

21 cm Intensity Mapping BAORadio & Tianlai

Réza Ansari (Université Paris Sud & LAL (Orsay)

> Madrid 2016 Cosmology with 21 cm Surveys, Cosmic Microwave Background and Large Scale Structure

Madrid

13-17 June 2016

Wednesday 15 June 16

* Large Scale Structure (LSS) & BAO's at 21 cm

- * BAO's as a cosmological proble
- 3D Intensity Mapping
- * Some of the Intensity Mapping challenges
 - Map making
 - Foregrounds, instrumental effects
- # 21 cm Dark Energy surveys
 - * CHIME, HIRAX
 - * BINGO, GBT-HIM
 - BAORadio
 - Tianlai

2

LSS & BAO at 21 cm

3D Intensity mapping

3

Wednesday 15 June 16

Cosmological probes and Dark Energy

- * Baryon Acoustic Oscillations (**BAO**) : Measurement of characteristic scales \rightarrow dA(z), H(z)
- * Large Scale Structure & RSD : (LSS, BAO/RSD) ~
- * Supernovae (SN): Measure of apparent SNIa luminosity as a function of → dL(z)
- * Weak lensing (WL) : Measure of preferred orientation of galaxies → dA(z), growth of inhomogeneities (structures / LSS)
- * Galaxy Clusters (CL) : number count and distribution of clusters → dA(z), H(z), Structure formation (LSS)
- Integrated Sachs Wolf (ISW) effect : effect of evolving gravitational potential in large scale structures (with redshift)

5

21cm IM

LSS & BAO's as a cosmological probe

- Statistical properties of matter distribution in the universe and its evolution with time (redshift) is one of the major tools/probes to test the cosmological model, determine its parameters: Dark matter and dark energy properties, neutrinos masses ...
- The analysis is usually done through the correlation function or the power spectrum P(k)
- BAO: Imprints left by the baryon-photon plasma oscillations prior to decoupling, on dark matter and visible matter (galaxies ...) during structure formation after decoupling
- Wiggles in the distribution of matter, dominated by dark matter (and also visible matter / galaxies) : A preferential length scale (~ 150 Mpc) in the matter clustering
- Standard ruler type cosmological probe with a measurement @ z ~ 1100 (CMB anisotropies)

R.Ansari - June 2016

Mapping LSS @ 21 cm (I)

- LSS usually mapped in the optical window, through the observation of galaxies, considered as tracer of the underlying matter (DM+baryons) distribution
- 3D maps are obtained through imaging + spectroscopy : slices of the universe at different times (ages) or redshifts
- Its is mostly light from stars in the galaxies which are seen in the optical
- A fraction of the baryonic matter in the universe is in the form of neutral atomic hydrogen (HI), both in galaxies or distributed in the intergalactic medium (although most IGM gas is ionised)
- Can be used to map matter distribution through the spinflip transition at 21 cm (1420.4 MHz) in radio. The redshifted 21cm line gives directly access to the redshifts

Wednesday 15 June 16

A typical galaxy at z ~ 0.3 DL ~ 1500 Mpc

* Optical

- $10^9 10^{10} L_{\odot} \rightarrow \sim 10^{35} W$ (emitted power)
- $\lesssim 10^{-16} 10^{-17} \,\mathrm{W/m^2}$ in a typical photometric ban $(\sim 10 \,\mathrm{photons/m^2/s})$
- ★ 21 cm emission (radio) ← All in a very narrow frequency band
 - $\sim 10^9 \,\mathrm{M_{\odot}}$ of $\mathrm{H_{I}} \rightarrow 3.10^{27} \,\mathrm{W}$ (emitted power)
 - $\lesssim 10^{-30} \,\mathrm{W/m^2/Hz}$ or few photons/m²/s assuming ~ 200km/s velocity dispersion
 - $\lesssim 100\,\mu{\rm Jy}$ in a $\sim 1{\rm MHz}$ band

Detecting galaxies at 21 cm at cosmological distances

$$S_{21}^{Jy} \simeq 0.021 \, 10^{-6} \text{ Jy } \frac{M_{H_I}}{M_{\odot}} \times \left(\frac{1 \text{Mpc}}{D_L}\right)^2 \times \frac{200 \text{ km/s}}{\sigma_v} \text{ (1+z)}$$
$$S_{lim} = \frac{2 k T_{sys}}{A \sqrt{2t_{integ}} \Delta \nu}$$

 S_{lim} en μ Jy pour $t_{integ} = 86400 \text{ s}, \Delta \nu = 1 \text{ MHz}$

 S_{21} en μ Jy pour $M_{H_I} = 10^{10} M_{\odot}$

> 100 000 m² \rightarrow SKA!

