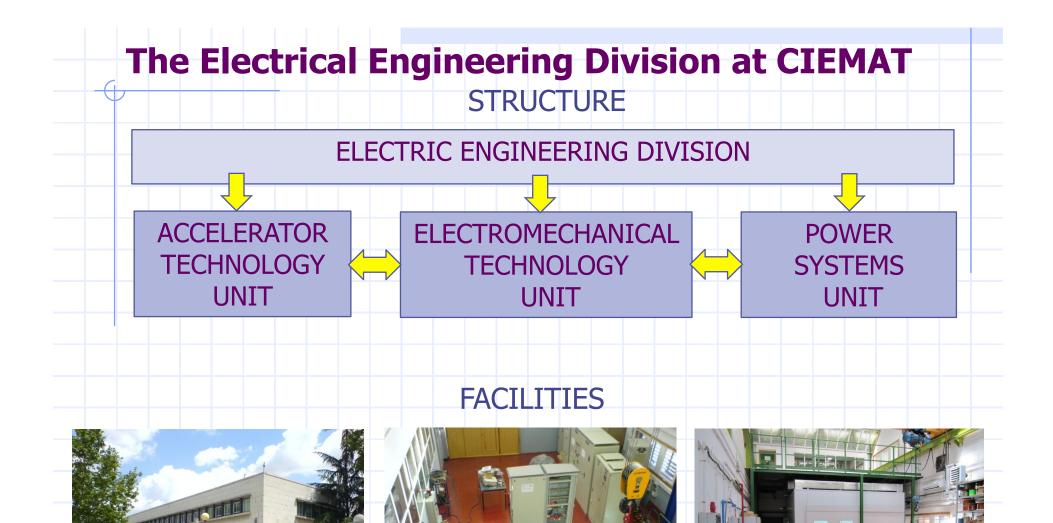
Status of CIEMAT Activities in the Development of Particle Accelerators

Fernando Toral Fernández

on behalf of


Accelerator Technology Group

Electrical Engineering Division

Department of Technology

CIEMAT

Main Offices (Moncloa)

Energy & Superconductivity (J. Camarillo) Assemb

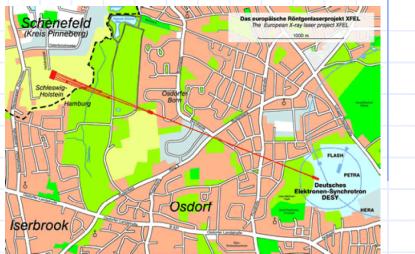
Assembly Hall (J. Camarillo)

Ongoing Projects and Collaborations

ACCELERATORS	POWER SYSTEMS	
Large Facilities 🌡	Storage ↓	T
E-XFEL	SA ² VE	
FAIR	ACEBO	
LHC Hi-Lumi (CERN)	ADIF/CETRAF	
CTF3/CLIC (CERN)	TRAIN2CAR	
FCC (CERN)		
ILC		
IFMIF	Generation	
TIARA	SUPERTURBINES	
Small Accelerators	UNDIGEN	
AMIT CYCLOTRON	SEA-WEDGE	
UPC MICROTRON	IISIS	

The E-XFEL Contribution

(+

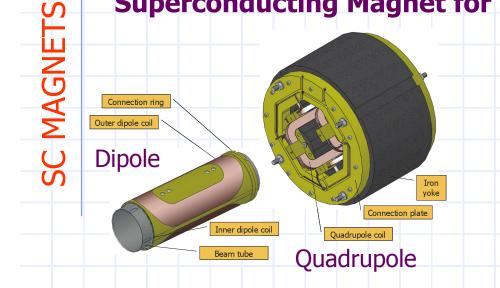

Ciernat Centro de Investigaciones

CONTRIBUTION BY PROJECTS

The E-XFEL Facility

E-XFEL (European X-Ray Free Electron Laser) is a 100 ns pulse laser source working in the band from 0.085 to 6 nm. It will be located inside DESY facilities in Hamburg.

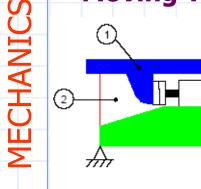
It consists of a Superconducting LINAC (cavities & magnets) up to 17GeV and an array of undulators based on permanent magnets.

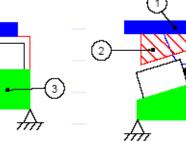

Present CIEMAT contribution to E-XFEL				
COMPONENT TYPE QU				
Superconducting Combined Magnets	SC Magnet	103		
Moving Tables (Movers)	Mechanics	101		
Electronic Control Racks	Electronics & Instrum.	101		
Phase Shifter Magnets	Insertion Magnet	Only prototypes		

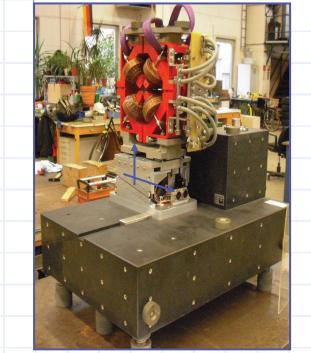
XFEI

CIEMAT Contribution to E-XFEL

Superconducting Magnet for E-XFEL for the Main LINAC




Type: Combined	Quadrupole	Dipole (2)		
Integrated Field	5.97 T	0.75E-3 Tm		
Inner Diameter	94.4 mm	83.6 mm		
Op. Current	50 A			
Technology	NbTi Superferric			
Industrialization	YES: Different prototypes at CIEMAT & Industry Series manufactured at Industry			



CIEMAT Contribution to E-XFEL

Moving Tables for E-XFEL

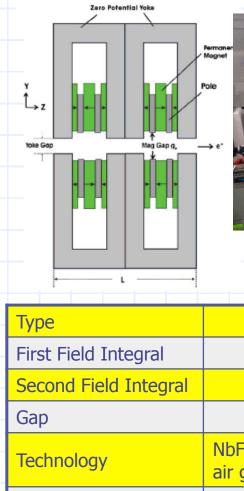
XLIV International Meeting on Fundamental Physics. Spanish Scientific Policy Session. Madrid April, 8th, 2016

