AWAKE Advanced Wakefield Acceleration Experiment

J.Vieira

for the AWAKE collaboration

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

http://epp.ist.utl.pt[/jorgevieira]

AWAKE Advanced Wakefield Acceleration Experiment

J.Vieira

for the AWAKE collaboration

Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico Lisbon, Portugal

http://epp.ist.utl.pt[/jorgevieira]

Plasma is a fourth state of matter made of unbounded ions and electrons.

Plasmas can be created using different approaches

- Intense electric discharge between two electrodes
- Ionisation by intense laser or particle beams

Plasma examples

- Lamps
- Sun and Tokamaks (fusion devices)

Support extremely large fields

- Typical electric field $E \sim (n_0 \text{ [cm}^{-3}\text{]})^{1/2} \text{V/cm}$
- Example: $n_0 \sim 10^{18} \text{ cm}^{-3}$ (typical) E ~ 100 GV/m

physics of matter under high energy density conditions. The following list of questions is not intended to be complete but rather to be illustrative of important questions of high intellectual value in high energy density physics:

- How does matter behave under conditions of extreme temperature, pressure, density, and electromagnetic fields?
- What are the opacities of stellar matter?
- What is the nature of matter at the beginning of the universe?
- How does matter interact with photons and neutrinos under extreme conditions?
- What is the origin of intermediate-mass and high-mass nuclei in the universe?
- Can nuclear flames (ignition and propagating burn) be created in the laboratory?
- Can high-yield ignition in the laboratory be used to study aspects of supernovae physics, including the generation of high-Z elements?
- Can the mechanisms for formation of astrophysical jets be simulated in laboratory experiments?
- Can the transition to turbulence, and the turbulent state, in high energy density systems be understood experimentally and theoretically?
- What are the dynamics of the interaction of strong shocks with turbulent and inhomogeneous media?
- Will measurements of the equation of state and opacity of materials at high temperatures and pressures change models of stellar and planetary structure?
- Can electron-positron plasmas relevant to gamma-ray bursts be created in the laboratory?
- Can focused lasers "boil the vacuum" to produce electron-positron pairs?
- Can macroscopic amounts of relativistic matter be created in the laboratory and will it exhibit fundamentally new collective behavior?
- Can we predict the nonlinear optics of unstable multiple and interacting beamlets of intense light or matter as they filament, braid, and scatter?
- Can the ultraintense field of a plasma wake be used to make an ultrahighgradient accelerator with the luminosity and beam quality needed for applications in high energy and nuclear physics?
- Can high energy density beam-plasma interactions lead to novel radiation sources?

One of the goals for this technology is to design and construct a plasma based linear collider.

Plasma based acceleration uses intense beams to drive plasma waves

*T.Tajima and J.M. Dawson Phys. Rev. Lett. **43** 267 (1979) **P. Chen, J. Dawson et al Phys. Rev. Lett. **54** 693 (1985)

Movie in a frame that travels at c

Plasma accelerators are compact because plasma waves are much smaller than standard devices

Plasma waves can be bent in nearly any possible way thus opening exciting possibilities for beam shaping

J. Vieira, F. Quéré (CEA), J.T. Mendonça (IST) et al.

Jorge Vieira for the AWAKE collaboration | IMFP, Madrid | April, 7th 2016

ſſ

The generation of plasma waves requires ultra-intense particle or laser beam drivers

Proof-of-principle experiments demonstrated 100 MeV electron acceleration in less than one cm.

Very large sea waves trap water foam

The foam from the water gains enough momentum and catches the wave

Early experiments: background plasma electrons trapped by large amplitude plasma wave

Simulation window travels at c. Laser is almost stationary. Plasma flows from left to right

Jorge Vieira for the AWAKE collaboration | IMFP, Madrid | April, 7th 2016

Iİİ

	Laser / Particle beam	Plasma	Accelerated e-/e+
		20 % Efficiency	0.2-20 J
Today	I-I0 J lasers I00 J e-/e+ (SLAC)	Vinding N _p turns Primary voltage V Voltage V Voltage V Voltage V V Voltage V V V V V V V V V V V V V	l nC ~ 6x10 ⁹ particles
1000	100 drivers , < 10 fs	I 000 + (10 cm + 10	0.I GeV - 10 GeV
stages	synchronisation precision	m spacing/stage) = 10 km	IO TeV / particle
Single stage	l00 kJ driver	I-I0 Km (depends on acceleration gradient)	IO TeV/particle

 $\int \Delta_{p} \Delta_{q \geq \frac{1}{2} t}$ Max-Planck-Institut für Physik

LHC proton bunches at CERN can accelerate > I TeV electrons in a single stage

 $\int \Delta_{p} \Delta_{q} \ge \pm \pm$ Max-Planck-Institut für Physik

External electron injection

AWAKE collaboration

AWAKE collaboration, PPCF (2014); also at arXiv:1401.4823

Self-modulated proton driven plasma wakefield accelerator

• N. Kumar et al. PRL 104 255003 (2010)

