  and no e or  $\mu$  ;  $m_T > 50 \text{ GeV}$

![](_page_26_Figure_6.jpeg)

### ATLAS: arXiv:1603.09203

![](_page_26_Figure_8.jpeg)

# Doubly Charged Higgs

- Predicted in Higgs triplet models
- Final state: three or four leptons probing associated production (Φ<sup>±±</sup>Φ<sup>∓</sup>) and pair production (Φ<sup>±±</sup>Φ<sup>±±</sup>).
- Two sets of results:
  - Model independent search for narrow resonances assuming 100% decay Br to μμ, ee, eμ, τμ, τe
  - Four benchmark points that target different neutrino mass hierarchies

| Benchmark Point | ee  | еµ   | eτ   | μμ   | μτ   | ττ   |
|-----------------|-----|------|------|------|------|------|
| BP1             | 0   | 0.01 | 0.01 | 0.30 | 0.38 | 0.30 |
| BP2             | 1/2 | 0    | 0    | 1/8  | 1/4  | 1/8  |
| BP3             | 1/3 | 0    | 0    | 1/3  | 0    | 1/3  |
| BP4             | 1/6 | 1/6  | 1/6  | 1/6  | 1/6  | 1/6  |
|                 |     |      |      |      |      |      |

CMS: CMS-PAS-HIG-14-039

CMS: EPJC 72 (2012) 2189

ATLAS: JHEP 03 (2015) 041

ATLAS: arXiv:1411.2921

![](_page_27_Figure_11.jpeg)

# Rare Decays

- Run I also left a large number of searches targeting rare/bsm decays of the h(125) Higgs
  - With BR(h->BSM)<0.34 allowed, there is plenty of room for new searches targeting exotic decays
- Examples are the Invisible Higgs and LFV searches (covered yesterday), but also the h->aa searches, which can be interpreted in the 2HDM+S model (with one extra CP even scalar s and one extra CP odd scalar a)

![](_page_28_Figure_4.jpeg)

### 2HDM+S: $h \rightarrow aa \rightarrow \mu\mu\tau\tau / h \rightarrow aa \rightarrow \mu\mubb$

Signal model

 These are the most recent results of the CMS series of low mass pseudo scalar searches at 8TeV (4 $\mu$ , 4 $\tau$ , 2 $\mu$ 2 $\tau$ , 2 $\mu$ 2b)

CMS

Preliminary

![](_page_29_Figure_2.jpeg)

![](_page_29_Figure_3.jpeg)

8TeV

![](_page_29_Figure_4.jpeg)

![](_page_29_Figure_5.jpeg)

# Invisible Higgs Decays

Higgs decays to undetected particles  $\rightarrow$  connection to Dark Matter Searches

- Challenging signature: E<sub>T</sub>miss
  - Use associated production (WH and ZH) and weak vector boson fusion (VBF) to tag the events
  - Background modelling (QCD/WJets/DY) is key

|                                               |                       | _                    |
|-----------------------------------------------|-----------------------|----------------------|
| RUN I Summary: 95% CL limit on                | ິຮູ 10 <sup>−39</sup> |                      |
| PRL 112, 201802 (2014):<br>ATLAS Z(II) H      | <75(62)%              | 10 <sup>-41</sup>    |
| arXiv:1504.04324:<br>ATLAS W/Z(had)H          | <78(86)%              | SS 10 <sup>-45</sup> |
| ATLAS-CONF-2015-004:<br>VBF                   | <29(35)%              | UN 10 <sup>-49</sup> |
| Eur. Phys. J. C 74 (2014) 2980:<br>CMS VBF+ZH | <58(44)%              | > 10 <sup>-53</sup>  |
| CMS HIG-14-038:<br>VBF update (including      | <47(35) %             | 10 <sup>-55</sup>    |
| CMS HIG-15-012:<br>Run I Combination          | <36(30%)              | ATLAS: JHE           |

![](_page_30_Figure_6.jpeg)

![](_page_31_Figure_0.jpeg)

### CMS-PAS-HIG-16-008

- DiLepton + Angular Cuts + high E<sub>T</sub><sup>miss</sup>, MT
- Template fit to M<sub>T</sub> distribution
- Four exclusive categorie (ee,µµ) x (0-1 jet)

### $M_H$ =125GeV → σ(pp→ZH)xB(H → invisible) <1.1 pb at 95% CL

![](_page_31_Figure_6.jpeg)

#### CMS-PAS-HIG-16-009

# VBF H(Inv)

- Final state: 2 Forward Jets (high M<sub>JJ</sub>, high  $\Delta \eta$ ) + E<sup>Tmiss</sup>
- $M_{H}=125 \text{ GeV} \rightarrow \sigma xB(H \rightarrow$ invisible)<0.69 (0.62) at 95% CL

σ x B(H→ inv) [pb]

4Ŀ

CMS

Preliminary

VBF H  $\rightarrow$  invisible

200

300

Combining with 13TeV ZH and 8TeV results -> 0.32(0.26)

95% CL limits

////// σ<sub>VBF</sub> (SM)

400

**Observed limit** 

**Expected limit** 

500

![](_page_32_Figure_5.jpeg)

### 13 TeV: What about DiPhotons?

![](_page_33_Picture_1.jpeg)

### I will not talk here about 750 GeV... (See tomorrow ;) )

# H⊸Zγ

- Search for scalar resonances in the 200-1200 GeV mass range decaying into a Z and a photon in pp collisions
- Z-> II (CMS, ATLAS) : small BR (6.7%)
- Z->qq (ATLAS): large BR (70%), boosted regime, "fat jet"

### **CMS-PAS-EX0-16-019**

![](_page_34_Figure_5.jpeg)

![](_page_34_Figure_6.jpeg)

### ATLAS-CONF-2016-010

![](_page_34_Figure_8.jpeg)

# Η--γγ+ΜΕΤ

- Two signal models: decays of a heavy scalar into a Higgs boson and a pair of dark matter candidates, and a vector mediator emitting a Higgs boson and decaying into two dark matter candidates
- Four categories based on  $E_T$  and  $P_T(\gamma\gamma)$  to increase sensitivity to the two signal models
- Analytical fit to m<sub>γγ</sub>

**ATLAS-CONF-2016-011** 

![](_page_35_Figure_5.jpeg)

GeV

Events /

70⊢

60Ē

50

40

30

20

10

110

ATLAS Preliminary

√s = 13 TeV, 3.2 fb<sup>-1</sup>

120

130

Intermediate

Data

140

Signal + total bkg

Non-resonant bkg

Non-resonant bkg + h

150

160

m<sub>γγ</sub> [GeV]

# Conclusions

- Is the 125GeV Higgs boson *really* the *minimal* SM Higgs?
  - Does it decay unusually?
  - Are there more Higgses?
- With the restart of the LHC, the ATLAS and CMS collaborations are working hard to answer these questions
  - Large variety of models under the experimental lens : EWS, MSSM, hMSSM, 2HDM, 2HDM+S, RSG, Higgs Triplets,...
- The LHC program for BSM Higgs studies has re-started with force
  - New 2-3 fb<sup>-1</sup> @13 TeV results arriving to compete and in some cases already surpass our 20 fb<sup>-1</sup> @8 TeV ones
  - We are ready to attack the analysis of this year's data
- 2016 might be the year! Stay tuned!

For the full picture of Higgs@LHC:

<u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG</u>

# **GRACIAS!**

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)