3 }

titt

CIEMAT Contribution to E-XFEL

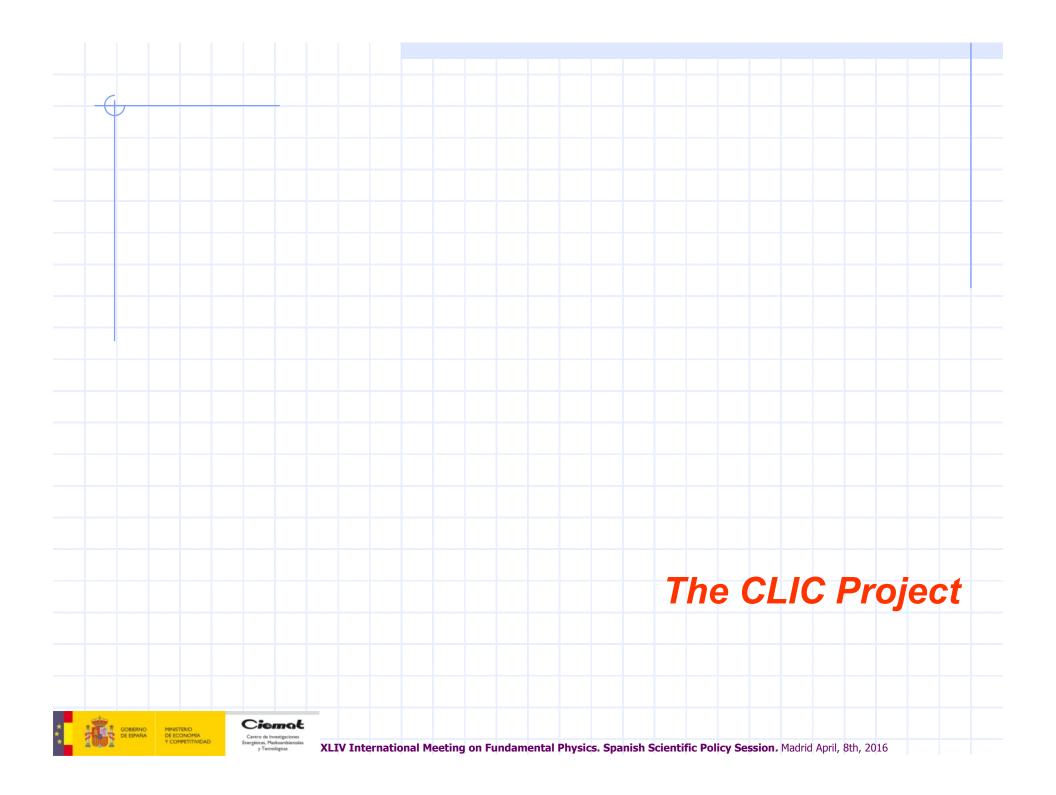
ELECTRONICS & INSTRUMENTATION



Туре	Intersection Control Rack
Description	Control electronics for the Quadrupole Moving Tables and the Phase Shifter.
Dimensions	1000 x 500 x 500 mm
Technology	Forced air cooling and high security cabling. Based on Beckhoff Modules.
Industrialization	YES Different prototypes at CIEMAT & Industry Series manufactured at Industry.

CIEMAT Contribution to E-XFEL

Phase Shifters for E-XFEL

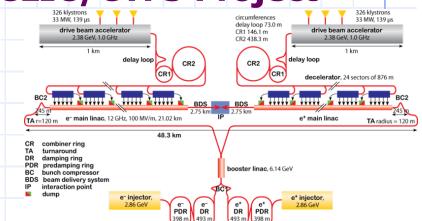


Magnetic measurements at CELLS

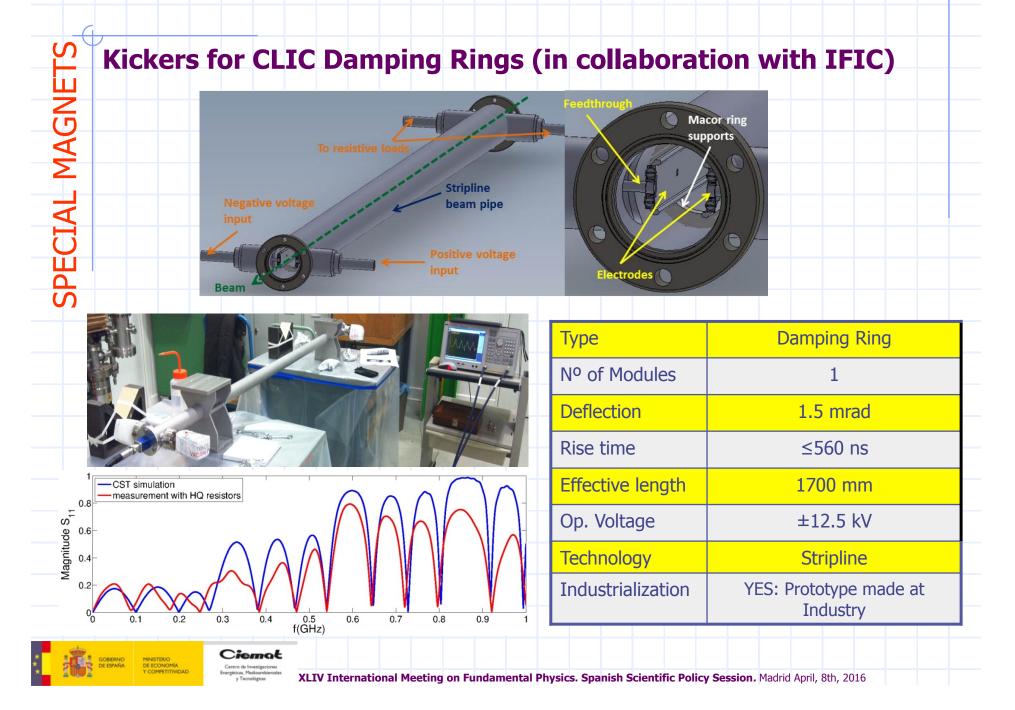
Туре	Rare Earth Permanent Magnet
First Field Integral	≤0.004 Tmm
Second Field Integral	≤0.67 Tmm ²
Gap	10.5 ÷ 100 mm
Technology	NbFeB Magnets + Pure Iron Yoke. Controlled air gap with stepping motors
Industrialization	YES: Different prototypes at CIEMAT & Industry

