

LHC Upgrades (ATLAS, CMS, LHCb)

Cristina Fernández Bedoya

Thanks to the contribution from: C. Lacasta, A. Gallas, E. Graugés, S. Grinstein, G. Gómez

April 7th 2016

IMFP16 UAM, Madrid

"LHC (ATLAS, (

Bedoya

Cristina Fdez.

EXCELENCIA

MARÍA DE MAEZTU

Ciemat

The Large Hadron Collider

Higgs Boson discovery

- The Large Hadron Collider (LHC) is one of largest scientific instrument ever built.
- It has been exploring the new energy frontier since 2010.
- Major discovery has been the Higgs boson, but we hope this is the first one of many...

LHC Run I Physics Results

- Exotic: pentaquarks (or hadronic molecules)
- **Precise verification of Standard Model** •
- Just started the exploration of the TeV • scale (13-14 TeV can bring surprises...)

Bedoya Cristina Fdez.

IMFP16

4-8 April 2016 Madrid

Upgrades CMS, LHCb)"

ATLAS,

(ATLAS, (

Cristina Fdez. Bedoya

EXCELENCIA

DE MAEZTU

MARÍA

Ciemat

Why HL-LHC? Higgs Case for HL-LHC

HL-LHC is a Higgs factory: 170 Mhiggs/expt!

Facility	LHC	HL-LHC	ILC	ILC LumiUP	CLIC	TLEP (4 IPs)
Energy (GeV)	14,000	14,000	250 + 500 + 1000	250 + 500 + 1000	350 + 1400 + 3000	240 + 350
$\int \mathcal{L}dt \; (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500 + 1000	1150 + 1600 + 2500	500+1500+2000	10000 + 1400
$N_{H} ~(\times 10^{6})$	17	170	0.37	1.05	2.2	3.2

- Higgs as a window to BSM physics:
 - The pattern of corrections to the SM Higgs couplings is different for new physics models
 - Measure as many Higgs couplings to fermions and bosons as precisely as possible:
 - 2 to 10% precision on Higgs couplings ~1.5-2x better than with 300 fb⁻¹
- Evidence of di-Higgs production (about 1.3 σ significance per experiment).
- Measure Higgs self-coupling.

Why HL-LHC? Higgs Case for HL-LHC

HL-LHC is a Higgs factory: 170 Mhiggs/expt!

Facility	LHC	HL-LHC	ILC	ILC LumiUP	CLIC	TLEP (4 IPs)
Energy (GeV)	14,000	14,000	250 + 500 + 1000	250 + 500 + 1000	350 + 1400 + 3000	240 + 350
$\int \mathcal{L}dt \ (\text{fb}^{-1})$	300/expt	3000/expt	250 + 500 + 1000	1150 + 1600 + 2500	500+1500+2000	10000 + 1400
$N_{H} \ (\times 10^{6})$	17	170	0.37	1.05	2.2	3.2

- Higgs as a window to BSM physics:
 - The pattern of corrections to the SM Higgs couplings is different for new physics models
 - Measure as many Higgs couplings to fermions and bosons as precisely as possible:
 - 2 to 10% precision on Higgs couplings ~1.5-2x better than with 300 fb⁻¹
- Evidence of di-Higgs production (about 1.3 σ significance per experiment).
- Measure Higgs self-coupling.

However...
$$\frac{\sigma(pp \to h)}{\sigma(pp)} \sim 10^{-9}$$
 $\frac{\sigma(pp \to h)}{\sigma(pp \to Z)} \sim 10^{-3}$ PU = 140

Requires detector upgrades to meet experimental challenges

Looking at the parton kinematics:

LHC pushes the explored • region from 2 TeV to 4 TeV

Upgrades CMS, LHCb)"

ATLAS,

Cristina Fdez. Bedoya

EXCELENCIA MARÍA

DE MAEZTU

Ciemat

•

- HL-LHC advances only until 5.5 TeV
 - an e+e- collider with this reach is not on the map

ATLAS squark gluino stop sbottom χ_1^+ mass χ_1^+ mass mass mass mass WZ mode mass WH mode projection Run 3 2.0 TeV 2.6 TeV 1.0 TeV 1.1 TeV 560 GeV None 300 fb⁻¹ HL-LHC 650 GeV 2.4 TeV 3.1 TeV 1.2 TeV 1.3 TeV 820 GeV 3000 fb-1

> Extended phase space and mass reach coverage

7

Sensitivity to physics Beyond the Standard Model and increased mass range:

Search for heavy gauge bosons: W', Z':

Upgrades CMS, LHCb)"

(ATLAS, (

Bedoya

Cristina Fdez.

