CMB

CMB & Proper motion

Anomalies

Frequency dependence

CMB Distortions due to Peculiar Motion and Intrinsic Anomalies

Alessio Notari¹

Universitat de Barcelona

June 2016, IFT, Cosmology Workshop

¹ In collaboration with M.Quartin, O.Roldan, and earlier work with R.Catena, M.Liguori, A.Renzi, L.Amendola, I.Masina, C.Quercellini. JCAP 1606 (2016) no.06, 026, , arXiv:1510.08793, JCAP 1509 (2015) 09, 050 JCAP 1506 (2015) 06, 047 JCAP 1501 (2015) 01, 008 JCAP 1309 (2014) 019 JCAP 1202 (2012) 026; JCAP 1107 (2011) 027

CMB as a test of Global Isotropy

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Is the CMB statistically Isotropic?

• What is the impact of our peculiar velocity?

(日)

 $(\beta = \frac{v}{c} = 10^{-3})$

CMB as a test of Global Isotropy

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Is the CMB statistically Isotropic?

• What is the impact of our peculiar velocity?

 $(\beta = \frac{v}{c} = 10^{-3})$

• Can we disentangle them?

CMB

CMB & Proper motion

Anomalies

Frequency dependence

More precisely

• $T(\hat{n}) \rightarrow a_{\ell m}$

(ロ)、(型)、(E)、(E)、(E)、(O)()

CMB

CMB & Proper motion

Anomalies

Frequency dependence

More precisely

• $T(\hat{n}) \rightarrow a_{\ell m} \equiv \int d\Omega Y^*_{\ell m}(\hat{n}) T(\hat{n})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

CMB

CMB & Proper motion

Anomalies

Frequency dependence

More precisely

• $T(\hat{n}) \rightarrow a_{\ell m} \equiv \int d\Omega Y^*_{\ell m}(\hat{n}) T(\hat{n})$

Hypothesis of Gaussianity and Isotropy:

(日)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

More precisely

• $T(\hat{n}) \rightarrow a_{\ell m} \equiv \int d\Omega Y^*_{\ell m}(\hat{n}) T(\hat{n})$

Hypothesis of Gaussianity and Isotropy:

• $a_{\ell m}$ random numbers from a Gaussian of width C_{ℓ}^{th} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Physics fixes $C_{\ell}^{th} = \langle |a_{\ell m}|^2 \rangle$
- Uncorrelated: NO preferred direction

CMB

CMB & Proper motion

Anomalies

Frequency dependence • Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at *all* scales

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence • Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at *all* scales

(not only $\ell = 1!$)

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence Our velocity β ≡ ^v/_c breaks Isotropy introducing correlations in the CMB at *all* scales (not only ℓ = 1!)

1 We can measure β with $\ell = 1$

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence Our velocity β ≡ ^v/_c breaks Isotropy introducing correlations in the CMB at *all* scales (not only ℓ = 1!)

• We can measure β with $\ell = 1$ and $\ell > 1!^2$

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence Our velocity β ≡ ^v/_c breaks Isotropy introducing correlations in the CMB at *all* scales (not only ℓ = 1!)

• We can measure β with $\ell = 1$ and $\ell > 1!^2$

Anomalies? (dipolar modulation, alignments?)

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence Our velocity β ≡ ^v/_c breaks Isotropy introducing correlations in the CMB at *all* scales
 (not only ℓ = 1!)

• We can measure β with $\ell = 1$ and $\ell > 1!^2$

Anomalies? (dipolar modulation, alignments?)

 Is it frequency dependent? (Calibration? Blackbody distortion, tSZ contamination?)

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence Our velocity β ≡ ^v/_c breaks Isotropy introducing correlations in the CMB at *all* scales
 (not only ℓ = 1!)

• We can measure β with $\ell = 1$ and $\ell > 1!^2$

Anomalies? (dipolar modulation, alignments?)

 Is it frequency dependent? (Calibration? Blackbody distortion, tSZ contamination?)

²Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

CMB

CMB & Proper motion

Anomalies

Frequency dependence

$T(\hat{n})$ (CMB Rest frame) $\Rightarrow T'(\hat{n}')$ (Our frame)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

$T(\hat{n})$ (CMB Rest frame) $\Rightarrow T'(\hat{n}')$ (Our frame)

Preferred direction $\hat{\beta}$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ = ・ の < @

CMB

CMB & Proper motion

Anomalies

Frequency dependence $T(\hat{n})$ (CMB Rest frame) $\Rightarrow T'(\hat{n}')$ (Our frame)

Preferred direction $\hat{\beta}$

• Doppler: $T'(\hat{n}) = T(\hat{n})\gamma(1 + \beta \cos \theta)$ (cos(θ) = $\hat{n} \cdot \hat{\beta}$)

CMB

CMB & Proper motion

Anomalies

Frequency dependence $T(\hat{n})$ (CMB Rest frame) $\Rightarrow T'(\hat{n}')$ (Our frame)

Preferred direction $\hat{\beta}$

• Doppler: $T'(\hat{n}) = T(\hat{n})\gamma(1 + \beta \cos \theta)$ (cos(θ) = $\hat{n} \cdot \hat{\beta}$)

• Aberration: $T'(\hat{n}') = T(\hat{n})$ with $\cos \theta - \cos \theta' = \beta \frac{\sin^2 \theta}{1 + \beta \cos \theta}$ $\theta - \theta' \approx \beta \sin \theta$

Peebles & Wilkinson '68, Challinor & van Leeuwen 2002, Burles & Rappaport 2006

CMB

Mixing of neighbors:

CMB & Proper motion

Anomalies

Frequency dependence

CMB

Mixing of neighbors:

CMB & Proper motion

Anomalies

Frequency dependence

$$a'_{\ell m} \simeq a_{\ell m} + \beta (c^-_{\ell m} a_{\ell-1m} + c^+_{\ell m} a_{\ell+1m}) + \mathcal{O}((\beta \ell)^2)$$

CMB

Mixing of neighbors:

CMB & Proper motion

Anomalies

Frequency dependence

$$a'_{\ell m} \simeq a_{\ell m} + \beta (c^-_{\ell m} a_{\ell-1m} + c^+_{\ell m} a_{\ell+1m}) + \mathcal{O}((\beta \ell)^2)$$

(日)

•
$$c_{\ell m}^+ = (\ell + 2 - 1) \sqrt{\frac{(\ell + 1)^2 - m^2}{4(\ell + 1)^2 - 1}}$$

 $c_{\ell m}^- = -(\ell - 1 + 1) \sqrt{\frac{\ell^2 - m^2}{4\ell^2 - 1}}$

• Doppler (constant), aberration grows with $\ell!$

CMB

Mixing of neighbors:

CMB & Proper motion

Anomalies

Frequency dependence

$$a'_{\ell m} \simeq a_{\ell m} + \beta (c^-_{\ell m} a_{\ell-1m} + c^+_{\ell m} a_{\ell+1m}) + \mathcal{O}((\beta \ell)^2)$$

•
$$c_{\ell m}^+ = (\ell + 2 - 1) \sqrt{\frac{(\ell + 1)^2 - m^2}{4(\ell + 1)^2 - 1}}$$

 $c_{\ell m}^- = -(\ell - 1 + 1) \sqrt{\frac{\ell^2 - m^2}{4\ell^2 - 1}}$

- Doppler (constant), aberration grows with $\ell!$
- We can measure β through (a_{ℓm}a_{ℓ+1m}) ≠ 0
 (Kosowsky & Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011, Planck XXVII, 2013.)