Ciemat

MDAD Energitic y

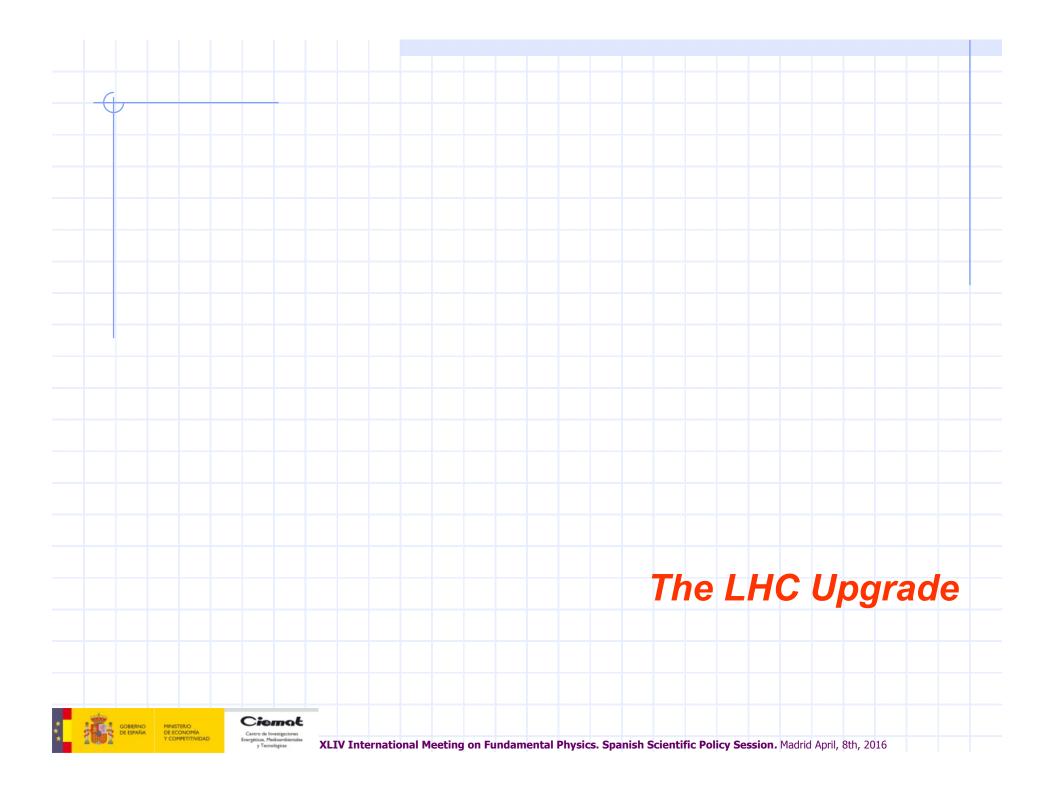

CONTRIBUTION BY PROJECTS

 \mathbf{m}


CLIC/CTF


The CLIC/CTF3 Project

CLIC is a proposal for an up to 3TeV Linear Collider, which is based on a two beam scheme to achieve the required accelerating gradients. It uses non superconducting radiofrequency components which are called PETS for the drive beam and Accelerating Structures for the main beam. A validating test facility called CTF3 has already been successfully operated.


Present CIEMAT contribut	ion to CTF3/CLIC		
COMPONENT	ТҮРЕ	QUANTITY	
Septa Extraction Magnets	Resistive Magnet	2	
Corrector Window-Frame Dipole	Resistive Magnet	15	
Moving Tables (Movers)	Mechanics	15	
Tail Clipper Kicker & Fast Kicker	Pulsed Magnet	1+1	
Kicker for CLIC Damping Ring	Pulsed Magnet	1	
Power Extraction Transfer Structures (PETS) for TBL	RF	12 (Partial Contrib.)	
Double Length PETS for CLIC	RF	2	
Future CIEMAT contril	oution to CLIC		
Accelerating Structures – TD26CC	RF	1	
Longitudinally Variable Field Dipole	Hybrid Magnet	1	
GOBIENO MINSTERIO CERTO de Investegiciones De ESPAÑa DE ECONOMIA Certo de Investegiciones De Conomica de Investegiciones			

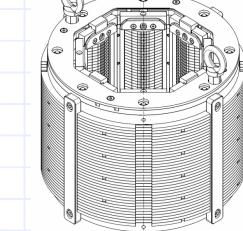
Туре	TBL PET	Double Length PET
Op. Frequency	12 GHz	12 GHz
Length	4 x CLIC	2 x CLIC
Technology	Warm in Octants	Warm in Octants: Minitank, Integrated Couplers
Industrialization	YES: Partial Su	upplies by Industry

CONTRIBUTION BY PROJECTS

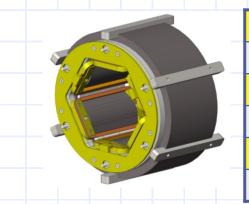
The LHC Upgrade

LHC Upgrade

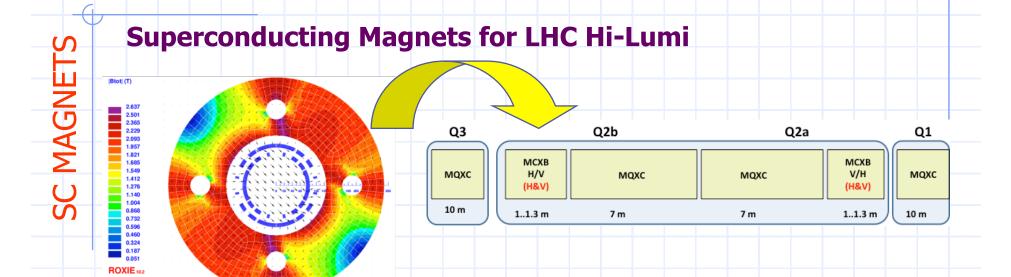
In a first phase, LHC has been working at 8 TeV and 75% of its nominal luminosity. After a 2 year shutdown, luminosity will be increased to 100% and energy to 14 Tev. From 2018 to 2021 it is foreseen to increase the luminosity to 200% and after 2023, it should be increased again by a factor of 5 to 10, after significant changes in the machine.



