

WZ production cross section at 13 TeV in multileptonic decay channel Ignacio Suárez Andrés on behalf of the CMS collaboration

Universidad de Oviedo

INTRODUCTION

First measurement of the **WZ** production cross section at $\sqrt{s} = 13$ TeV using a dataset corresponding to an integrated luminosity of **2.3 fb⁻¹**.

The measurement is performed in the **leptonic decay** modes $WZ \rightarrow \ell \nu \ell' \ell'$, where ℓ , $\ell' = e$, μ .

SELECTION

Fiducial region (selected at generator level):

- $p_T^{\ell Z1} > 20 \text{ GeV}, p_T^{\ell Z2} > 10 \text{ GeV}.$
- $p_{\rm T}^{\ell {\rm W}}$ > 20 GeV.
- All leptons $|\eta| < 2.5$.
- $60 < m_{\rm Z} < 120$ GeV.

Final event selection:

Primary modes of production:

BACKGROUND ESTIMATION

Main background sources are ZZ production and processes with non-prompt leptons (mainly $t\bar{t}$ and Z + jets).

- Exactly 3 isolated leptons.
- 76 < $m_{\rm Z}$ < 106 GeV.
- $m_{\ell\ell} > 4 \text{ GeV}$ (all $\ell\ell$ combinations).
- $E_{\rm T}^{\rm miss}$ > 30 GeV.
- $m_{3\ell} > 100$ GeV.
- Veto on events with b-tagged jets.

UNCERTAINTIES

Signal and prompt backgrounds:

- Theoretical uncertainty on normalization: QCD scales and PDF variations.
- For ZZ, used statistical uncertainty from CMS measurement.
- Jet energy scale, b-tagging, trigger and lepton efficiencies...

Non-prompt backgrounds:

 30%, covering differences between the estimated and measured number of events in tt and Drell-Yan control regions.

Source	Contribution to total σ	
Theoretical	1%	
Trigger eff.	< 1%	
Lepton Id. & Iso.	2-4%	

Background sources with prompt leptons are obtained directly from Monte Carlo, while non-prompt backgrounds are estimated using data-driven techniques.

Tight-to-loose method: the probability of lepton misidentification is measured in regions enriched with non-prompt background sources, then propagated to the signal region using the probability of a loosely identified lepton passing our tight requirements.

$E_{\rm T}^{\rm miss}$ reco.	1-3%
Pileup	1%
ZZ	1%
tīV	< 1%
VVV, $Z\gamma$	< 1%
Non-prompt bkg.	5-6%
Luminosity	2.7%

RESULTS

Decay	N_{WZ}^{exp}	Background	Background	Total	Observed
channel		Non-prompt	Prompt	expected	
eee	$35.88 \pm 0.63 ^{+1.62}_{-1.57}$	$10.64 \pm 1.73^{+3.26}_{-2.51}$	$6.08 \pm 0.59 ^{+0.65}_{-0.57}$	$52.61 \pm 1.93 ^{+3.80}_{-3.13}$	49
eeµ	$50.23 \pm 0.77^{+2.05}_{-2.01}$	$14.84 \pm 3.56 ^{+3.89}_{-2.99}$	$7.57 \pm 0.47 ^{+0.86}_{-0.75}$	$72.64 \pm 3.67 ^{+4.60}_{-3.82}$	78
μµe	$56.02 \pm 0.80^{+2.80}_{-2.73}$	$21.56 \pm 3.21 \substack{+5.02 \\ -3.86}$	$8.43 \pm 0.55 \substack{+1.03 \\ -0.91}$	$86.02 \pm 3.35^{+6.02}_{-5.02}$	83
μμμ	$83.96 \pm 0.99^{+3.12}_{-3.05}$	$20.16 \pm 4.91 ^{+6.20}_{-4.77}$	$11.13 \pm 0.49 ^{+1.34}_{-1.17}$	$115.25 \pm 5.03 \substack{+7.23 \\ -5.96}$	108
Total	$226.10 \pm 1.61^{+8.70}_{-8.51}$	$67.20 \pm 7.08^{+14.62}_{-11.25}$	$33.21 \pm 1.05 \substack{+3.83 \\ -3.35}$	$326.52 \pm 7.33^{+17.99}_{-15.12}$	318

Theoretical prediction • Fiducial: $\sigma_{fid}(pp \rightarrow WZ \rightarrow \ell v \ell' \ell') = 274 \stackrel{+11}{-10} fb$

Good agreement between

Closure test of data-driven estimated non-prompt background vs. MC simulation of same processes • Inclusive: $\sigma (pp \rightarrow WZ) = 42.7 \stackrel{+1.6}{-0.8} pb$

Measurement

• Fiducial: $\sigma_{fid}(pp \rightarrow WZ \rightarrow \ell v \ell' \ell') = 266 \pm 22 \text{ (stat) } \frac{+21}{-22} \text{ (syst) } \pm 9 \text{ (lumi) fb}$

• Inclusive:

 σ (pp \rightarrow WZ) = 41.0 ±3.4 (stat) $^{+3.3}_{-3.4}$ (syst) ± 0.4 (theo) ± 1.4 (lumi) pb

CMS-PAS-SMP-16-002

XLIV International Meeting on Fundamental Physics (XLIV IMFP 2016), 4-8 April 2016, Madrid

theoretical predictions and experimental measurements