EXCELENCIA MARÍA

DE MAEZTU

Ciemat

Discovery up to ~6.4 TeV (300 fb⁻¹) and ~ 7.8 TeV (3000 fb⁻¹).

"LHC (ATLAS, (

Bedoya

Cristina Fdez.

EXCELENCIA

MARÍA DE MAEZTI

Ciemat

Why HL-LHC? B (and c) system case for HL-LHC

Indirect window on BSM physics through radiative corrections.

- 1. <u>Precision</u> test of CKM and the SM
- 2. Rare process, golden example, $B^{\circ} \rightarrow \mu \mu$
- Increased sensitivity through larger stats and better precision Also:
- Anomalies from LHC running
 - ~3.7σ in angular distribution of B°→K*µµ seen in the 2011 data, confirmed with 3fb-1.
- More precise test of lepton universality of SM coupling

LHCb results in competition/complementarity with Belle-II from 2018.

Carero de investigaciones trengiticas, Medicardolectais a Tecnología

Luminosity leveling: key for HL-LHC

It is necessary to limit:

- pile-up in the detectors up to 140 (difficult reconstruction) (up to 5 in LHCb)
- the instantaneous luminosity to a factor 5 ((radiation damage on sensors and electronics and high occupancy, rates, bandwidth):
 - ATLAS and CMS : from 10³⁴ cm⁻²s⁻¹ LHC -> 5 10³⁴ cm⁻²s⁻¹
 - LHCb: from 4 10³² cm⁻²s⁻¹ to 2 10³³ cm⁻²s⁻¹

while

IMFP16

Madrid

4-8 April 2016

Upgrades CMS, LHCb)"

(ATLAS, (

providing up to a factor 10 integrated luminosity

ATLAS and CMS : 300 fb⁻¹ (LHC) -> 3000 fb⁻¹ (HL-LHC)

LHCb: 8 fb-1 to > 50 fb-1

HL-LHC upgrade goal: deliver maximum integrated luminosity with lowest possible pile-up density.

Key to HL-LHC: luminosity leveling

Cristina Fdez. Bedoya

"LHC (ATLAS,

Cristina Fdez. Bedoya

EXCELENCIA

DE MAEZTU

MARÍA

Cierrot Gross de In-estipciones Deregilicas, Medicarchiertains y Tecnoliticas

LHC / HL-LHC Roadmap

LHC

LHC upgrade goals: Performance optimization

Luminosity recipe (round beams):

IMFP16

-8 April 201

: Upgrades CMS, LHCb)"

(ATLAS, C

Cristina Fdez. Bedoya

EXCELENCIA MARÍA

DE MAEZTU

Ciemat

$$L = \frac{\gamma \cdot n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot \frac{1}{\sqrt{1 + \frac{\theta_c \sigma_z}{2\sigma}}}$$

 γ is the proton beam energy in unit of rest mass

 n_b is the number of bunches per beam: 2808 (nominal LHC value) for 25 ns bunch spacing N is the bunch population. N _{nominal 25 ns}: 1.15×10^{11} p ($\Rightarrow 0.58$ A of beam current at 2808 bunches) f_{rev} is the revolution frequency (11.2 kHz)

 β^* is the beam beta function (focal length) at the collision point (nominal design 0.55 m) ε_n is the transverse normalized emittance (nominal design: 3.75 µm) R is a luminosity geometrical reduction factor (0.85 at a $\beta^* \circ f$ 0.55 m of, down to 0.5 at 0.25 m) θ_c is the full crossing angle between colliding beam (285 µrad as nominal design) σ , σ_z are the transverse and longitudinal r.m.s. sizes, respectively

- Maximize bunch intensities => Injector complex
- Minimize beam emittance => LHC Injectors Upgrade (LIU)
- Maximize number of bunches (beam power) => 25 ns