R.Ansari - Sep 2011

Mapping LSS @ 21 cm (II)

Analogous to the optical surveys

- Observe the sky in radio, identify compact sources (galaxies), determine their positions (α,δ) through imaging and the redshift. Compute the correlation function of the power spectrum P(k) from the catalog of objects.
- Very large collecting area 10^5 m^2 to km^2 needed to observe galaxies in 21 cm at cosmological distances SKA / FAST ...
- * 3D Intensity mapping, similar to CMB
 - Measure integrated emission (brightness temperature) of HI from IGM and gas in galaxies, in cells (few Mpc)^3
 - * Subtract foregrounds, and compute P(k,z) on 3D maps $T21(\alpha,\delta,\nu)$

11

21 cm observations compared to optical

- * 21 cm line is the only spectral feature in L band (~GHz) ⇒
 Spectro-photometric observations
- * Band: ~ 100 MHz ... 1500 MHz -v = f(z), z: 0 ... 101420 MHz @ z=0, 946 MHz @ z=0.5, 720 @ z=1, 284 @ z=5, 129 @ z=10
- * Radio instruments are diffraction limited: 700 MHz: D=100 m $\rightarrow \sim 20'$, D=1km $\rightarrow \sim 2'$, D=100 km $\rightarrow \sim 1''$, 2' $\rightarrow 1$ Mpc @ z = 1
- Intensity measurement in radio, amplitude & phase in radio;
 Interferometry and spectroscopy in radio
- Instrumental/electronic noise (ROnoise <5 e) usually negligible in optical, dominant in radio (Tsys~20-100 K)
- Light pollution, atmosphere in optical / EM pollution (RFI) and ionosphere (lower frequencies) in radio

LSS/BAO/RSD at 21 cm: 3D T21(α, δ, z) maps

- 3D mapping of neutral hydrogen distribution through total 21 cm radio emission (no source detection)
- Needs only a modest angular resolution 10-15 arcmin
- Needs a large instantaneous field of view (FOV) and bandwidth (BW)

• ...

- Use of dense interferometric arrays (small size reflectors) to insure high sensitivity to low k and large instantaneous FOV
- Or a single dish with multi-beam focal plane receivers
- \equiv Instrument noise (Tsys)
- **E** Foregrounds / radio sources and component separation
- Calibration, instrument stability, RFI …
- Peterson, Bandura & Pen (2006)
- Chang et al. (2008) arXiv:0709.3672
- Ansari et al (2008) arXiv:0807.3614
- Wyithe, Loeb & Geil (2008) arXiv:0709.2955

- Peterson et al (2009) arXiv:0902.3091
- Ansari et al (2012)
- Shaw et al (2014, 2015)
- de Santos et al- Bull et al (2015)

R.Ansari - 2014

Intensity Mapping Challenges

- Map making
- Foregrounds
- Noise
- Mode mixing

15

²1 cm 3D Intensity Ma

• redshift ↔ Frequence • IMPc⁻• angular direction mapping through imaging

Single Dish

- Map the sky thro active scanning
- Compute power z1,z2) from sky
- project into appropria subtract foregrounds an

cosmological signal

R. Shaw et al. (2014, 2015) - ApJ J. Zhang, R.A et al MNRAS (2016)

P(k)

100

 10^{-4}

X

0.001

Transit Interferometers

- Map the sky through drift-scan
- Reconstruct sky map from visibilities
- m-mode decomposition in case of full EW scan
 - visibilities correspond to transverse Fourier modes $k\perp$

 $r_{
m LOS}$

17

Z	δθ	dlos (Mpc)	Н	δd⊥ (Mpc)	δd∎ (Mpc)
0,5	15	1945	90	8,5	~0.3
1	20′	3400	120	20	~0.3
2	30′	5320	200	45	~0.3
3	40′	6320	300	75	~0.3

R.Ansari - Octobre 2015

Foregrounds Signal HI : T₂₁ < mK !

http://ambda.gsfc.nasa.gov/

Wednesday 15 June 16

R.Ansari - 2012

Radio foreground (GSM) @ 720 MHz (z=1.) - Kelvin

21 cm sky brightness @ 720 MHz (z=1.) - milliKelvin

X

How do we suppress foregrounds?