• C. Schroeder et al. PRL 107 145002 (2011)

Jorge Vieira for the AWAKE collaboration | IMFP, Madrid | April, 7th 2016

1|1

AWAKE proton beam line

Jorge Vieira for the AVVAKE collaboration | IMFP, Madrid | April, 7th 2016

Self-modulation instability in AWAKE

Self-modulated particle bunch beamlets

Propagation direction

Particle bunch

Plasma density

Ionisation seeding for the self-modulation instability

Ionisation effectively seeds the self-modulation instability

Simulations confirm ionisation seeding for the self-modulation:

- No modulation before the laser
- Proton beam is fully selfmodulated after the laser pulse

Ionisation seeding for the self-modulation instability

Test to measure SMI

Ionisation seeding laser: intensity must exceed ionisation threshold at plasma end over a plasma radius of $3\sigma_r = 0.6$ mm

- 100 fs long
- I mm transverse width
- 4.5 TW
- 450 mJ

Laser On/Off ↔ SMI/NoSMI measurements

Laser beam line

ſſ

Competition between hosing and self-modulation

C.B. Schroeder et al. PRE 86 026402 (2012)

Jorge Vieira for the AWAKE collaboration | IMFP, Madrid | April, 7th 2016

IJ

Beam breakup due to hosing

J. Vieira et al. PRL 112 205001 (2014)

Direct measurements of the self-modulation instability are possible

Direct measurements: space charge fields and transition radiation

- Direct sampling bunch space charge with Streakcamera
- Measurement of radiation emitted when bunch crosses dielectric interface
- Transition radiation encodes charge distribution

Example: Transition Radiation

The design of the plasma source obeys stringent criteria to ensure maximum accelerating gradients and stable acceleration

Plasma source prototype

Key features

- Rubidium vapour plasma source
- Oil heated system: 150°-200° C
- Variable plasma (vapour) density: 10¹⁴-10¹⁵ cm⁻³
- 10 m long
- 4 cm diameter

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

E. Oz, P. Muggli, Nucl. Instr. Meth. A 740, 197 (2014)

Requirements

Temperature uniformity $\Delta T/T < 0.002$ ensures plasma density uniformity $\Delta n/n = \Delta T/T$

required to ensure stable electron acceleration

10 meter long plasma cell

required to reach saturation of self-modulation and electron acceleration

AWAKE will accelerate > I GeV electron bunches

IJî

External electron injector

PHIN Photo-injector for CTF3/CLIC

Length ~ 4 m

Electron beam for AWAKE	Baseline	Range for upgrade phase
Momentum	16 MeV/c	10-20 MeV
Electrons/bunch (bunch charge)	1.25 E9	0.6 – 6.25 E9
Bunch charge	0.2 nC	0.1 – 1 nC
Bunch length	σ_z =4ps (1.2mm)	0.3 – 10 ps
Bunch size at focus	σ [*] _{x,v} = 250 μm	0.25 – 1mm
Normalized emittance (r.m.s.)	2 mm mrad	0.5 – 5 mm mrad
Relative energy spread	∆p/p = 0.5%	<0.5%

>I GeV in 10 meters

A. Pukhov et al. PRL 107, 145003 (2011)

	20	13	2014	2015	2016	6	2017	2018	2019	2020
Proton and laser beam- line			Study, Design, Procurement, C	Insta Component prep	aration	Commis	Data taking		Long Shut 24 mor	down 2 nths
Experimental area			Study, Design, Procurement, C	instal	aration	sioning	Phase 1		0	
Electron source and beam-line			Studies, design	Fab	rication		Installation	Phase 2	2	

Phase I	Phase 2	Future		
 Demonstration of self- modulation laser ionisation seeding Demonstrating the growth and saturation of the self-modulation instability 	 Add external electron beam Demonstrate trapping of external electron beam Demonstrate electron > 1 GeV acceleration over 10 meters 	 Positron acceleration Separate acceleration stage from SMI stage Implementation of strategies to enhance acceleration Development of additional plasma sources 		

Conclusions

Plasma based acceleration

Promising technology to assist high energy physics
 Successful experiments demonstrated acceleration of electron and positron bunches

AWAKE: Advanced Wakefield Acceleration Experiment

First proton driven plasma wakefield acceleration experiment in the world

- Experiments starting end of 2016
- First step into a single stage plasma wakefield acceleration experiment towards very high energy gains

Main challenges

- Beam quality
- Reproducibility

Average power in the accelerated beam