Upgrade foreseen by LS₂

Includes Linac 4, PS booster, PS, SPS and heavy ion injector chain

Will allow reaching 2 10³⁴ cm⁻²s⁻¹

"LHC Upgrades (ATLAS, CMS, LHCb)"

Cristina Fdez. Bedoya

EXCELENCIA

MARÍA DE MAEZTU

Ciemat

LHC upgrade goals: Performance optimization

Luminosity recipe (round beams):

$$L = \frac{\gamma \cdot n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot \frac{1}{\sqrt{1 + \frac{\theta_c \sigma_z}{2\sigma}}}$$

- Maximize bunch intensities => Injector complex
- Minimize beam emittance => LHC Injectors Upgrade (LIU)
- Maximize number of bunches (beam power) => 25 ns
- Minimize beam size (constant beam power) => triplet aperture

US-LARP MQXF magnet design Based on Nb₃Sn technology

Triplet quadrupole magnets will need to be replaced due to radiation

To obtain a small β^{*} new triplet quadrupoles with double aperture => 50% higher magnetic field. (8 T to 12 T peak)

Need a new technology => Nb₃Sn (25 years development)

"LHC Upgrades (ATLAS, CMS, LHCb)"

Bedoya

Cristina Fdez.

EXCELENCIA

MARÍA DE MAEZTU

Ciemat

LHC upgrade goals: Performance optimization

Luminosity recipe (round beams):

 $L = \frac{\gamma \cdot n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot \frac{1}{\sqrt{1 + \frac{\theta_c \sigma_z}{2\pi}}}$

- Maximize bunch intensities => Injector complex
- Minimize beam emittance => LHC Injectors Upgrade (LIU)
- Maximize number of bunches (beam power) => 25 ns
- Minimize beam size (constant beam power) => triplet aperture

(ATLAS, 0

Bedoya

Cristina Fdez.

EXCELENCIA

MARÍA DE MAEZTU

Ciemot

LHC upgrade goals: Performance optimization

Luminosity recipe (round beams):

 $L = \frac{\gamma \cdot n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot \frac{1}{\sqrt{1 + \frac{\theta_c \sigma_z}{2\sigma}}}$

- Maximize bunch intensities => Injector complex
- Minimize beam emittance => LHC Injectors Upgrade (LIU)
- Maximize number of bunches (beam power) => 25 ns
- Minimize beam size (constant beam power) => triplet aperture
- Compensate for 'F' :=> crab cavities
- Improve machine efficiency => Minimize number of unscheduled beam aborts (radiation protection)
 - Radiation to electronics → removal of all electronics from tunnel region
 - e-cloud → beam scrubbing (conditioning of surface)
 - UFOs (Unidentified Falling Objects) → beam scrubbing (conditioning of surface)

LHC upgrade goals: Performance optimization

Luminosity recipe (round beams):

 $L = \frac{\gamma \cdot n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot \frac{1}{\sqrt{1 + \frac{\theta_c \sigma_z}{2\pi}}}$

Pier 1 Pier 2 Pier 2 Pier 2 Pier 2 Pier 2 Pier 4 Pier 4

UNDERGROUND

- Maximize bunch intensities => Injector complex
- Minimize beam emittance => LHC Injectors Upgrade (LIU)
- Maximize number of bunches (beam power) => 25 ns
- Minimize beam size (constant beam power) => triplet aperture
- Compensate for 'F' :=> crab cavities
- Improve machine efficiency => Minimize number of unscheduled beam aborts (radiation protection)

Challenges at higher luminosity

Physics in the HL-LHC high luminosity environment is **challenging**:

- Precise measurement of physics objects: leptons (e, μ , τ -lepton), photons, missing transverse energy, jets, b-(c-)quarks over full p_T range
- Accurate reconstruction of complex event topologies: W/Z, top, VBF
- Keep low- p_T lepton triggers despite high rate

