IMFP16 4-8 April 2016 Madrid

Theory of (non-SUSY) Beyond the Standard Model

JosØSantiago (CAFPE and U. Granada)

Universidad de <mark>Granada</mark>

• We have data

31	atus: March 2016							$\int \mathcal{L} dt = (3)$	3.2 - 20.3) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ Te}$
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[ft	p ⁻¹]	Limit	5 .		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \ell\ell \\ \text{ADD OBH} \\ \text{ADD OBH} \\ \text{ADD OBH } \\ \text{ADD OBH induitiet} \\ \text{RSI } G_{KK} \rightarrow 0 \\ \text{RSI } G_{KK} \rightarrow \ell\ell \\ \text{RSI } G_{KK} \rightarrow \ell\ell \\ \text{RSI } G_{KK} \rightarrow \ell\ell \\ \text{Buik } \text{RS } G_{KK} \rightarrow HW \rightarrow qq\ell\nu \\ \text{Buik } \text{RS } G_{KK} \rightarrow HH \rightarrow bbbb \\ \text{Buik } \text{RS } g_{KK} \rightarrow tt \\ \text{2UED} / \text{RP} \end{array}$		$\geq 1j$ - 1j $\geq 2j$ $\geq 3j$ - - 1J 4b $\geq 1b, \geq 1J/$ $\geq 2b, \geq 4$	Yes - Yes 2j Yes j Yes	3.2 20.3 3.6 3.2 3.6 20.3 20.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2	Мо Ма Ма Ма Ма Ма Ма Ма Ма Ма Ма	1.06 TeV 475-785 GeV 1.46 TeV	6.86 TeV 4.7 TeV 5.2 TeV 8.3 TeV 8.2 TeV 9.55 TeV 2.66 TeV 2.66 TeV	$\begin{array}{l} n=2\\ n=3\text{HLZ}\\ n=6\\ n=6\\ m=6, M_D=3\text{TeV, rot BH}\\ n=6, M_D=3\text{TeV, rot BH}\\ k/\overline{M}_P=0.1\\ k/\overline{M}_P=0.1\\ k/\overline{M}_P=1.0\\ k/\overline{M}_P=1.0\\ BR=0.0261\\ \text{DF}(1,1), BRA^{(1,1)}\rightarrow tf)=1 \end{array}$	Preliminary 1407.2410 1511.2006 1512.01530 ATLAS-CONF-2016-00 1512.02586 1405.4123 1504.05511 ATLAS-CONF-2015-07 ATLAS-CONF-2015-07 1505.07018 ATLAS-CONF-2016-01
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \tau\tau \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{SSM} \ W' \to \ell\gamma \\ \mathrm{HVT} \ W' \to WZ \to qqvv \ \mathrm{model} \ \mathrm{A} \\ \mathrm{HVT} \ W' \to WZ \to qqq \ \mathrm{model} \ \mathrm{A} \\ \mathrm{HVT} \ W' \to WZ \to qqq \ \mathrm{model} \ \mathrm{B} \\ \mathrm{HVT} \ W' \to WH \to \ell\nu b \ \mathrm{model} \ \mathrm{B} \\ \mathrm{LRSM} \ W_K' \to tb \end{array}$	2 e, µ 2 τ - 1 e, µ 0 e, µ - 1 e, µ 0 e, µ 1 e, µ 0 e, µ	- 2 b - 1 J 2 J 1-2 b, 1-0 1-2 b, 1-0 2 b, 0-1 j ≥ 1 b, 1 J	- Yes Yes - Yes Yes Yes -	3.2 19.5 3.2 3.2 3.2 3.2 3.2 3.2 20.3 20.3	Z' mass Z' mass W' mass W' mass W' mass W' mass Z' mass Z' mass W' mass	2.02 1.5 TeV 1.6 Te 1.38-1.6 Te 1.62 Te 1.76 T 1.96 1.76 T 1.92 1.76 T	3.4 TeV 2 TeV 4.07 TeV V V V TeV TeV EV	$g_V = 1$ $g_V = 1$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2015-07/ 1502.07177 Preliminary ATLAS-CONF-2015-06: ATLAS-CONF-2015-07: ATLAS-CONF-2015-07: ATLAS-CONF-2015-07: ATLAS-CONF-2015-07: 1410.4103 1408.0886
