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What's new? (in non-SUSY BSM)

* We have data

* The decade of 2000’s was extremelly rich in model-
building ideas, driven mainly by naturalness (main
reason to expect new physics at the LHC)

* Now that we have LHC data at 8 and 13 TeV it's time
to confront these ideas with experimental data

* The stringent experimental constraints (direct
searches, Higgs couplings) on many extensions on the
SM creates some tension with natural models
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Results
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background-only fit

—— Observed CL, limit ~ ATLAS Preliminary
Expected CL, limit Vs =13 TeV, 3.2 fb™

[ ] Expected 16 y/m, =1%

[ JExpected 20 Spin-0 selection

ATLAS Preliminary e Dat
ata

—— Background-only fit

Events / 20 GeV

Spin-0 Selection
ls=13TeV, 3.21b"

o
=
c
m
X
=2
o)
c
S
=
E
-
L
@
%
o
-
I
©)
32
o
o

200 400 600 800 1000 1200 1400 1600 1800

Data - fitted background

400 600 800 1000 1200 1400 1600 m, [GeV]
m,, [GeV]

2878 events (m,, > 200 GeV)

= N
-8 Marco Delmastro Diphoton searchef
& ot £ T




The Gold Rush: [INSPIRES][list]

papers

fluctuation or the discovery ¢
century but it is an excellent

model-building exercise (and a

lot of fun!) finding possible Strumia, Moriond 2016

explanations to the excesses



- Fine-tuning and ba
- Phenomenological implicationé

* Increasing elusiveness: neutral naturalness
* No new TeV particles: cosmologial relaxation

* Explaining anomalies: 750 diphoton

e Conclusions




Naturalnhess as guiding principle

* Naturalness problem: the mass of an elementary
scalar is a relevant operator not (obviously) protected
by any symmetry (it is quadratically sensitive to any
UV new physics)

* |t is difficult to understand the scale of EWSB unless
some new structure appears around the TeV scale
(within LHC reach) [counter example later]

* Currently tested tuning is not yet dramatic

om; A? 1 TeV, 0.01 tuning

m2,  4m?m2, 3 TeV, 0.001 tuning

§A:>A§feW\/KmHN few{

Crude estimate



Naturalnhess as guiding principle

* Naturalness is still a good guiding principle:

* Tuning still at the ~ per-cent level

* |ltis the main argument for new physics at the LHC
(dark matter, baryon asymmetry, flavor, ..., could be
related to TeV physics or not)

* Increasing the degree of barogueness changes the
collider phenomenology (cancelations imposed by
symmetries, elusive new physics)



The Higgs as a composite pNGB

* |s the Higgs boson the first elementary scalar
observed in Nature?

* Known examples of SSB and/or light scalars involve
composite scalars:

— Superconductivity: electron (Cooper) pairs condense due
to their interactions with the phonons in a crystal

- Pions are composite pNGB of chiral symmetry breaking

* Maybe the Higgs is also a composite state of a new
strongly interacting theory?



The Higgs as a composite pNGB

* A naturally light composite Higgs: Ingredients

* Has a pNGB Georgi, Kaplan '80, ...

- A new strongly coupled sector condenses at a scale f~TeV
spontaneously breaking a global symmetry: H is the NGB of
the breaking

- Why NGB? To generate its potential from a weakly coupled
sector (that breaks explicitly the global symmetry)
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The Higgs as a composite pNGB

* A naturally light composite Higgs: Ingredients

* Has a pNGB Georgi, Kaplan '80, ...

- A new strongly coupled sector condenses at a scale f~TeV
spontaneously breaking a global symmetry: H is the NGB of
the breaking

- Why NGB? To generate its potential from a weakly coupled
sector (that breaks explicitly the global symmetry)

- v = fsin((h)/f)

UZ

- §= 72 parameterizes deviations of Higgs couplings (and
minimal fine-tuning)



The Higgs as a composite pNGB

* Realistic example: Minimal Composite Higgs Model

o 50(5)/50(4) X PLR Agashe, Contino, (Da Rold), Pomarol ‘05 ('06)

- Custodial protection of T and Zb b, [SO(4)~SU(2), x SU(2)]

- 4 NGB transforming as a 4 of SO(4) [just like the SM Higgs]

- Explicit symmetry breaking by weak gauging (SM) and
Yukawa couplings (mainly top)

V[H] = —af*sin®(H/f) + B f*sin*(H/ f)

. 1

E=a/(28) mjx=8(1—-¢)B



VIH]| = —ozlfl’2 sin?(H/f) + ff%sin

m¥ = 8¢(1 - €)8
* a and s depend on the fermion quantum numbers:

N, N, m; 1

c 2 92 4 p2 ~ LY.
N, 1
— aug1 ~ Puer ~ m?)\fm?) Arapr ~ —
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The Higgs as a composite pNGB

* How baroque is it? Not bad. Fermion resonances:
52 ~(2,2)2®(1,1)2 ~21 B2z D12
3 3 3 6 6 3

T Xs ~
(3) (7) 7
* Not “just new vector-like quarks” (they come with a
rich structure)

* Cancellations are natural (large mixings allowed)

* Large contributions to certain observables not only allowed but
sometimes needed

* Many new particles with large couplings (unusual behaviour)



* Large mixing with valence quarks implies huge single production

cross sections: excellent reach Atre et al (JS) '09, "11
| ATLAS-CONF-2012-137
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The Higgs as a composite pNGB

* Not “just new vector-like quarks”

* Many new particles with large couplings (unusual behaviour)

— Pair-production of VLQ can be mediated by new particles
(heavy gluon): no longer model-independent.

- Current searches assume QCD production. Are we sensitive
to the different kinematics? Not yet (maybe with boosted

techniques)
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Beyond the MCHM

* Uncolored top partners? Neutral naturalness
Chacko, Goh, Harnik '06

* So far the particles regulating the quadratic divergencies are
charged under the SM (top partners are colored) and are
therefore easy to produce at the LHC

* |If the SM is doubled, the Higgs is the pNGB of a global
symmetry that contains both copies and there is a Z,

symmetry exchanging the two copies, the partners are
charged under the (dark) copy SM but not under the SM

* SM-neutral parters difficult to produce at the LHC:

- Effects on Higgs couplings Craig, Katz, Strassler, Sundrum "15

- Possible displaced vertices and hidden-valley pheno



Naturalness without TeV particles?

Graham, Kaplan, Rajendran ’15
* Can we go even further and have a natural theory with
no new particles at the TeV? Cosmological relaxation

* Higgs mass at its natural (cut-off) value

* Field-dependent contribution to the Higgs mass scans
different values during inflation

* When the Higgs mass becomes negative, it triggers a
potential for the new field that freezes and stops the
scanning

* Replace the Higgs mass with a (small) parameter that is
technically natural (stable under radiative corrections).



Natural without TeV particles?

Graham, Kaplan, Rajendran ’15
Can we go even further and have a natural theory with
no new particles at the TeV? Cosmological relaxation.

2
Vo) = =5 (1= ) + 0%+ edheos(s/ )

¢>AN/g=(h)=0

¢ slow rolls during inflation (g<<1), scaning h mass

When ¢ < A/g = (h) # 0 and the last term induces a
potential for ¢ , which stops rolling (and therefore the
scan)



Natural without TeV particles?

* Can we go even further and have a natural theory with
no new particles at the TeV? Cosmological relaxation.

2
Vo) = =5 (1= ) + 0%+ edheos(s/ )

» Simplest option: ¢ QCD axion (problems with 6ocp)

» Alternative: change last term to eA2h* cos(¢/ f)

« A, not related to QCD but this term is not radiatively stable

* Can be made natural by introducing a second relaxation field
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* Let's change gears




First LHC data at 13 TeV

= 10er—— 7 ——T1T 7T
s ATLAS Prelmine . oua vy peak around 750 GeV over flatland
102?— i Ten szl o(pp — v7v) CMS ATLAS
°F 8TeV |[(0.5+0.6)fb (0.4+0.8)fb
'E + H 13 TeV (6+3)fb (10£+£3)fb
_ CMS _Prefim | 261" (13 TeV)
8w o #E Theoretically clean.
for | d_— Experimentally simple.
oMz i W HH : ATLAS prefers large width '/M ~ 0.06.
. .y CMS prefers narrow width.
;‘%E vy nhot accompanied by hard extras.

Strumia, Moriond EW 2016
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leptons or
used

New vectors also possible




(with narrow width)




How can it be generated?

* New vectors and the diphoton anomaly. The 750 GeV
scalar can be the Higgs of a new broken gauge
symmetry: the new vectors can induce the required
couplings

* |t might be even possible to reproduce other reported
anomalies like the ~ 2 TeV diboson and the tt
forward-backward asymmetry

* Large width difficult to generate at the loop level (but
not new Landau poles from vectors)



Conclusions

* Naturalness is still a good guiding principle for new physics
at the LHC

* Pressure from null experimental results motivate more
barogue models: new approach to collider searches

* (Cancellations possible (expected)

* Rich spectra with unexpected features (large mixing, non-
conventional decay or production channels, ...)

* Reported anomalies have to be explained without
contradicting other searches: diphoton is a good place for an
anomaly to show up
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