Object(s)	Trigger	Estimated Rate	
		No L1Track	With L1Track
е	EM20	200 kHz	40 kHz
γ	EM40	20 kHz	10 kHz
μ	MU20	> 40 kHz	10 kHz
τ	TAU50	50 kHz	20 kHz
ее	2EM10	40 kHz	< 1 kHz
W	2EM10	as above	~5 kHz
eµ	EM10_MU6	30 kHz	< 1 kHz
μμ	2MU10	4 kHz	< 1 kHz
au au	2TAU15I	40 kHz	2 kHz
Other	JET + MET	~100 kHz	~100 kHz
Total		~500 kHz	~200 kHz

ATLAS HL-LHC trigger scenario based on Phase 1 upgrades

Goal is to improve or at least maintain present physics performance during HL-LHC

present physics performance during HL-LHC

IMFP16 4-8 April 2016

"LHC Upgrades (ATLAS, CMS, LHCb)"

Cierrola Ceres de hostipeieres tregitos, Madoardieres

"LHC (ATLAS, (

Challenges at higher luminosity

Same physics but...

* Higher Occupancy:

* hits on detector elements proportional to the number of interactions, problems of **detectors granularity** and **buffers occupancy**

* Radiation damage to detectors and electronics:

* **Peak luminosity**: reduced mean time between failures for SEE (Single Event Effects)

* **Integrated luminosity**: charge trapping in silicon, increased noise and dark current, light absorption in crystals, etc

* Event pile-up:

* Trigger efficiency and purity, event size, DAQ bandwidth, computing power....

* **Particle and event reconstruction**, missing ET measurement, particle isolation definition, backgrounds to signal processes...

Cristina Fdez. Bedoya

Challenges at higher luminosity

IMFP16

4-8 April 2016

Upgrades CMS, LHCb)"

(ATLAS, (

Bedoya

Cristina Fdez.

EXCELENCIA MARÍA

DE MAEZTU

Ciemat

Madric

b-tagging @ 140 < PU>

(a)

B-tag performances heavily degraded by PU

extra particles, lower tracking efficiency

Light-flavour rejection vs μ_{PU} w/o detector upgrade

Pixel upgrade crucial to recover efficiency

- New trackers and pixels
- More powerful trigger schemes:
 - track based (CMS, Atlas)
 - Pushing the full data payload (LHCb)

Challenges at higher luminosity

Forward jets@ 140 <PU>

VBF-like selection based on forward/backward di-jet pairs

• fake VBF signature from pile-up jets

PU-jets superimposed (8 TeV template)

	Leading jet	Trailing jet
% of events w/ a PU jet as	42%	72%

ATL-PHYS-PUB-2014-018

17

Impact on $\Delta \mu$ from tracker extension:

forward pile-up jet rejection	50%	75%	90%
forward tracker coverage		$\Delta \mu$	
Run-I tracking volume		0.24	
$ \eta < 3.0$	0.18	0.15	0.14
$ \eta < 3.5$	0.18	0.13	0.11
$ \eta < 4.0$	0.16	0.12	0.08

- Forward extensions
- Replace damaged calorimeters
- More bandwidth, more granularity more resilient

IMFP16 4-8 April 2016

> Upgrades CMS, LHCb)"

(ATLAS, (

Cristina Fdez. Bedoya

EXCELENCIA MARÍA DE MAEZTU

Ciemat

Madrid

-Readout 40 MHz

-VELO, RICH,

Tracking

-Real-time

and reco.

-Herschel

align./calib.

EXCELENCIA MARÍA DE MAEZTU

Ciemat

le investigaciones . Medicambientales echologicas

Trigger & DAQ

Muon

2

ATLAS,

Bedoya

Cristina Fdez.

MARÍA

Ciemat

LHCb Upgrade

- Measurable deviations from SM are still expected but should be small.
- Need to go to very high statistical precision.
- Upgrade essential.

Goal:

- Increase statistic (move to a 40 MHz readout)
- Improve fast tracking and vertexing

UPGRADE IN LS2 (2019)

Many hadronic channels saturate due to energy cuts in the trigger => Need to increase the bandwidth

 $L_{int} > 50 \, fb^{-1}$ L= 4 10³² cm⁻²s⁻¹ → 2 10³³ cm⁻²s⁻¹

Upgrades CMS, LHCb)[°]

ATLAS,

LHCb Upgrade

Other upgrades...