- Exploit foregrounds known frequency dependence (power law ∝ v^β) for Galactic synchrotron and radio sources
- Instrumental effects (mode mixing), Polarisation leakage / Farady rotation ...

Ansari et al. (2012) - A&A Shaw et al. (2014) ApJ Shaw et al (2015) ApJ

Mode mixing / foregrounds

Richard Shaw, Ue-Li Pen, K. Sigurdson, M. Sitwell, A. Stebbins ApJ 2014, 2015

Signal-to-Noise Eigenmodes

Measurement \mathbf{v} is a combination of the sky \mathbf{a} and noise \mathbf{n}

$$\mathbf{Ba} + \mathbf{n}$$
 (1)

Construct the covariances of the signal and foregrounds

 $\mathbf{v} =$

$$\mathbf{S} = \mathbf{B} \left\langle \mathbf{a}_s \mathbf{a}_s^{\dagger} \right\rangle \mathbf{B}^{\dagger}, \qquad \mathbf{F} = \mathbf{B} \left\langle \mathbf{a}_f \mathbf{a}_f^{\dagger} \right\rangle \mathbf{B}^{\dagger}$$
(2)

Jointly diagonalise both matrices (eigenvalue problem)

 $Sx = \lambda Fx$

Karhunen-Loève (KL) Transform:

(3)

 Gives a new basis, where we expect that all modes are uncorrelated. Eigenvalue λ_i gives ratio of signal to foreground variance for mode *i*.

cf. Bond 1994, Vogeley and Szalay 1996

Signal/Foreground Spectrum

21 cm Dark Energy surveys

23

21 cm experiments

- CHIME
- HIRAX
- **BINGO**
- GBT-HIM
- BAORadio
- Tianlai

• ...

- * Traditional single dish with tracking, equipped with multi-feed receiver array in the focal plane \rightarrow GBT-HIM
- Transit type single dish with multi-feed receiver array and a correlation receiver → BINGO
- Dense transit type interferometers using cylinders as primary reflectors → CHIME , Tianlai
- Transit interferometers using a dense array of *small* dishes → HIRAX,
 TDA (Tianlai Dish Array), PAON-4 test interferometer

Comparison of some 21 cm BAO projects

Constraints on Dark Energy from a survey like CHIME ou Tianlai-full

R.Ansari - March 2016

CHIME (Nov 2015) Photos © Steve Torchinsky

See Richard Shaw's presentation

HIRAX (a southern hemisphere 21 cm BAO survey)

- Project lead by South Africa (PI: J. Sievers) with contributions from Canada, US, France
- Funding (NRF / AFS) for a first phase obtained in 2015
- Will be located on the SKA site in the Karoo desert, one of the best sites in the world for radio-astronomy (protected by south-african legislation)
- Complementary with similar survey in the northern hemisphere (CHIME, Tianlai) - redshift coverage z ~ 0.8 ... 2

See Jon Sievers presentation

GBT-HIM program

- Pilot HI Intensity Mapping program at GBT (Green Bank Telescope -100 m fully steerable dish).
- * 700-900 MHz, 0.6 < z < 1.0, 15' ang. resolution, cryogenic receiver
- 800 hours observations first HI detection in cross-correlation with DEEP2 fields (Chang, Pen, Bandura, Peterson, Nature 2010)
- * Fast Radio Burst (FRB) detection, Masui et al., 2015
- Commissioning of a 7 beam cryogenic receiver under way

GBT-HIM collaboration:

Victor Liao, Chun-Hao To (ASIAA), Chen-Yu Kuo (Chung-Shan U.), Kiyo Masui (UBC), Eric Switzer (Goddard), Tabitha Voytek (UKZN), Niels Oppermann, Ue-Li Pen, Richard Shaw (CITA), Hsiu-Hisan Lin, Jeff Peterson (CMU), Yi-Chao Li (NAOC), Chris Anderson, Peter Timbie (U.Wisc) Yuh-Jing Hwang, Ching-Ting Ho, Chi-Chang Lin(ASIAA) Rich Bradley, John Ford, Sri Srikanth, Steve White (NRAO)

GBT-HIM

Pilot program at the Green Bank Telescope (GBT)