G	Cl qqqq Cl qqll Cl uutt	2 e, μ 2 e, μ (SS)	2 j ≥ 1 b, 1-4	– – j Yes	3.6 3.2 20.3	Λ Λ Λ		4.3 TeV	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	1512.01530 ATLAS-CONF-2015-070 1504.04605
MQ	Axial-vector mediator (Dirac DM) Axial-vector mediator (Dirac DM) $ZZ_{\chi\chi}$ EFT (Dirac DM)	0 e, μ 0 e, μ, 1 γ 0 e, μ	≥1j 1j 1J,≤1j	Yes Yes Yes	3.2 3.2 3.2	m _A m _A M.	1.0 TeV 650 GeV 550 GeV		$\begin{array}{l} g_{\rm q}{=}0.25, g_{\chi}{=}1.0, m(\chi) < 140 \; {\rm GeV} \\ g_{\rm q}{=}0.25, g_{\chi}{=}1.0, m(\chi) < 10 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \end{array}$	Preliminary Preliminary ATLAS-CONF-2015-08
ΓO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	- Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.07 TeV 1.03 TeV 640 GeV		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta = 0 \end{array}$	Preliminary Preliminary 1508.04735
quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ YY \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ QQ \rightarrow WqWq \\ T_{5/3} \rightarrow Wt \end{array} $	$\begin{array}{c} 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 2/{\geq} 3 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 4 \ j \\ \geq 1 \ b, \geq 5 \end{array}$	j Yes j Yes j Yes - Yes j Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3	T mass Y mass B mass B mass Q mass T _{5/3} mass	855 GeV 770 GeV 735 GeV 755 GeV 690 GeV 840 GeV		T in (T,B) doublet Y in (B,Y) doublet isospin singlet B in (B,Y) doublet	1505.04306 1505.04306 1505.04306 1409.5500 1509.04261 1503.05425
fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	1 j 2 j 1 b, 1 j 1 b, 2-0 j - -	- - Yes -	3.2 3.6 3.2 20.3 20.3 20.3	q* mass q* mass b* mass b* mass t* mass y* mass	2. 1.5 TeV 1.6 Te ¹	4.4 TeV 5.2 TeV 1 TeV 3.0 TeV V	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1512.05910 1512.01530 Preliminary 1510.02664 1411.2921 1411.2921
Other	LSTC $a_T \rightarrow W\gamma$ LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	$\begin{array}{c} 1 \ e, \mu, 1 \ \gamma \\ 2 \ e, \mu \\ 2 \ e, \mu (SS) \\ 3 \ e, \mu, \tau \\ 1 \ e, \mu \\ - \\ - \\ - \end{array}$	- 2 j - 1 b - -	Yes - Yes 	20.3 20.3 20.3 20.3 20.3 20.3 20.3 7.0	ay mass N ⁰ mass H ^{##} mass H ^{##} mass spin-1 invisible particle mass multi-charged particle mass monopole mass	960 GeV 2.0 551 GeV 400 GeV 657 GeV 785 GeV 1.34 TeV	3 TeV	$\begin{split} m(W_R) &= 2.4 \text{ TeV}, \text{ no mixing} \\ DY \text{ production, } BR(H_\ell^{\pm\pm} \rightarrow \ell\ell) = 1 \\ DY \text{ production, } BR(H_\ell^{\pm\pm} \rightarrow \ell\tau) = 1 \\ a_{\text{non-res}} &= 0.2 \\ DY \text{ production, } a &= 5e \\ DY \text{ production, } a &= 5e \\ DY \text{ production, } a &= 1g_D, \text{ spin } 1/2 \end{split}$	1407.8150 1506.06020 1412.0237 1411.2921 1410.5404 1504.04188 1509.08059