- Increase Upstream Tracker granularity in in in inner region (replacement of Si sensors)
- Replace photodetectors of RICH with 64 multianode PMT
- Replace calorimeters readout @ 40 MHz (ICECAL ASIC) and back-end
- Presshower and SPD removed, most inner ECAL modules could be replaced
- New muon off-detector electronics

TRIGERLESS DETECTOR : 40 MHZ READ-OUT

	Event-size [kB]	Rate [kHz]	Bandwidth [Gb/s]	Year
ALICE	20 000	50	8 000	2019
ATLAS	4 000	200	6 400	2022
CMS	4 000	1000	32 000	2022
LHCb	100	40 000	32 000	2019

Remove existing L0 hardware trigger (1 MHz) and perform trigger in CPU farm (reduction to 20 kHz)

Read out all detector data from all BXs @ 40 MHz

Selection is 100% in software running in PC farm

⇒ New front-end electronics (almost all)
New back-end electronics (100%)
New DAQ (100%)

Ciemat

(ATLAS, (

Bedoya

Cristina Fdez.

EXCELENCIA

MARÍA DE MAEZTU

Ciemat

LHCb Upgrade

- Real-time alignment and calibration
- Not only a triggerless readout but also to a detector analyzed in real time
- Greatly expand physics reach not only for B-physics and charm but also for low-mass exotic/DM searches.

(ATLAS, (

LHCb: VELO (Vertex Locator) Upgrade

- Increased radiation tolerance, closer to beam (8.1 to 5.1 mm)
- From strips to pixel. Higher granularity: 55x55 μm² pixel sensors (based on Timepix)
- Novel microchannel CO₂ cooling (minimize material)
- Data driven readout at 40 MHz → > 2Tbits/s

IGFA

ЧL ATLAS,

Bedoya

Cristina Fdez.

MARÍA

LHCb Upgrade: SciFi

Replace completely straw tube and inner Si strips with Scintillating Fibres (SciFi).

Fast Track reconstruction in trigger.

- 6 layers of 2.5m long fibres with 250 μm diameter (10000 km)
- Straight to 50µm and flat to 200µm over 2.5m.
- SiPM readout. Cooled to -40°C.

ATLAS and CMS Upgrades

Upgrades CMS, LHCb)" ATLAS,

Ciemat

Liquid Argon Calorimeter **Tile Calorimeter**

Full upgrade program to cope with increasing luminosity:

Radiation damage, pile-up mitigation, bandwidth limitations, aging...

Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker Toroid Magnets

New Trackers and pixels

Muon Detectors

- CMS endcap and ATLAS forward calorimeter
- Forward extension (tracking and muons)
- Higher granularity wherever possible \checkmark
- New electronics almost everywhere with \checkmark increased bandwidth
- New trigger systems: include tracker, bring \checkmark offline algorithms online

4-8 April 2016 Madrid

Upgrades CMS, LHCb)"

F ATLAS,

Bedoya

Cristina Fdez.

MARÍA

ATLAS and CMS Pixel Phase 1 Upgrades

PU=50 by LS2

ATLAS - New Insertable

B-layer (IBL)

Additional 4th pixel layer. Close to interaction point (33 mm)

IN 2014

- 75% thin planar sensors and 3D double side sensors (first time 3D used)
- CO₂ cooling •
- Reduce the fake tracks arising from random ٠ combinations of hits and enhance efficiency of tagging heavy flavour guarks

Contribute to 10%

CMS - New Pixel

29

- New beam pipe in 2014
- 4 layers/3 disks
- 3 cm inner radius
- New readout chip: recovers inefficiency at high rate and PU
- Significantly reduced material budget
- CO₂ cooling, DC-DC powering scheme
- Improved track resolution and efficiency
- Improved vertex resolution and b-tagging

Madrid

Upgrades CMS, LHCb)"

ATLAS,

ATLAS and CMS Phase 1 Trigger Upgrade

Increase of luminosity forces upgrading present trigger system in order to control the rates maintaining similar thresholds already before LS3

High Precision L1 Calorimeter Trigger >LS2

Readout of super-cells in LAr with higher granularity and higher precision

Fast TracKing (FTK) for the Level-2 trigger

- Very fast pattern recognition and track fitting (~ 25 µs) in the ID silicon layers at an "offline precision"
- ATCA and VME electronics. 8000 ASICS, 2000 FPGAs 10 Gb/s links