Present CIEMAT contribution to LHC Upgrade and HL-LHC				
COMPONENT	ТҮРЕ	QUANTITY		
Radiation Resistant SC Sextupole Corrector Magnet	SC Magnet	1		
Radiation Resistant SC Octupole Corrector Magnet	SC Magnet	1		
Participation in the Cabling for the LHC Long Shutdown	Manpower	8 man-year		
Development of a Nested Dipole	Superconductor	1 Prototype		
Participation in the development of Superconducting Links	HTc Superconductor	Prototyping		
Participation in the development of a Static VAR Compensator	Solid State	Prototyping		



SC MAGNETS

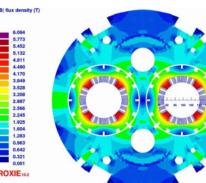


Туре	Sextupole	Octupole	
Integrated Field	0.055 Tm	0.035 Tm	
Physical Length	160 mm	160 mm	
Op. Current	100 A	100 A	
Technology	NbTi Superferric	NbTi Superferric Rad. Resistant	
Industrialization	HI-Lumi LHC Magnets will be based on this development		

Octupole

Cierro de Investigaciones

MCBXS H&V Combined Corrector Dipole


Туре	Combined Corrector Dipole		UPDATED MILESTONES	
Integrated Field	2.5 Tm		Feb 2015	Conceptual Desing
Physical Length	1200 mm		June 2016	Fabrication Drawings
Aperture	150 mm		Sep 2017	1st Prototype Finished
Technology	Nested NbTi Coils @ 1.9K		Dec 2017	Tests @ CERN
Industrialization	Yes (TBD)	Yes (TBD) CERN: 50% Personnel & 100% Materials		0% Personnel & 100% Materials
			CIEMAT:	50% Personnel & 100% Tooling

The QUACO Project

The QUACO project draws together several research infrastructures with similar technical requirements in magnet development, which will allow the avoidance of unnecessary duplication of design effort and reduce overall cost through economies of scale using a **joint procurement process**. By pooling efforts, the partners in QUACO will act as a single buyer group with sufficient momentum for potential suppliers to consider the phased development of the requested magnets. QUACO's goal is to create a paradigm shift in the industrialization of the new generation of superconducting magnets.

QUACO Project is a self-contained and consistent part of the High Luminosity LHC Project, focusing on the design, development and procurement of superconducting magnets. The final result of the project will be 2 pilot magnets (Q4 type)

necessary for HI-LUMI LHC.

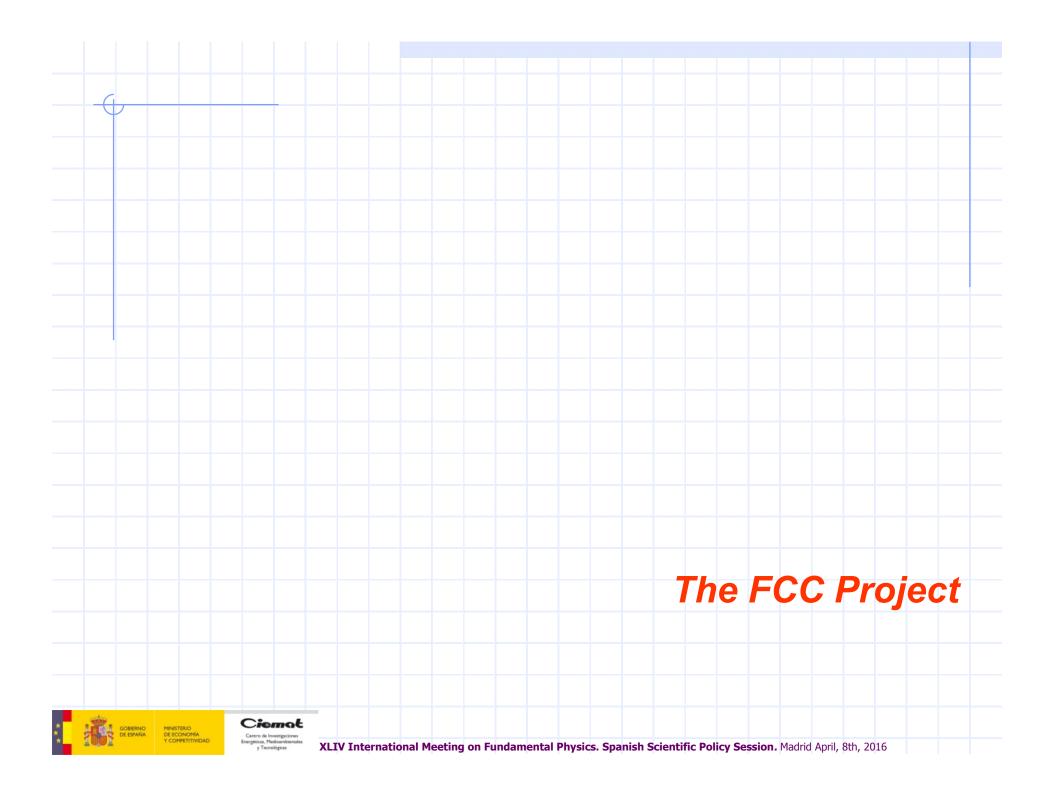
Participants:

- 1) The European Organization for Nuclear Research (CERN),
- 2) Commissariat A L'Energie Atomique Et Aux Energies Alternatives (CEA),
- 3) Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT),
- 4) Narodowe Centrum Badan Jadrowych (NCBJ).

Ciemat

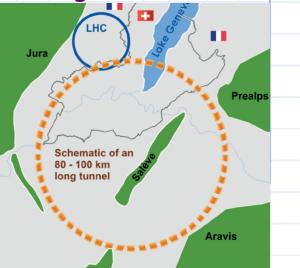
EU Funding (PCP Program): Total cost in the proposal 6,647,895.00 € Maximum grant amount 4,653,523.88 €

The FTECs Program


The FTEC (Formacion en las TEcnologias del CERN) Trainee Programme has been established through a bilateral agreement between CERN and CIEMAT with the contribution of the SEIDI from the Ministerio de Economía y Competitividad, as well as the CDTI.

