

Search for *tt* resonances in semileptonic final states at $\sqrt{s} = 13$ TeV with the CMS detector

> Marino Missiroli Universidad Autónoma de Madrid (Spain)

Introduction

- several theories beyond the Standard Model (SM) predict new particles which preferentially decay to a top-antitop pair
- search for $t\bar{t}$ resonances in $\ell(e,\mu)$ +jets final states with the CMS detector in pp collisions at $\sqrt{s} = 13$ TeV with 2.6 fb⁻¹ [1] using the invariant mass spectrum of the tt system

▶ jet *t*-tagging [2]

used to identify top quarks

reconstructed as a single jet

with substructure properties

Object reconstruction

Background estimation and systematic uncertainties

- ▶ main background given by SM *tt* production
- W+jets contribution for events without b/t-tagged jets
- SM backgrounds modeled using MC simulation
- normalization for $t\bar{t}$ and V+jets determined using data in CRs
- main systematic uncertainties:
 - efficiency and mistag rate for jet b-tagging and t-tagging
 - SM cross sections, Q^2 -scale and PDF choice in MC simulation

• high- p_T lepton

without isolation requirement

- missing transverse energy from the $W \rightarrow \ell \nu$ decay
- ▶ jet b-tagging

used to identify b quark decays

Results

Events

80

60

40

20

1.5⊦

• $M_{t\bar{t}}$ distributions measured in 3 exclusive samples:

$$\begin{bmatrix} 1 \ t \text{-tag} \end{bmatrix} \begin{bmatrix} 0 \ t \text{-tag} + 1 \ b \text{-tag} \end{bmatrix}$$

 e/μ +jets, 1 t tag

Preliminary

CMS

$$0 t - tag + 0$$

$$b$$
-tag | 0 t -

$$0 t$$
-tag

$$t$$
-tag + 0

Other SM

----- Z' 3 TeV (σ=1 pb)

b-tag

2.6 fb⁻¹ (13 TeV)

$$1 b$$
-tag 0

- Data

Fig. 1: (a) ΔR -distance between the lepton and its closest jet. (b) Mass of large-radius jets [1].

Event selection in the μ +jets (e+jets) channel

- ▶ single-muon trigger (electron+2 jets trigger)
- exactly 1 lepton with $p_T > 50$ GeV and $|\eta| < 2.1(2.5)$
- at least 2 jets with $p_T > 50(70)$ GeV, $p_T^{\text{jet-1}} > 150(250)$ GeV
- missing $E_T > 50(120)$ GeV
- cut on $p_{T,rel}(\ell, jets)$ used in place of standard lepton isolation • final ℓ +jets sample split in categories based on the number of *b*-tagged and *t*-tagged jets

Fig. 2: Invariant mass of the reconstructed $t\overline{t}$ system for events with a t-tagged jet [1].

Statistical analysis and exclusion limits

- no excess observed in data compared to SM backgrounds
- $M_{t\bar{t}}$ spectra used to set limits on the cross section of $t\bar{t}$ resonances
- $\sigma(X \to t\bar{t})_{obs} < 97 \text{ fb}$ at 95% CL for a narrow-width Z' with a mass of 3 TeV • Z' boson with relative width of 30% excluded for $0.5 \text{ TeV} < M_{Z'} < 4 \text{ TeV}$

Kinematical reconstruction of the *tt* **system:**

- χ^2 discriminator designed to choose the best tt hypothesis
- ▶ in events with 1 *t*-tag, hadronic top identified with *t*-tagged jet

-
$$\chi^2_{\rm min} < 30$$
 applied to reduce non- $t\bar{t}$ bkgs, defines the $\ell + {\rm jets}~{\rm SR}$

Fig. 3: 95% CL upper limits on the production cross section times branching ratio for a resonance decaying to $t\bar{t}$, as a function of the resonance's mass. Exclusion limits are shown for a Z' boson with relative width (Γ/M) of 1% and 10% [3].

References

[1] CMS Collaboration, Search for tt resonances in boosted semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV, CMS-PAS-B2G-15-002 (2016).

[2] CMS Collaboration, Top Tagging with New Approaches, CMS-PAS-JME-15-002 (2016).

[3] R. Bonciani et al., Electroweak top-quark pair production at the LHC with Z' bosons to NLO QCD in POWHEG, JHEP 02 (2016) 141, [arXiv:hep-ph/1511.08185].

IMFP16 — XLIV International Meeting on Fundamental Physics, Madrid (Spain)