New Level1 back-end electronics

- Upgrade of the off-detector electronics using µTCA technologies (powerful FPGAs and high bandwidth optics)
- Allows much improved algorithms for PU mitigation and isolation
- Improve L1 Trigger capabilities to cope with higher rates

hit pattern matching to presubsequent linear fitting stored patterns (coarse) in FPGAs (precise) Single Hit _____ Road SuperStrip (bin) Associative memory ASIC Pattern recognition in coarse resolution Track fit in full resolution (hits in a road) $F(x_1, x_2, x_3, ...) \sim a_0 + a_1 \Delta x_1 + a_2 \Delta x_2 + a_3 \Delta x_3 + ... = 0$ (superstrip→road)

Bedoya

ATLAS and CMS Forward Physics

- AFP will study events in which intact protons emerge from ATLAS inelastic collisions, with detectors close to the LHC beam at 210 m from the IP
- 4 roman pots in total

IMFP16

4-8 April 2016

Upgrades CMS, LHCb)"

(ATLAS, (

Bedoya

Cristina Fdez.

EXCELENCIA MARÍA DE MAEZTU

Ciemat

Madrid

• 3D sensors for first AFP phase

2 new horizontal pots (only 1 during LS1)

<u>CMS-TOTEM-Proton</u> <u>Precision Spectrometer</u> <u>(CT-PPS)</u>

- Very forward diffractive physics
- Located in the very forward region on both sides of CMS at about 200m from the IP
- Silicon tracking system to measure the position and direction of the protons,
- and a set of Timing counters to measure their arrival time with a precision of the order of 10 ps.

ATLAS Calorimeter Upgrade

PHASE 2 UPGRADES

Fcal -> sFCal upgrade (3.2 < η < 4.9)

• Higher granularity=> lower pileup noise

EM and Hadronic calorimeter don't require upgrade

Replace TileCal and LAr electronics in LS3

- Replacement due to ageing and radiation tolerance
- Limited on-detector pipelines prevent application of more advanced trigger algorithms
- On-detector digitization of all signals at 40 MHz
- Radiation tolerant chips on detector
- ATCA/uTCA technology in the back-ends

TileCal mini drawer to host new on detector electronics

Ciemot

Bedoya

Cristina Fdez.

New LAr on detector, off detector and powering electronics for Phase 2

TileCal sROD Demonstrator

32

Madrid

CMS Calorimeter Upgrade

Replacement of HCAL electronics < 2019

- Replacement of photosensors , on detector and off detector electronics
- Reduce noise, increase depth segmentation and allow timing measurement

Replacement of ECAL barrel electronics in LS3

- to accommodate to higher trigger rates and latency
- Implement a 40 MHz continuous read-out

PHASE 2 UPGRADES

New ENDCAP Calorimeter in LS3

- Cannot survive radiation environment
- Silicon based calorimeter for the forwards region.
- Benefiting from CALICE collaboration R&D

HGCAL: High Granularity Calorimeter with 4D (space-time) shower measurement

- Electromagnetic section (26 X_o, 1.5λ): 28 layers of Silicon-W/Cu absorber
- Front Hadronic section (3.5 λ): 12 layers of Silicon/Brass or Stainless Steel

Back Hadronic Calo. (BH) similar as present HE - radiation tol. - granularity ~ x4

BH (5 λ): 12 layers of Scintillator/Brass or Stainless Steel (2 depths readout)

Ciemat General Institutions

ATLAS,

ATLAS Muon Upgrade

New Small Wheel (NSW)

Innermost muon endcap stations | η | >1.3

- **Micromegas** (precision) **& sTGC** (trigger and bunch id) :
 - precision and trigger.
 - Improve pointing , reject fake muons and control rates.

IN 2019

- First large system based on Micromegas (1200 m²)
- Spatial resolution < 100 μm

Existing detectors are expected to cope with HL-LHC radiation and luminosity though much of the electronics will be replaced. Weakest parts will be extended.

Replacement of all muon electronics for

<u>Phase 2</u>

PHASE 2 UPGRADE

- Under study to eliminate limits on the L1 trigger rate and L1 latency. => One layer of trigger
- It could provide the possibility to add RPCs on the innermost layer and allows the use of an RPC-seeded MDT trigger in L0 => sharper p_t thresholds.