(日)

Expected sensitivity

L.Amendola, R.Catena, I.Masina, A.N., M.Quartin, C.Quercellini 2011

₹ 9Q@

Planck Measurement

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < ()

Planck Measurement

CMB

CMB & Proper motion

Anomalies

Frequency dependence

・ロト・日本・日本・日本・日本

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

Found both Aberration and Doppler

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Experiment	$\#\nu$ bands	$10^6 \sigma_T(\frac{\mu K}{K})$	$10^6 \sigma_P \left(\frac{\mu K}{K}\right)$	$ heta_{\mathrm{fwhm}}$	$f_{ m sky}$	S/N
ACBAR '08 [26]	1	0.9	-	4.8'	1.7%	1.0
WMAP (9 years) [27, 28]	5	14	20	$13.2^\prime-52.8^\prime$	78%	0.7
EBEX [29]	3	0.33	0.48	8'	1%	0.9
BICEP2 (2 years) [30, 31]	1	3.2	4.6	0.6'	2%	2.5
Planck (30 months) [28, 32]	7	1.0 - 8.4	1.7 - 14.5	$4.7^\prime-32.7^\prime$	80%	5.9
SPT SZ [33, 34]	3	5.7 - 30	-	$1.0^\prime-1.6^\prime$	6%	2.0
SPTPol (3 years) [35]	2	1.3 - 1.5	1.9 - 2.1	$1.0^\prime-1.6^\prime$	1.6%	2.5
SPTPol Wider (6 years)	2	2.4 - 2.6	3.3 - 3.7	$1.0^\prime-1.6^\prime$	10%	5.2
ACTPol Deep (1 year) [36]	2	0.5 - 2.2	0.7 - 3.1	$1.0^\prime-1.4^\prime$	0.36%	1.4
ACTPol Wide (1 year) [36]	2	2.5 - 11	3.5 - 16	$1.0^\prime-1.4^\prime$	10%	4.4
ACTPol Wider (4 years)	2	2.5 - 11	3.5 - 16	1.0' - 1.4'	40%	8.8
COrE (4 years) [28]	15	0.07 - 9.0	0.12 - 15.6	$2.8^\prime-23.3^\prime$	80%	14
EPIC 4K [37]	9	0.08 - 0.82	0.11 - 1.2	2.5' - 28'	80%	16
EPIC 30K [37]	9	0.20 - 4.4	0.28 - 6.2	2.5' - 28'	80%	13
Ideal Exp. (up to $\ell = 6000$)	Any	0	0	0'	100%	44

Expected sensitivity

Separating Doppler and Aberration

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Aberration grows at high ℓ

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• A dipolar large scale potential: $\Phi_D = \cos(\theta)\phi(r)$ $\Phi_{TOT} = \Phi + \Phi_D$

CMB

CMB & Proper motion

Anomalies

Frequency dependence • A dipolar large scale potential: $\Phi_D = \cos(\theta)\phi(r)$ $\Phi_{TOT} = \Phi + \Phi_D$

• Produces a CMB dipole $T_D = \frac{1}{3}\cos(\theta)\phi(r_{LSS})$

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• A dipolar large scale potential: $\Phi_D = \cos(\theta)\phi(r)$ $\Phi_{TOT} = \Phi + \Phi_D$

• Produces a CMB dipole $T_D = \frac{1}{3}\cos(\theta)\phi(r_{LSS})$

 It also produces couplings at 2nd order O(ΦΦ_D): degenerate with a boost?

³O.Roldan, A.N., M.Quartin 2016, JCAP 2016. 🖅 👘 👘 👘 🖉 🔊 🤉

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Doppler-like term: $c T_D(\hat{n}) T(\hat{n})$ (large scales)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Doppler-like term: $c T_D(\hat{n}) T(\hat{n})$ (large scales)

• *c* Degenerate with Doppler if zero primordial non-Gaussianity!

⁴O.Roldan, A.N., M.Quartin, JCAP 2016. < □ > < ∅ > < ≧ > < ≧ > < ≧ > ○ < ?

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Doppler-like term: $c T_D(\hat{n}) T(\hat{n})$ (large scales)

 c Degenerate with Doppler if zero primordial non-Gaussianity!

 A mismatch between β_{ℓ=1} and Doppler couplings would have 2 implications:

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Doppler-like term: $c T_D(\hat{n}) T(\hat{n})$ (large scales)

 c Degenerate with Doppler if zero primordial non-Gaussianity!