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded. †Small-radius (large-radius) jets are denoted by the letter j (J).

• We have data

- The decade of 2000's was extremelly rich in modelbuilding ideas, driven mainly by naturalness (main reason to expect new physics at the LHC)
- Now that we have LHC data at 8 and 13 TeV it's time to confront these ideas with experimental data
- The stringent experimental constraints (direct searches, Higgs couplings) on many extensions on the SM creates some tension with natural models

• We have data

 More and more stringent bounds on the masses of new particles imply either more special (fine-tuned) or more baroque (complicated rich) models

H. Murayama, Nobel Symposium on LHC results

But beware that baroqueness is achieved by symmetries

• We have data

- More and more stringent bounds on the masses of new particles imply either more special (fine-tuned) or more baroque (complicated rich) models
- B and S imply different experimental strategies:
 - Larger S: keep looking (and hope you have kinematical reach)
 - Larger B: try new strategies (expect cancellations, new channels, unexpected behaviour, ...)

... and we have data

Results

• ... and we have data

- Reported anomalies trigger the wild imagination of theorists
- It might be just a statistical fluctuation or the discovery of the century but it is an excellent model-building exercise (and a lot of fun!) finding possible explanations to the excesses

The Gold Rush:	[INSPIRES][list]
----------------	------------------

papers
10
101
137
212
263
?

Strumia, Moriond 2016

Outline

- Non-SUSY approaches to naturalness:
 - Composite pNGB Higgs:
 - Fine-tuning and baroqueness
 - Phenomenological implications
 - Increasing elusiveness: neutral naturalness
 - No new TeV particles: cosmologial relaxation
- Explaining anomalies: 750 diphoton
- Conclusions

A Starter

Naturalness as guiding principle

- Naturalness problem: the mass of an elementary scalar is a relevant operator not (obviously) protected by any symmetry (it is quadratically sensitive to any UV new physics)
- It is difficult to understand the scale of EWSB unless some new structure appears around the TeV scale (within LHC reach) [counter example later]
- Currently tested tuning is not yet dramatic

$$\frac{\delta m_H^2}{m_H^2} \sim \frac{\Lambda^2}{4\pi^2 m_H^2} \le \Delta \Rightarrow \Lambda \lesssim \text{few } \sqrt{\Delta} m_H \sim \text{ fev}$$

1 TeV, 0.01 tuning 3 TeV, 0.001 tuning

Crude estimate

Naturalness as guiding principle

- Naturalness is still a good guiding principle:
 - Tuning still at the ~ per-cent level
 - It is the main argument for new physics at the LHC (dark matter, baryon asymmetry, flavor, ..., could be related to TeV physics or not)
 - Increasing the degree of baroqueness changes the collider phenomenology (cancelations imposed by symmetries, elusive new physics)

- Is the Higgs boson the first elementary scalar observed in Nature?
- Known examples of SSB and/or light scalars involve composite scalars:
 - Superconductivity: electron (Cooper) pairs condense due to their interactions with the phonons in a crystal
 - Pions are composite pNGB of chiral symmetry breaking
- Maybe the Higgs is also a composite state of a new strongly interacting theory?

- A naturally light composite Higgs: Ingredients
 - H as a pNGB: Georgi, Kaplan '80, ...
 - A new strongly coupled sector condenses at a scale f~TeV spontaneously breaking a global symmetry: H is the NGB of the breaking
 - Why NGB? To generate its potential from a weakly coupled sector (that breaks explicitly the global symmetry)

$$\delta m_H^2 \sim \frac{g^2}{16\pi^4} M^2$$

Weak coupling

- A naturally light composite Higgs: Ingredients
 - H as a pNGB: Georgi, Kaplan '80, ...
 - A new strongly coupled sector condenses at a scale f~TeV spontaneously breaking a global symmetry: H is the NGB of the breaking
 - Why NGB? To generate its potential from a weakly coupled sector (that breaks explicitly the global symmetry)
 - $v = f \sin(\langle h \rangle / f)$

A Star

- $\xi \equiv \frac{v^2}{f^2}$ parameterizes deviations of Higgs couplings (and minimal fine-tuning)

- Realistic example: Minimal Composite Higgs Model
 - $SO(5)/SO(4) imes P_{LR}$ Agashe, Contino, (Da Rold), Pomarol '05 ('06)
 - Custodial protection of T and $Zb_{L}\overline{b_{L}}$ [SO(4)~SU(2)_L x SU(2)_R]
 - 4 NGB transforming as a 4 of SO(4) [just like the SM Higgs]
 - Explicit symmetry breaking by weak gauging (SM) and Yukawa couplings (mainly top)

 $V[H] = -\alpha f^2 \sin^2(H/f) + \beta f^2 \sin^4(H/f)$

 $\xi = \alpha/(2\beta) \qquad m_H^2 = 8\xi(1-\xi)\beta$

- Realistic example: Minimal Composite Higgs Model
 - $SO(5)/SO(4) imes P_{LR}$ Agashe, Contino, (Da Rold), Pomarol '05 ('06)

$$V[H] = -\alpha f^2 \sin^2(H/f) + \beta f^2 \sin^4(H/f) \qquad \begin{aligned} \xi &= \alpha/(2\beta) \\ m_H^2 &= 8\xi(1-\xi)\beta \end{aligned}$$

• α and β depend on the fermion quantum numbers:

$$-\alpha_{5\oplus5} \sim \frac{N_c}{16\pi^2} \lambda_t^2 m_\rho^2 \qquad \beta_{5\oplus5} \sim \frac{N_c}{16\pi^2} \lambda_t^4 f^2 \qquad \Delta_{5\oplus5} \sim \frac{m_\rho^2}{\lambda_t^2 f^2} \frac{1}{2\xi}$$