Cerero de Investigacione Derregitica, Medicambient

CMS, LHCb)"

ທີ

F

Bedoya

Cristina Fdez.

MARÍA

Ciemat

Jpgrades

CMS Muon Upgrade

PHASE 2 UPGRADES

New DT on detector electronics (Minicrates)

- Replace all on and off detector electronics
- Implement a 40 MHz continuous readout
- Eliminates bandwidth and latency restrictions
- Improve trigger primitives with offline resolution

- New chambers to complete forward region at 1.6 < η < 2.4 region
 - Pair of triple GEMs in 2 first stations high • rate, and resolution for L1-trigger
 - iRPC in stations 3 and 4 high rate, and • timing resolution to reject background
- **CSC readout replacement**
- MEo. Coverage up to $\eta = 3$
 - 6 triple GEMs (MEo) for μ-tagging

GEM detectors

"LHC (ATLAS, (

Bedoya

Cristina Fdez.

Events/1.0 GeV

500

400

300

200

100

CMS Muon Upgrade

PHASE 2 UPGRADES

<u>New DT on detector electronics</u> (Minicrates)

vs = 14 TeV

- Replace all on and off detector electronics
- Implement a 40 MHz continuous readout
- Eliminates bandwidth and latency restrictions

CMS Preliminary

 $L = 3000 \text{ fb}^{-1}$

Phase II Detector - PU140

f3. Higgs $\rightarrow 4 \mu$

Conf4: Higgs \rightarrow 4 μ

Conf3: Z/ZZ \rightarrow 4 μ

Conf4: Z/ZZ \rightarrow 4 μ

250

300

M_{4 u} [GeV]

- <u>New chambers to complete forward region</u> at 1.6 < η < 2.4 region
 - Pair of triple GEMs in 2 first stations high rate, and resolution for L1-trigger
 - iRPC in stations 3 and 4 high rate, and timing resolution to reject background
- <u>CSC readout replacement</u>
- MEo. Coverage up to η = 3

Ciemat

$H \rightarrow ZZ (4\mu)$ without with MEo

150

200

100

- More radiation tolerant
- **Higher Granularity:** ٠
 - 4 to 6 times present Trackers
 - Improved tracking reconstruction efficiency, transverse momentum and impact parameter resolution (higher granularity)
- Lightness: ٠

Cristina Fdez.

EXCELENCIA

MARÍA DE MAEZTU

Ciemat

Minimize inactive material requires new technologies: DC-DC and serial electronics powering, new CO₂ cooling, new materials, etc

- Include tracking information in the hardware trigger:
 - Improves lepton energy assignment and isolation, allows association to vertex for PU rejection and multi object triggers
 - Required to maintain low energy trigger thresholds
 - Different designs in ATLAS and CMS
- Extension of coverage from $\eta \approx 2.4$ to $\eta \approx 4$ ٠
 - Better matching with calorimeter coverage to improve Jet ID and MET tails and resolution, crucial for VBF and VBS jet tagging

MARÍA DE MAEZTU

EXCELENCIA

Cristina Fdez.

Cremel General de Investigaciones Investigaciones

ATLAS and CMS Pixel Upgrade

PHASE 2 UPGRADES

Need to cope with extremely high hit rates 2 GHz/cm² and Requirements extreme radiation tolerance: 2 x 10¹⁶ neq/cm² , 1Grad (10years)

Pixel layouts under definition with extended forward coverage

Pixel sensor: Planar and possibly 3D sensors

Low mass -> Low power, "exotic" powering system (serial powering)

Common ATLAS+CMS development of **Readout chip in RD53 collaboration**

ATLAS,

Bedoya

Cristina Fdez.

EXCELENCIA

DE MAEZTU

MARÍA

Ciemat

ATLAS and CMS Track Trigger

- Physics program requires low p_T lepton thresholds similar to Run 1 to get max. benefit from the 3000 fb⁻¹.
 - Hardware trigger rates for desired physics come in at around 1 MHz:
 - Setting thresholds to keep total rate to 100 kHz incompatible with physics aims for single leptons would imply 32 GeV electron and 40 GeV muon
- Improvements in L1 Calo and Muon systems not sufficient for achieving manageable rates with acceptable physics.
- Match tracking information to muon and calorimeter information.