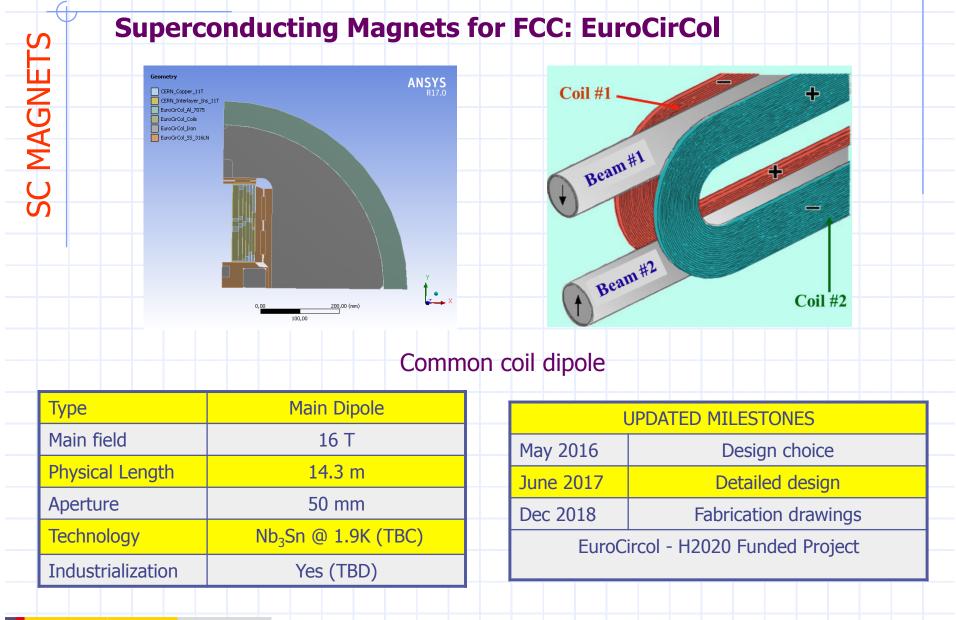
This programme is aimed at recent graduates from university or higher technical institutes seeking further training in a wide area of projects. Selected trainees will join a team working at CERN and have the opportunity to enlarge their knowledge through participation in the hi-tech activities of the laboratory, in fields such superconducting and resistive magnets, power converters and their associated electronics, cryogenics and vacuum technologies and electronics for detectors, including radiation resistance issues, and related activities on infrastructures with a potential industrial return.

Ciemat

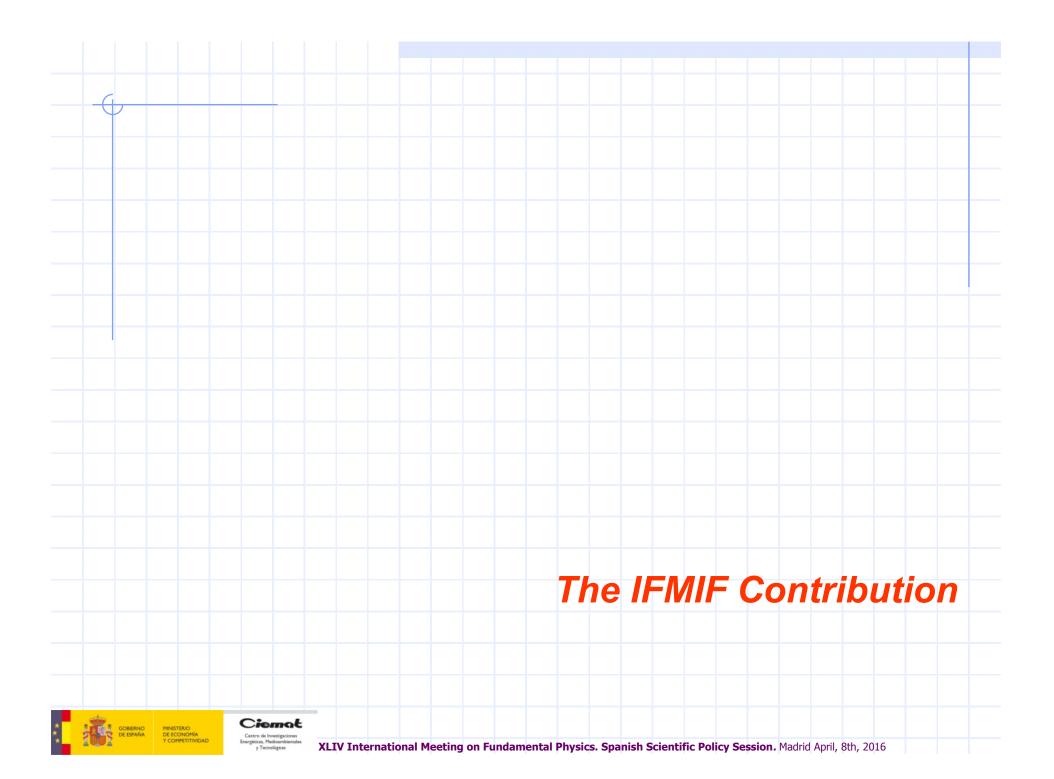


CONTRIBUTION BY PROJECTS

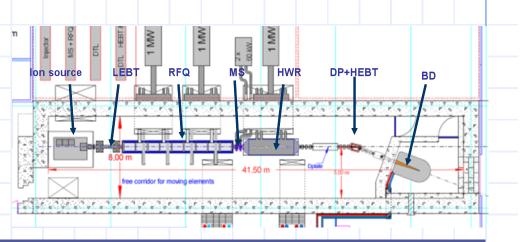
The FCC Project


Fhe FCC Project

CERN has recently launched a feasibility conceptual study for post-LHC particle accelerator options, considering the technology research and development programs that would be required to build a future circular collider in the range of 100 TeV. Among other initiatives, an international collaboration called EuroCirCol has been awarded with a H2020 grant to address the main issues of the future machine.