 $\Delta_{14\oplus 1} \sim \frac{1}{2\xi}$

$$- \alpha_{14\oplus 1} \sim \beta_{14\oplus 1} \sim \frac{N_c}{16\pi^2} \lambda_t^2 m_\rho^2$$

- Realistic example: Minimal Composite Higgs Model
 - $SO(5)/SO(4) imes P_{LR}$ Agashe, Contino, (Da Rold), Pomarol '05 ('06)
 - The Higgs mass also imposes constraints (on the masses of fermionic resonances) $\frac{m_H}{m_t} \sim \sqrt{\frac{N_c}{2\pi^2}} \frac{M_\psi}{f}$

But also alternatives with no light top partners: lepton partners contribution to Higgs potential [Carmona, Goertz '13]

• How baroque is it? Not bad. Fermion resonances:

 $5_{\frac{2}{3}} \sim (2,2)_{\frac{2}{3}} \oplus (1,1)_{\frac{2}{3}} \sim 2_{\frac{1}{6}} \oplus 2_{\frac{7}{6}} \oplus 1_{\frac{2}{3}}$ $\begin{pmatrix} T\\B \end{pmatrix} \begin{pmatrix} X_{\frac{5}{3}}\\T' \end{pmatrix} \tilde{T}$

- Not "just new vector-like quarks" (they come with a rich structure)
 - Cancellations are natural (large mixings allowed)

15 miles

- Large contributions to certain observables not only allowed but sometimes needed
- Many new particles with large couplings (unusual behaviour)

- Not "just new vector-like quarks"
 - Cancellations are natural (large mixings allowed)

• $\begin{pmatrix} T \\ B \end{pmatrix} \begin{pmatrix} X_{\frac{5}{3}} \\ T' \end{pmatrix}$ mix with u_R in a custodially symmetric way

()	$2 (\lambda_{xy})^2$
$1 + \left(\frac{\lambda Q U}{2} \right)$	$-\left(\frac{\lambda \chi v}{2}\right)$
M_{O}	$(M_{\mathbf{v}})$
$\langle 1 - Q \rangle$	$\langleA \rangle$

 Large mixing with valence quarks implies huge single production cross sections: excellent reach
 Atre et al (JS) '09, '11 ATLAS-CONF-2012-137

- Not "just new vector-like quarks"
 - Large contributions to certain observables not only allowed but sometimes needed

 Contributions to T and Zbb strongly correlated

> Carena, Pont n, JS, Wagner '06, '07 Anastasiou, Furlan, JS '09

 Large mixing: single production relevant

- Not "just new vector-like quarks"
 - Many new particles with large couplings (unusual behaviour)
 - Large mixing with heavier particles (beyond the LHC reach) can dramatically change the behaviour

Chala, JS '13

$$M_{B_l} = 1 \text{ TeV}$$

- Not "just new vector-like quarks"
 - Many new particles with large couplings (unusual behaviour)
 - Pair-production of VLQ can be mediated by new particles (heavy gluon): no longer model-independent.
 - Current searches assume QCD production. Are we sensitive to the different kinematics? Not yet (maybe with boosted techniques)

Not "just new vector-like quarks"

Araque, Castro, JS '15

 Current searches assume QCD production. Are we sensitive to the different kinematics? Not yet (maybe with boosted techniques)

Not "just new vector-like quarks"

Araque, Castro, JS '15

• Current searches assume QCD production. Are we sensitive to the different kinematics? Not yet (maybe with boosted techniques)

Beyond the MCHM

- Can we do better?
 - One loop quadratic divergencies can be totally cancelled if the global symmetry is explicitly broken only when two different couplings are different from zero (collective symmetry breaking a la Little Higgs)

Potential fully calculable in terms of low energy spectrum

Beyond the MCHM

- Uncolored top partners? Neutral naturalness
 - Chacko, Goh, Harnik '06
 So far the particles regulating the quadratic divergencies are charged under the SM (top partners are colored) and are therefore easy to produce at the LHC
 - If the SM is doubled, the Higgs is the pNGB of a global symmetry that contains both copies and there is a Z₂ symmetry exchanging the two copies, the partners are charged under the (dark) copy SM but not under the SM
 - SM-neutral parters difficult to produce at the LHC:
 - Effects on Higgs couplings Craig, Katz, Strassler, Sundrum '15
 - Possible displaced vertices and hidden-valley pheno

Naturalness without TeV particles?