42

4-8 April 2016

Upgrades CMS, LHCb)"

"LHC (ATLAS,

Bedoya

Cristina Fdez.

EXCELENCIA

DE MAEZTU

MARÍA

Ciemat

Madrid

ATLAS Track Trigger

Tracker region of interest selected by Calo/Muon and sent to the trigger. Select tracks above 4 GeV.

Two hardware trigger Levels:

- Level- 0 (Calo+Muon): 1 MHz accept rate, trigger latency 6 μs
- Level 1 (+ROI Tracker): 400 kHz accept rate, trigger latency 30 μs

Linearized track fitting (FPGA) Good tracks are sent to next trigger level

Create hits from clusters in "super strips".

Custom associative memory chips are used to compare hits to O(10⁹) patterns simultaneously

≣fficiency [%]

CMS, LHCb)"

(ATLAS,

Bedoya

Cristina Fdez.

EXCELENCIA MARÍA

DE MAEZTU

Ciemat

Jpgrades

CMS Track Trigger

 Only one level of HW trigger (Track Trigger, finer granularity μ & calo.)

40 MHz Readout

AM+FPGA

- Filtering through Tracker p_t modules to bring off-detector only hits with p_t>2 GeV
- Stubs readout at 40MHz and sent to the L1Track Trigger electronics.

750 kHz CMS Level-1 trigger

Tracklet

4 muons, no pileup

TMT Hough

Track reconstruction in Back-End electronics for L1-Trigger.

Different algorithms considered.

(ATLAS, (

Cristina Fdez. Bedoya

R&D collaborations

Common initiatives that foster developments across experiments

Tracking systems:

- RD42 "Development of Diamond Tracking Detectors for HL-LHC"
- RD50 "Radiation hard semiconductor devices for very high luminosity colliders"
- "Forum on Tracking Detector Mechanics 2013"

Calorimetry

- RD52 "Dual Read-out Calorimetry"
- CALICE collaboration

Muon systems

RD51 "Micro-Pattern Gas detectors Technologies"

Electronics

- Common Electronics Projects (GBT), ACES
- RD53 "Development of pixel readout integrated circuits for extreme rate and radiation"

Trigger/DAQ/Offline/Computing

- TDAQ teams from experiments
- PH-SFT group

EXCELENCIA MARÍA

DE MAEZTU

Upgrades CMS, LHCb)[°]

(ATLAS, (

Cristina Fdez. Bedoya

EXCELENCIA MARÍA

DE MAEZTU

Ciemat

Spanish participation to LHC detector upgrades

Upgrade of the ATLAS IBL Pixel **IFAE IMB-CNM-CSIC**

S

Upgrade of the AFP (forward detector silicon roman pot) at ATLAS **IFAE**

Upgrade of the ATLAS forward tracker **IMB-CNM-CSIC** IFIC

Upgrade of the ATLAS TileCal IFIC **IFAE**

Upgrade of the CMS Drift Tubes **CIEMAT**

Upgrade of the CMS Tracker (Pixels phase 2) **IMB-CNM-CSIC**

Upgrade of the LHCb velo USC

Upgrade of the LHCb SciFi **UB** (Universitat de Barcelona) **IFIC**

Upgrade of the LHCb Calorimeter FE UB **IFIC** URL (La Salle - Universitat Ramón Llull)

"LHC Upgrades (ATLAS, CMS, LHCb)"

Summary

- HL-LHC may not be the cleanest but it is the existing facility where Higgs can be studied in the next years/decades
- Oreover, it has a great discovery potential for new physics
- A high luminosity proton-proton collider is a difficult environment, luminosity increase needs to be matched with better performing detectors
- ♦ Technological challenges ahead:
 - High level of radiation
 - High occupancy and pile up
 - High trigger rates

2024 seems to be far away but the schedule to perform de described upgrades is tight!

Cristina Fdez. Bedoya

Thank you!

"LHC Upgrades (ATLAS, CMS, LHCb)"

Cristina Fernández Bedoya