 A mismatch between β_{ℓ=1} and Doppler couplings would have 2 implications:

• Unexpected large intrinsic dipole

Non-Gaussianity

⁴O.Roldan, A.N., M.Quartin, JCAP 2016. < □ > < ∃ > < ≡ > < ≡ > > = - > < <

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Φ_D also produces Dipolar Lensing \approx Aberration

(日)

⁵O.Roldan, A.N., M.Quartin 2016
Is β degenerate with an Intrinsic Dipole?⁵

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Φ_D also produces Dipolar Lensing \approx Aberration

• Coefficient degenerate with Aberration only if:

$$\phi(r_{LSS}) = 6 \int dr \phi(r) \left(\frac{1}{r} - \frac{1}{r_{LSS}}\right)$$

⁵O.Roldan, A.N., M.Quartin 2016

Is β degenerate with an Intrinsic Dipole?⁵

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Φ_D also produces Dipolar Lensing \approx Aberration

(日)

• Coefficient degenerate with Aberration only if:

$$\phi(r_{LSS}) = 6 \int dr \phi(r) \left(\frac{1}{r} - \frac{1}{r_{LSS}}\right)$$

• Generically different!

⁵O.Roldan, A.N., M.Quartin 2016

Is β degenerate with an Intrinsic Dipole?⁵

CMB

CMB & Proper motion

Anomalies

Frequency dependence

- Φ_D also produces Dipolar Lensing \approx Aberration
- Coefficient degenerate with Aberration only if:

$$\phi(r_{LSS}) = 6 \int dr \phi(r) \left(\frac{1}{r} - \frac{1}{r_{LSS}}\right)$$

- Generically different!
- Measuring agreement between β_{ℓ=1} and Aberration-couplings → boost.

(日)

⁵O.Roldan, A.N., M.Quartin 2016

Is β degenerate with an Intrinsic Dipole?⁶

CMB

CMB & Proper motion

Anomalies

Frequency dependence

	10 ⁻³ dipole	10 ⁻⁸ Doppler-like	10 ⁻⁸ aberration-like
		couplings	couplings
Peculiar velocity	yes	yes	yes
Dipolar Φ	yes	yes*	only with fine-tuning
Non-Gauss. dipolar Φ	yes	different	only with fine-tuning

* Reminder: we have only been able to prove the corresponding result on large scales.

⁶O.Roldan, A.N., M.Quartin 2016 <-> < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (

Testing Isotropy

CMB

CMB & Proper motion

Anomalies

Frequency dependence • Given a map $T(\hat{n})$: mask half of the sky: $\tilde{T}(\hat{n}) = M(\hat{n})T(\hat{n})$

(日)

• We compute $\tilde{a}_{\ell m} \rightarrow \tilde{C}_{\ell}^{M}$

Testing Isotropy

CMB

CMB & Proper motion

Anomalies

Frequency dependence

- Given a map $T(\hat{n})$: mask half of the sky: $\tilde{T}(\hat{n}) = M(\hat{n})T(\hat{n})$
- We compute $\tilde{a}_{\ell m} \rightarrow \tilde{C}_{\ell}^{M}$
- And compare two opposite halves \tilde{C}_{ℓ}^{N} and \tilde{C}_{ℓ}^{S}

Hemispherical asymmetry?

CMB

CMB & Prope motion

Anomalies

Frequency dependence

In several papers: significant (about 3σ) hemispherical asymmetry of Amplitude A ~ 7% at ℓ < O(60)

(日)

Eriksen et al. '04, '07, Hansen et al. '04, '09, Hoftuft et al. '09, Bernui '08, Paci et al. '13

Hemispherical asymmetry?

CMB

CMB & Prope motion

Anomalies

Frequency dependence In several papers: significant (about 3σ) hemispherical asymmetry of Amplitude A ~ 7% at ℓ < O(60)

(日)

Eriksen et al. '04, '07, Hansen et al. '04, '09, Hoftuft et al. '09, Bernui '08, Paci et al. '13

• The claim extends also to $\ell \leq 600$ (WMAP), with smaller Amplitude

Hansen et al. '09

Hemispherical asymmetry?