Graham, Kaplan, Rajendran '15

- Can we go even further and have a natural theory with no new particles at the TeV? Cosmological relaxation
 - Higgs mass at its natural (cut-off) value

K Lists

- Field-dependent contribution to the Higgs mass scans different values during inflation
- When the Higgs mass becomes negative, it triggers a potential for the new field that freezes and stops the scanning
- Replace the Higgs mass with a (small) parameter that is technically natural (stable under radiative corrections).

Natural without TeV particles?

Graham, Kaplan, Rajendran '15

• Can we go even further and have a natural theory with no new particles at the TeV? Cosmological relaxation.

$$V(h,\phi) = -\frac{\Lambda h^2}{2} \left(1 - g\frac{\phi}{\Lambda}\right) + g\Lambda^3\phi + \epsilon\Lambda_c^3h\cos(\phi/f)$$

- $\phi > \Lambda/g \Rightarrow \langle h \rangle = 0$
- ϕ slow rolls during inflation (g<<1), scaning h mass
- When $\phi \leq \Lambda/g \Rightarrow \langle h \rangle \neq 0$ and the last term induces a potential for ϕ , which stops rolling (and therefore the scan)

Natural without TeV particles?

• Can we go even further and have a natural theory with no new particles at the TeV? Cosmological relaxation.

$$V(h,\phi) = -\frac{\Lambda h^2}{2} \left(1 - g\frac{\phi}{\Lambda}\right) + g\Lambda^3\phi + \epsilon\Lambda_c^3h\cos(\phi/f)$$

- Simplest option: ϕ QCD axion (problems with θ_{QCD})
- Alternative: change last term to $\epsilon \Lambda_c^2 h^2 \cos(\phi/f)$

Children State

- Λ_c not related to QCD but this term is not radiatively stable
- Can be made natural by introducing a second relaxation field

Natural without TeV particles?

• Can we go even further and have a natural theory with no new particles at the TeV? Cosmological relaxation.

 $\Lambda \lesssim 10^6 {
m ~TeV}$

- Only particles below $\Lambda: \phi, \sigma$ $m_{\phi} \in [10^{-20}, 10^2] \text{ GeV}$ $m_{\sigma} \in [10^{-45}, 10^{-2}] \text{ GeV}$
- Very suppressed couplings to SM: no collider signatures
- Possible axion-like DM
 candidates

Espinosa, Grojean, Panico, Pomarol, Pujol s, Servant '15

• Let's change gears

First LHC data at 13 TeV

 $\gamma\gamma$ peak around 750 GeV over flatland

$\sigma(pp o \gamma\gamma)$	CMS	ATLAS
8 TeV	$(0.5\pm0.6)\mathrm{fb}$	$(0.4\pm0.8)\mathrm{fb}$
13 TeV	(6 ± 3) fb	$(10\pm3){ m fb}$

Theoretically clean. Experimentally simple.

ATLAS prefers large width $\Gamma/M \sim 0.06$. CMS prefers narrow width.

 $\gamma\gamma$ not accompanied by hard extras.

Strumia, Moriond EW 2016

- The large enhancement from 8 to 13 TeV favours production via gg, bb, ss, cc
- Assume gg production:

- The large enhancement from 8 to 13 TeV favours production via gg, bb, ss, cc
- Assume gg production
- Easy to implement: new particles induce effective couplings at loop level (correlations with other channels)

New vector-like quarks and leptons or new scalars normally used

New vectors also possible

New vectors and the diphoton anomaly. The 750 GeV scalar can be the Higgs of a new broken gauge symmetry: the new vectors can induce the required Couplings
 Blas, JS, Vega-Morales '15

Example: color octet with electric charge 1 and order one coupling reproduces with observed excess (with narrow width)

- New vectors and the diphoton anomaly. The 750 GeV scalar can be the Higgs of a new broken gauge symmetry: the new vectors can induce the required couplings
- It might be even possible to reproduce other reported anomalies like the ~ 2 TeV diboson and the $t\bar{t}$ forward-backward asymmetry
- Large width difficult to generate at the loop level (but not new Landau poles from vectors)

Conclusions

- Naturalness is still a good guiding principle for new physics at the LHC
- Pressure from null experimental results motivate more baroque models: new approach to collider searches
 - Cancellations possible (expected)

A Cast

- Rich spectra with unexpected features (large mixing, nonconventional decay or production channels, ...)
- Reported anomalies have to be explained without contradicting other searches: diphoton is a good place for an anomaly to show up