- Frequency: 700-900 MHz
 0.6 < z < 1
- Spatial beam ~ 15"
 - 9 h⁻¹ Mpc at z~0.8
- Spectral channel ~ 24 kHz
 - binned to 0.5 MHz
 - ~2 h⁻¹ Mpc
- 100-m diameter. Large collecting areas
- First detection in cross-correlation with DEEP2 galaxies at z=0.8 (Chang, Pen, Bandura, Peterson, 2010, Nature)

Slide courtesy of Tzu-Ching Chang

GBT-HIM

21 cm Intensity Mapping for BAO & RSD studies

PI:T.-C. Chang. Co-I:Y.-J. Hwang, P. Timbie

- Building a 7-beam receiver at 700-900 MHz for redshifted HI survey at 0.6< z < 1 for BAO and RSD measurements.
- Use Short-backfire Antenna (SBA) with a edgetapered reflector; with a cryogenic HDPE cover to reduce Tsys.
- Prototype tested on GBT in December 2014. CDR expected in summer 2016.
- Science results highlights:
 - First detection of 21cm IM signal in crosscorrelation with DEEP2 galaxies at z=0.8 (Chang++10, Nature). Cross-power spectra (with WiggleZ) and auto-power spectrum limits (Masui++13, Switzer++ 2013).
 - First detection of Fast Radio Burst (FRB) with GBT with RM (Masui++15, Nature)
 - Detection of Redshift Space Distortions (RSD) with cross-power spectra (Chang+ +16, in preparation)

Slide courtesy of Tzu-Ching Chang

BINGO project

- BINGO : BAO's In Neutral Gas Observations
- 40 m diameter fixed single dish (2 reflector design, primary+secondary mirrors) - observing in transit mode
- ✤ 960-1260 MHz, 0.12 < z < 0.48, 40 ang. resolution</p>
- * 50 dual polarisation feeds room temperature Tsys ~ 50 K
- * Located in Uruguay UK, Brazil, Uruguay
- Digital correlator (X reference beam oriented toward the celestial pole)
- Science: HI power spectrum, FRB, Galactic science (radio recombination linesand continuum)

BINGO players

- Elcio Abdalla (P.I.), Raul Abramo, Andreia Pereira de Souza (engineer), Benjamim Galvão (engineer industry liaison), Marcos Lima
- INPE, Brazil
 - Alex Wuensche, Thryso Villela, Renato Branco (engineer)
- $\cdot~$ U. Montevideo, Ministry of Communications, Uruguay
 - Gonzalo Tancredi, Manuel Calas, Emilio Falco, Ana Mosquera
- · JBCA, Manchester, UK
 - Richard Battye, Ian Browne, Tianyue Chen, Peter Dewdney (SKAO), Richard Davis, Clive Dickinson, Keith Grainge, Stuart Harper, Lucas Olivari, Mike Peel (-> FAPESP fellow), Mathieu Remazeilles, Sambit Roychowdhury, Peter Wilkinson

- · ETH, Zurich, Switzerland
 - Alex Refregier, Adam Amara, Christian Monstein
- $\cdot~$ UCL, London, UK
 - Filipe Abdalla
- · IAS, Paris, France
 - Bruno Maffei (ex-Manchester)
- · U. Cardiff, UK
 - Giampaolo Pisano
- · UKZN, South Africa
 - Yin-Zhe Ma (ex-Manchester)
- · U. Portsmouth, UK

Wednesday 15 June 16

BINGO concept

BAOs In Neutral Gas Observations

Key specifications:

- Dish diameter : 40 m
- Resolution: ~2/3 deg
- Frequency range : 960 1260 MHz (z=0.12-0.48)
- Number of feeds: 50 (dual pol)
- Field-of-view: ~15 deg
- No cryogenic cooling : Tsys ~ 50K
- Digital correlation receiver
- Channel width << 50 MHz (Δz <0.05)
- Majority of receiver components "off-the-shelf"
- Transit telescope (no moving parts): observe declination strip with drift scans
- 2 years observing (~1 year on source)

Battye, Browne, Dickinson, Heron, Maffei, Pourtsidou, 2013, MNRAS, 434, 1239 [arXiv:1209.0343]

Slide courtesy of Clive Dickinson

Site selection

After a long process we have found a suitable suite Quary Castrillon in Northern Uruguay

2-dish design easier to deal with and has better performance

Slide courtesy of Clive Dickinson

BINGO Optical design (B. Maffei et al.)