WorK Package	CIEMAT Contribution	
WP1	Management, Coordination and Implementation	
WP2	Arc Design: Conceptual design of the largest fraction of the collider ring	
WP3	Design of the experimental insertion regions	
WP4	Design of the cryogenic beam vacuum system considering the enormous synchrotron radiation level	4,5 person year
WP5	High-Field superconducting magnet design for fields up to 16T	4,0 person year

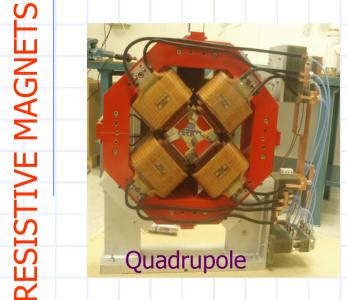


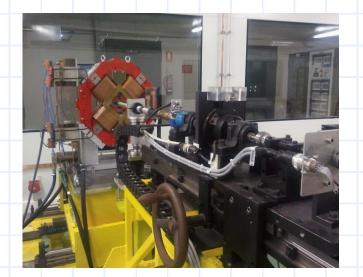
CONTRIBUTION BY PROJECTS

The IFMIF Project

The Division also collaborates in the IFMIF project: a 40 MeV, 125 mA deuteron accelerator acting on a lithium target to generate neutrons to test materials for the first commercial fusion reactor : the DEMO. To validate the IFMIF concept, the so called EVEDA phase has been launched, including a Linear Accelerator (LIPAc) with a current of 125 mA and an energy of 9 MeV.

COMPONENT		ТҮРЕ	QUANTITY	
Magnet Packages for the DTL		SC Magnet	8	
Bunchers for the Matching Section		RF	2	
Medium Energy Beam Transport Line		Accelerator Subassembly	1	
Beam Instrumentation		Instrumentation		
Possible Fut	ure co	ntribution	to IFMIF (Full-Scale)	
Activities for Future Fusion Accelerators RF, Beam		instrumentation, Optics, etc.	N/A	

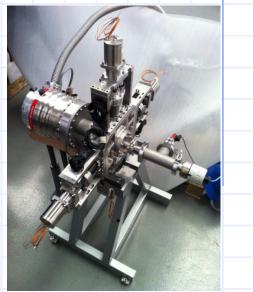

consists of the RF power system, the High Energy Beam Transport Line and the Beam Dump.

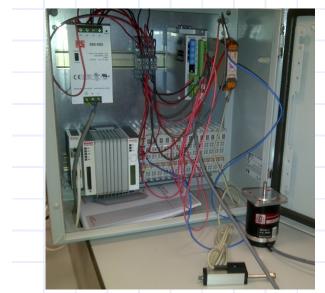


FMIF

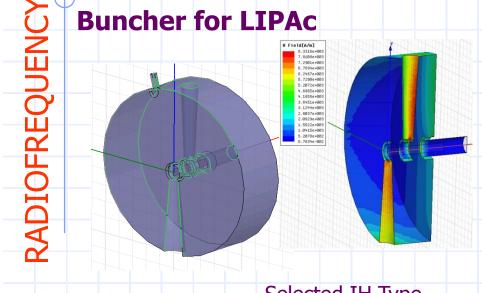
Resistive Magnets

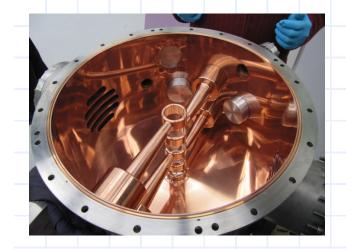
Resistive Magnet for LIPAc


Magnetic measurements at CELLS


Type: Combined	Quadrupole	Dipole
Integrated Field	0.068 ÷ 0.163 Tm	3.51 mTm
Inner Diameter	56 ÷ 136 mm	
Op. Current	178 ÷ 313 A	50 A
Technology	Water Cooled Radiation Resistant	Air Cooled Radiation Resistant
Industrialization	YES, first 5 units al	ready made by ANTEC
Ciemot		

Mechanics (2)





Туре	4-Collimator Scraper	
Displacement Range	21mm	
Movement Precision	20 <i>μ</i> m	
Max Dissip .Power	4 x 500 W	
Technology	Water-cooled, Step motor controlled in closed loop	
Industrialization	YES: First Prototype at AVS finished. The Second one in fabrication	

Radiofrequency (2)

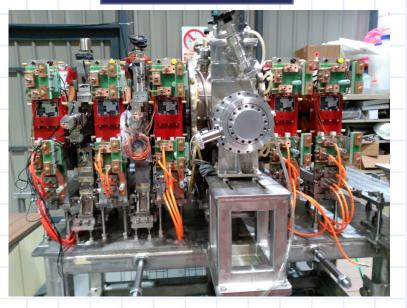
Selected IH-Type Resonator

Ciemat

Туре	IH Resonator, 4 Acceleration gaps
Frequency	175 MHz
Integrated Voltage	350 kV
Max Dissip. Power	≤10 kW
Technology	Resistive, Water-cooled
Industrialization	YES
Industrialization	ILS

<image>

High power test at CELLS


Integration Activities

Medium Energy Beam Transport Line (MEBT):

- Compact transport line between RFQ and cryomodules
- □ Main components: Five combined magnets, two buncher activities, beam scrapers and beam diagnostics.
- □ Fully designed by CIEMAT; manufactured by Spanish industry

□ MEBT sent to Rokkasho: January 2016

MEBT

Other ongoing activities:

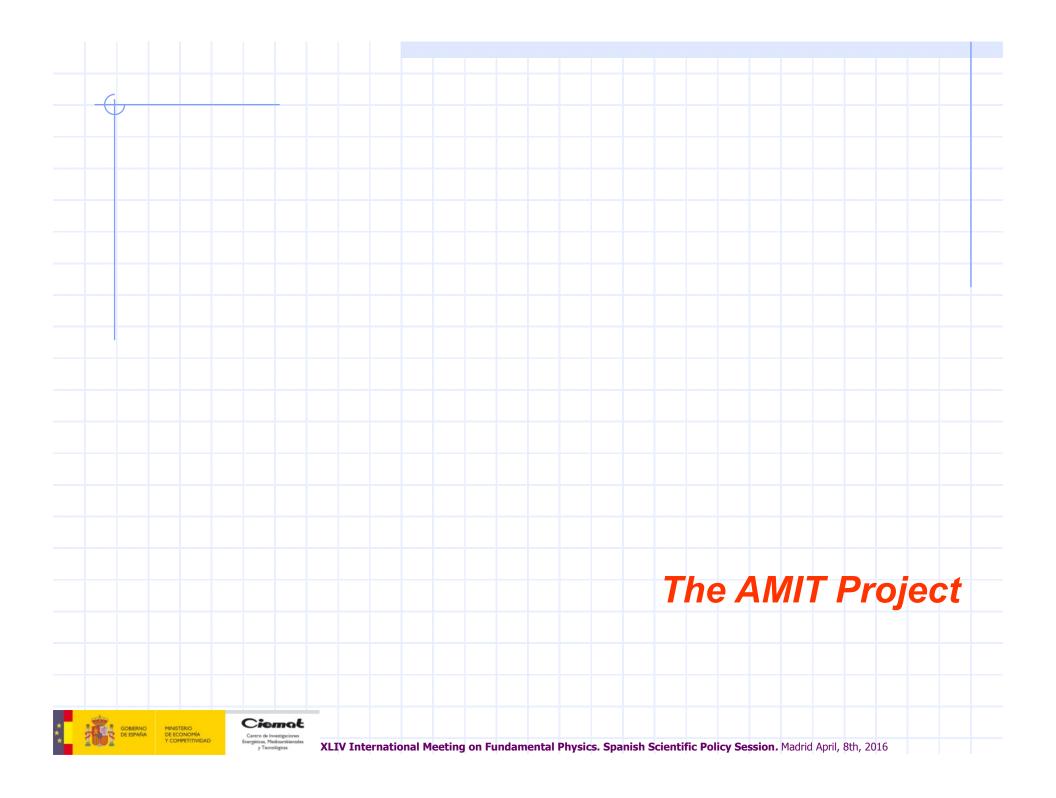
- □ Solenoids for high energy accelerating part of LIPAC
- □ High Energy beam line: magnets, beam diagnostics, beam dynamics
- □ DONES accelerator: beam dynamics studies since October 2015

Ciemat

XLIV International Meeting on Fundamental Physics. Spanish Scientific Policy Session. Madrid April, 8th, 2016

Buncher cavity

ZScrapers

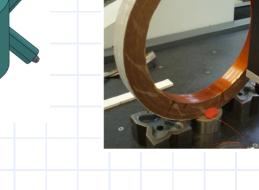


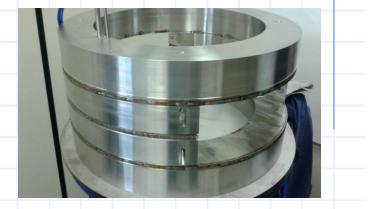
Combined magnets

Beam position monitors

CONTRIBUTION BY PROJECTS

The AMIT Project

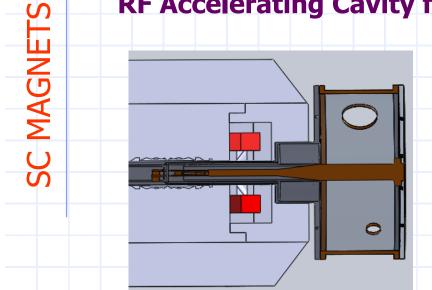



In 2010 the Project AMIT (Advanced Molecular Image Technologies) started. One of the Work Package assigned to CIEMAT consists of the development of a Compact Superconducting 8,5 MeV Cyclotron for ¹¹C and ¹⁸F production. It includes the development and fabrication of the targets and the installation of the facility.

Present CIEMAT contribut	ion to AMIT	
COMPONENT	ТҮРЕ	QUANTITY
Complete Superconducting Cyclotron Prototype	Accelerator	1
Possible Future CIEMAT contribution to AMIT & Othe	er Accelerators for Isot	ope Production
Participation in Cyclotron Industrialization & Commercialization	Industrial Alliance	TBD
Participation with CERN in the development of a LINAC	Targets & RF	TBD

Centro de Investigaciones Energinicas Matiourgitassia

Superconducting Magnet for AMIT


Туре:	2 Solenoid in Hemholtz Coils Configuration
Central Field	4.0 T
Overall Diameter	700 mm
Op. Current	110 A
Technology	NbTi Wet Impregnation 2 phase helium cooling
Industrialization	YES: Prototype made at Industry under CIEMAT supervision

SC MAGNETS

RF Accelerating Cavity for AMIT

Туре:	180º dee
Accel. voltage	60 kV
Frequency	60 MHz
Technology	Resistive, water cooled
Industrialization	YES: Prototype made at Industry under CIEMAT supervision

Ciemat

Energéticas, Medicambia y Tecnológicas

Туре:	Cryogenic Refrigerator for the AMIT Magnet
Max. Extracted Power	1,0 W
Refrigeration	Two-Phase Helium @ 4,3K Gas Helium @ 40-70 K
Technology	Helium recirculation in close circuit and re- condensation with a cryocooler
Industrialization	YES One prototype built @ CERN as contribution to the AMIT Project and a second prototype under construction at Industry

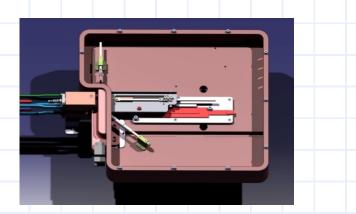
XLIV International Meeting on Fundamental Physics. Spanish Scientific Policy Session. Madrid April, 8th, 2016

Cryogenic Supply System for AMIT (Collaboration with CERN)

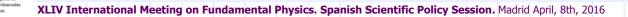
Experimental validation of AMIT cyclotron ion source