CMB

CMB & Prope motion

Anomalies

Frequency dependence In several papers: significant (about 3σ) hemispherical asymmetry of Amplitude A ~ 7% at ℓ < O(60)

Eriksen et al. '04, '07, Hansen et al. '04, '09, Hoftuft et al. '09, Bernui '08, Paci et al. '13

• The claim extends also to $\ell \leq 600$ (WMAP), with smaller Amplitude

Hansen et al. '09

And also to the Planck data! (Up to which ℓ?)

(日) (日) (日) (日) (日) (日) (日)

Planck Collaboration 2013, XIII. Isotropy and Statistics.

Planck asymmetry CMB • 7% asymmetry Anomalies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Planck asymmetry

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• 7% asymmetry

(ロ)、(型)、(E)、(E)、(E)、(O)()

 ${\ensuremath{\, \circ}}$ at scales $\gtrsim 4^\circ$

Planck asymmetry

CMB

- CMB & Proper motion
- Anomalies
- Frequency dependence

- 7% asymmetry
- $\bullet\,$ at scales $\gtrsim 4^\circ$
- Same as in WMAP

. . .

Hemispherical Asymmetry at high *l*?

CMB

CMB & Prope motion

Anomalies

Frequency dependence

• A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)

(日)

A.N., M.Quartin & R.Catena, JCAP Apr. '13

Hemispherical Asymmetry at high *l*?

CMB

CMB & Prope motion

Anomalies

Frequency dependence

• A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)

(日)

A.N., M.Quartin & R.Catena, JCAP Apr. '13

Hemispherical Asymmetry at high ℓ ?

CMB

CMB & Prope motion

Anomalies

Frequency dependence

• A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)

A.N., M.Quartin & R.Catena, JCAP Apr. '13

• We find (A.N., M.Quartin & JCAP '14, Planck Collaboration 2013, XIII. Isotropy and Statistics)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $2.5 - 3\sigma$ anomaly only at $\ell \lesssim 600$

Hemispherical Asymmetry at high *l*?

CMB

CMB & Prope motion

Anomalies

Frequency dependence

• A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)

A.N., M.Quartin & R.Catena, JCAP Apr. '13

• We find (A.N., M.Quartin & JCAP '14, Planck Collaboration 2013, XIII. Isotropy and Statistics)

• $2.5 - 3\sigma$ anomaly only at $\ell \lesssim 600$

• With decreasing Amplitude (from 7% to 1%)

Planck Data (SMICA) and Mask (U73)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Use Planck data up to $\ell=2000~({\mbox{\tiny M. Quartin \& A.N. '14}})$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @

Planck Data (SMICA) and Mask (U73)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

- Use Planck data up to $\ell=2000$ (M. Quartin & A.N. '14)
- "SMICA" map, linear weighted combination of several frequency maps

Planck Data (SMICA) and Mask (U73)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

- Use Planck data up to $\ell = 2000$ (M. Quartin & A.N. '14)
- "SMICA" map, linear weighted combination of several frequency maps

Before this, we mask Galaxy and point sources!

Planck Mask (U73)

CMB & Prope motion

Anomalies

Frequency dependence

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Planck Mask (U73)

CMB

CMB & Prope motion

Anomalies

Frequency dependence

• We produced a Symmetrized U73 (M. Quartin & A.N. '14)

Hemipsherical asymmetry

CMB

CMB & Proper motion

Anomalies

Frequency dependence

- We mask Planck (symmetrized mask)
- And then we cut the sky into two parts (N vs. S)

Hemipsherical asymmetry

CMB

CMB & Proper motion

Anomalies

Frequency dependence

- We mask Planck (symmetrized mask)
- And then we cut the sky into two parts (N vs. S)

Smoothing the cut!

Hemispherical Asymmetry due to Velocity

CMB

$$\beta = 1.23 \times 10^{-3}$$

$$2 \times (f_{sky}=0.146)$$

・ロト ・聞 ト ・ヨト ・ヨト

æ.