BINGO horns

- BINGO horns are BIG!
 - 1.7 m diameter

Wednesday 15 June 16

Correlation receiver

- 1/f knee frequency of typical receivers ~1 Hz
 - Produces long time-scale fluctuations of total-power (1/f noise)
 - -> larger noise level, stripes in the map...
- Perfect pseudo-correlation (e.g. WMAP/Planck) can remove 1/f noise
- Use (South) Celestial Pole as reference

Battye et al. (2013)

Slide courtesy of Clive Dickinson

BAGRadio

LAL - IN2P3/CNRS

R. Ansari J.E. Campagne M. Moniez A.S. Torrento D. Breton C. Beigbeder

T. Cacaceres D. Charlet B. Mansoux C. Pailler M. Taurigna

IRFU - CEA

C. Magneville C. Yèche J. Rich J.M. Legoff P. Abbon *E. Delagnes* H. Deschamps C. Flouzat *P. Kestener*

Observatoire de Paris

27 cm

P. Colom J.M. Martin J. Borsenberger J. Pezzani F. Rigaud S. Torchinsky C. Viou

Wednesday 15 June 16

37

 2007: BAORadio project initiated in France • LAL (IN2P3/CNRS), Irfu (CEA), Observatoire de Paris 2007-2009: development of the BAORadio (electronic/ acquisition) system - Tests at Nançay (NRT) • 2009-2010: Tests on theCRT prototype at Pittsburgh • 2011-2012: FAN, HI-Cluster, contacts with NAOC • 2012-2014: PAON, Tianlai 2015-2016: NEBuLA, PAON4, 7 • Financial support: IRFU, CNRS/P&U, IN2P3, P2I, Obs. de Paris, LAL, PNCG

CRT (CMU, Pittsburgh)

BAORadio @ CRT-Pittsburg Nov 2009

Noise/sensitivity (radiometer curve) HI-Cluster, BAORadio & NRT correlator

Sigma (mJy)

1324

1356

1322

1358

PAON-4/NEBuLA

- * PAON : PAraboles à l'Observatoire de Nançay
- PAON-4 : 4 D=5m reflectors, dense array configuration, transit observation mode
- Total surface ~ 75 m^2, 8 = 4 x 2 (pol) récepteurs , 36 visibilities ~ 2 GBytes/s maximum data flow
- * 38 S < Elevation < 15 N \rightarrow 10 < δ < 60 at Nançay
- * 250 MHz band , 1250-1450 MHz
- Reconstructed map resolution ~ 1 deg @ 1400 MHz
- Aims: RFI cleaning , Tsys and antennae correlation, test of calibration and 3D transit mode map making
- Sensitivity level ~50 mK (/ 1deg^2 x 1 MHz pixels) over ~ 5000 deg^2
- * NEBuLA : Numériseur à Bande Large pour l'Astronomie New generation digitiser board that could be deployed close to the antennae, over ~ km sized area ...

PAON-4 (PI: J.E. Campagne, J.M. Martin) - Technical projet leaders: F. Rigaud (Mechanics) - D. Charlet (Electronic, Computing, Commissioning)

PAON-2 → September 2012

NEBULA (D. Charlet - LAL, C. Viou - Nançay)

- Direct sampling after the LNA + filters (no mixer)
- Up to 500 MHz bandwidth
- designed to be put near the antennae
- optical data output
 & control /
 synchronisation

- Projet Nançay-LAL-Irfu accepté par le CS Obs. de Paris (CSAA) Décembre 2013, 17k€ (proto) Porteurs: Cédric Viou (Nançay) & Daniel Charlet (LAL)
- Par rapport à l'électronique actuelle dont le design date de 2006-7:
 - On s'affranchit de la partie Mélangeur
 - On réduit la longueur du câble coax.
 - On passe de 250 MHz à 500 MHz de bande
 - Transmission passe à 100% de temps Ciel
 - Ethernet & PCI Express Externe (accès direct mémoire des PCs)
 - à usage PAON et NRT/RadioHéliostat, voire TIANLAI

NEBuLA board design (D. Charlet)

Carte prototype en cours de fabrication (Juin 2016)

46

Map from visibilities (single scan) II Slide by Qizhi Huang (LAL/NAOC PhD) Final maps

CygA24h11mai15 is one day 24 hours observation, we just have one transition. Hower, we can add and special phase to the visibilities to simulate the case that turnning the antennas to other declinations and observate.