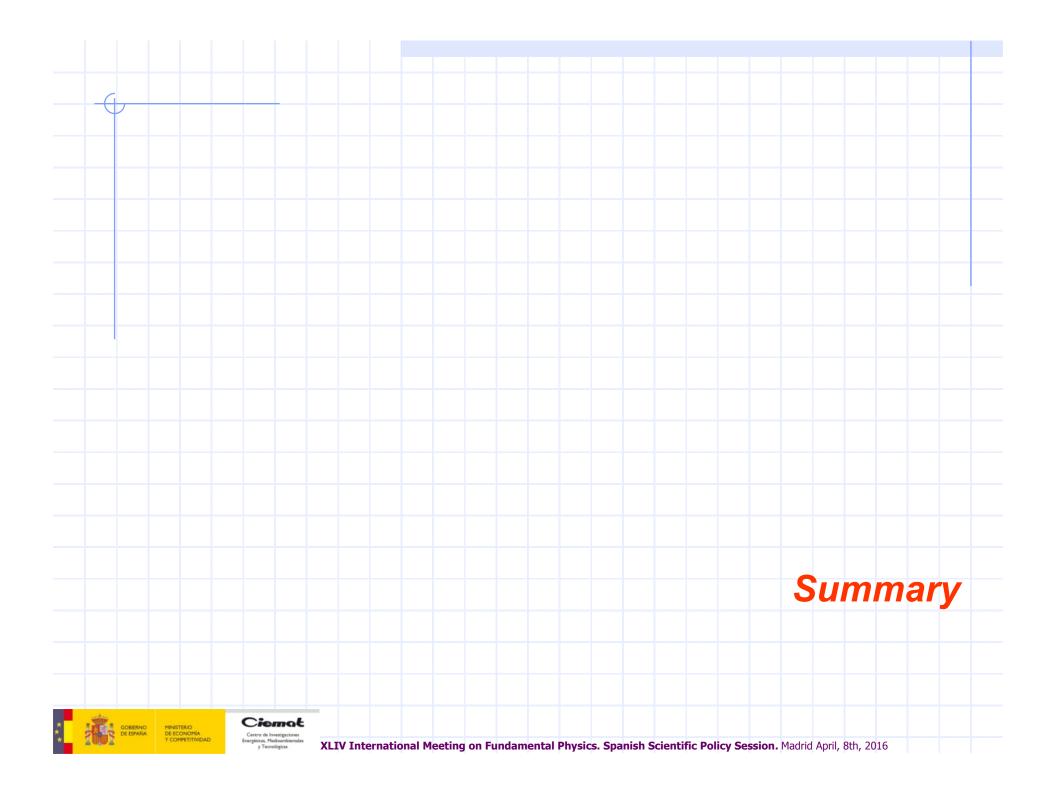
Goals:

 $\hfill\square$ To analyze the ion source behavior and improve the design


Ciemat

- Beam characterization and validation of beam dynamics calculations
- □ To reduce AMIT commissioning time (some other cyclotron components can also be tested at IST facility)
- □ Future: to provide a future ion source test facility open to external collaborations




Electrical shield box, beam probes, puller and ion source

- The ion source is at ground whereas the puller, at positive DC high voltage, will extract the particles.
- An electrical shield box is installed inside the vacuum chamber. A beam probe, located according to H⁻ trajectory, will measure the H⁻ current
- Beam emittance will be measured with an interceptive method based on slits and wire monitors.

→ Measurements are on going

Summary of Industrial Participation

	SUPPLY	Түре	QUANTIT
ALDERAN	Intersection Control Rack for E-XFEL	Electronics & Instrum.	1 (prot.)
ANTEC	Combined Magnets for E-XFEL (magnet)	SC Magnet	103 SERIES
ANTEC	Magnet for AMIT (magnet)	SC Magnet	1 (prot.)
ANTEC	Quadrupole for IFMIF	Resistive Magnet	1 (prot.)
APM	Moving Tables for E-XFEL	Mechanics	1 (prot.)
AVS	Scrapers for IFMIF	Mechanics	1 (prot.)
CRYOVAC	Cryostat for E-XFEL Magnet Prototype	Mechanics	1 (prot.)
DMP-HTS	Moving Tables for E-XFEL	Mechanics	49 SERIES
DMP-HTS	Buncher for IFMIF	Radiofrequency	1 (prot.)
DMP-HTS	Phase Sifter for E-XFEL	Special Magnet	1 (prot.)
DMP-HTS	PETS for CLIC/CTF3	Radiofrequency	1 (prot.)
ELYTT	Combined Magnet for E-XFEL	SC Magnet	1 (prot.)
INABENSA	Intersection Control Rack for E-XFEL	Electronics & Instrum.	2 (prot.)
INDEX	Moving Tables for E-XFEL	Mechanics	1 (prot.)
NOVALTI	Moving Tables for E-XFEL	Mechanics	1 (prot.)
PINE	Intersection Control Rack for E-XFEL	Electronics & Instrum.	1 (prot.)
RAMEM	Moving Tables for E-XFEL	Mechanics	49 SERIES
SINTERSA	Intersection Control Rack for E-XFEL	Electronics & Instrum.	1 (prot.)
Utillajes HUERTA	LINAC for Racetrack Microtron	Radiofrequency	1 (prot.)
Utillajes HUERTA	Moving Tables for E-XFEL	Mechanics	1 (prot.)
Utillajes Huerta	PETS for CLIC/CTF3	Radiofrequency	1 (prot.)
TRINOS V. P.	Combined Magnets for E-XFEL (vessel)	SC Magnet	103 SERIE
TRINOS V. P.	Magnet for AMIT (vessel)	SC Magnet	1 (prot.)
TRINOS V. P.	Extraction Kickers for CTF3 (CLIC)	Special Magnet	1 (prot.)
TRINOS V. P.	Tail Clipper Kicker for CTF3 (CLIC)	Special Magnet	1 (prot.)
TRINOS V. P.	PETS for CLIC/CTF3	Radiofrequency	1 (prot.)
TRINOS V. P.	Beam Position Monitors for LIPAc	Mechanics	4

Main difficulties to overcome in our daily work:

- 1.-Our group (30 people) is very small compared with other labs working on accelerators. These machines are multi-physics.
- 2.-We are devoted to technological developments, but working in a scientific environment: we should not be only evaluated by our publications.
- 3.-Most of the people in our group have not permanent positions:
 - a) learning curve is slow and we cannot afford losing trained workers.
 - b) hiring procedure is very slow.
 - c) salaries in industry or abroad are higher.
- 4.-Administrative processes are very time consuming: procurement, hiring people, funding reports, call-for-projects.

Conclusions

- 1.-CIEMAT Department of Technology has developed a significant technological activity in the field of particle accelerators for more than 25 years.
- 2.-These activities started for the LHC project, mainly focused on superconducting magnets with a clear and fruitful participation of the Spanish Industry.
- 3.-From 2010 to present days, CIEMAT has undertaken most of the technical activities of the Spanish contribution to the European XFEL, being in charge of delivering Superconducting Combined Magnets, Quadrupole Moving Tables and Intersection Control Racks in close cooperation with Industry.
- 4.-CIEMAT is also participating in most of the CERN projects for future accelerators like CLIC, HiLumi LHC or the Future Circular Collider.
- 5.-There is also a significant and increasing activity at CIEMAT in the field of small and advanced accelerators.