PAON-4 reconstructed maps

Map making using Jiao's program (2)

Calibration: Q. Huang, m-mode map making : J. Zhang (April 2016)

TIANLAI

NATIONAL ASTRONOMICAL OBSERVATORIES , CHINESE ACADEMY OF SCIENCES

Wednesday 15 June 16

TIANLAI

- * Tianlai project led by NAOC (PI: Prof. Xuelei Chen)
- * International partners: Canada, États-Unis, Corée du Sud, France
- Collaboration started in 2011-2012 Chinese financial grant from MOST granted in 2012 (?) for the pathfinder phase
- In china: Institute of Automation (digital electronic) and Institute 54 (Antenna, analog electronic) + ...
- Site search / site testing Site selected in 2013
- Start site preparation work in summer 2014: construction of road (dirt road) et 10 kV electric power line, optical fiber cable (7 km) from closest village - Construction of the living quarters and acquisition/control rooms
- 3 cylinders (15m x 40m) and 16 dishes (D=6 m) arrays constructed/ deployed in summer 2015
- * Tianlai pathfinder phase: 96 (dual-pol) receivers on the 3 cylinders 192 channels correlator (FPGA+DSP Inst.ofAut) + corrélateur 32 channel correlator for the16 dish array (100 MHz bandwidth)

Visit to the site during the Balikun (Sep. 2016) workshop

TIANLAI

Table	1.	The	experiment	parameters	for	Tianlai
Table	T •	TIIC	CAPCIIIICIIU	parameters	101	T Iaillal.

	cylinders	width	length	dual pol. units/cylinder	Frequency
Pathfinder	3	$15 \mathrm{m}$	40 m	32	$700-800~\mathrm{MHz}$
Pathfinder+	3	$15 \mathrm{m}$	40 m	72	$700-800~\mathrm{MHz}$
Full scale	8	15 m	120 m	256	400 - 1420 MHz

Y. Xu, X. Wang, X. Chen (2015) - ApJ arXiv:1410.7794

TIANLAI DISH ARRAY POLAR CAP SURVEY

Polar cap survey - sky map reconstruction by Tianlai 16 dish array & m-mode decomposition

Map Making Papers-I J. Zhang et al (2016), MNRAS MNRAS LATEX style file v3.0 (accepted) arXiv:160603090 [Dishes, PAON4, Tianlai]

Sky reconstruction from transit visibilities: PAON-4 and Tianlai Dish Array

Jiao Zhang^{1,2,3}, Reza Ansari² *, Xuelei Chen^{1,3,4}, Jean-Eric Campagne²,

Christophe Magneville⁵, and Fengquan Wu¹

¹Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
 ²Université Paris-Sud, LAL, UMR 8607, F-91898 Orsay Cedex, France & CNRS/IN2P3, F-91405 Orsay, France
 ³University of Chinese Academy of Sciences, Beijing 100049, China
 ⁴Control of Wiele Fearmy Physics, Physica University, Police 100221, China

⁴Center for High Energy Physics, Peking University, Beijing 100871, China

⁵CEA, DSM/IRFU, Centre d'Etudes de Saclay, F-91191 Gif-sur-Yvette, France

Map Making Papers-II J. Zhang et al (2016), RAA (accepted) arXiv: [Tianlai cylinders]

Research in Astronomy and Astrophysics manuscript no. (LaTEX: jmapcylinder.tex; printed on May 31, 2016; 18:04)

Sky reconstruction for the Tianlai cylinder array

Jiao Zhang^{1,2,3}, Shifan Zuo^{1,3}, Reza Ansari², Xuelei Chen^{1,3,4}, Yichao Li^{1,3}, Fengquan Wu^{1,3}, Jean-Eric Campagne², Christophe Magneville⁵

CONCLUSIONS / OUTLOOK

- Broad and interesting scientific outcomes from 21cm surveys at z ~ 1-2: (DE, HI mass distribution and its evolution around z ~ 1-2, detailed study of foregrounds, *pulsars* ...)
- * Reionisation at higher redshifts (LOFAR, SKA-Low, HERA)
- Tianlai, CHIME, HIRAX, BINGO, GBT... will enable us to develop the 3D intensity mapping method, opening the way to more ambitious instruments, as well as SKA-mid / AA (Aperture Arrays)
- PAON-4 & EMBRACE : test beds for developing the data analysis methods and for electronic developments (NEBuLA) ...
- Scientific and technical challenges : high throughput on the fly digital processing (correlator/beam-former) calibration, 3D map making, component separation (foregrounds) ...