Anomalies

Frequency dependence

Hemispherical Asymmetry due to Velocity

CMB

CMB & Prope motion

Anomalies

Frequency dependence

Figure: Discs along the Dipole direction

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

э.

Hemispherical Asymmetry due to Velocity

CMB

CMB & Prope motion

Anomalies

Frequency dependence

Figure: Discs along the Dipole direction

For a small disc:

$$rac{\delta m{\mathcal{C}}_\ell}{m{\mathcal{C}}_\ell}\simeq 4eta+2eta\ellm{\mathcal{C}}_\ell'$$

(日)

A.N., M.Quartin, R.Catena 2013

"Dipolar modulation"?

CMB

CMB & Proper motion

Anomalies

Frequency dependence • Several authors have studied the ansatz

$$T = T_{\text{isotropic}} (1 + A_{\text{mod}} \cdot n)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

"Dipolar modulation"?

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Several authors have studied the ansatz

 $T = T_{\text{isotropic}} (1 + \boldsymbol{A}_{\text{mod}} \cdot \boldsymbol{n}),$

(日)

• 3- σ detection of A_{mod} along max. asymm. direction (For $\ell < 60$ or $\ell < 600$)

"Dipolar modulation"?

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Several authors have studied the ansatz

 $T = T_{\text{isotropic}} (1 + \boldsymbol{A}_{\text{mod}} \cdot \boldsymbol{n}),$

(日)

• 3- σ detection of A_{mod} along max. asymm. direction (For $\ell < 60$ or $\ell < 600$)

• A_{mod} 60 times bigger than $\beta!$ (at $\ell < 60$)

Our Results on A

Figure: All simulations include Planck noise asymmetry.

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

э.

A.N. & M.Quartin, 2014

Dipolar modulation on Large Scales?

CMB & Prope motion

Anomalies

Frequency dependence • For conclusive evidence: more data

(日)

Dipolar modulation on Large Scales?

CMB

CMB & Proper motion

Anomalies

Frequency dependence • For conclusive evidence: more data

• Polarization maps! (LiteBIRD, COrE) Assuming some model

• Large Scale Structure?

CMB & Proper motion

Anomalies

Frequency dependence

• A boost does NOT change the blackbody

(日)

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• A boost does NOT change the blackbody

• But, consider Intensity:

$$I(\nu) = \frac{2\nu^3}{e^{\frac{\nu}{T(\hat{h})}} - 1}$$

Linearizing Intensity we get (WMAP, PLANCK...)

$$\Delta I(\nu, \hat{\boldsymbol{n}}) \approx \frac{2\nu^4 \boldsymbol{e}^{\frac{\nu}{\nu_0}}}{T_0^2 \left(\boldsymbol{e}^{\frac{\nu}{\nu_0}} - 1\right)^2} \Delta T(\hat{\boldsymbol{n}}) \equiv K \frac{\Delta T(\hat{\boldsymbol{n}})}{T_0},$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

CMB

CMB & Proper motion

Anomalies

Frequency dependence

At second order:

$$-\frac{\Delta I}{K} = \frac{\Delta T(\hat{\boldsymbol{n}})}{T_0} + \left(\frac{\Delta T(\hat{\boldsymbol{n}})}{T_0}\right)^2 Q(\nu),$$

(日)

where $Q(\nu) \equiv \nu/(2\nu_0) \coth[\nu/(2\nu_0)]$.

CMB

CMB & Proper motion

Anomalies

Frequency dependence

At second order:

$$\frac{\Delta I}{K} = \frac{\Delta T(\hat{\boldsymbol{n}})}{T_0} + \left(\frac{\Delta T(\hat{\boldsymbol{n}})}{T_0}\right)^2 Q(\nu),$$

where $Q(\nu) \equiv \nu/(2\nu_0) \coth[\nu/(2\nu_0)]$.

Spurious y-distortion

- Degenerate with tSZ and primordial y-distortion
- Any T fluctuation produces this
Frequency dependence??

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Dominated by dipole $\Delta_1 = \beta + \text{intrinsic dipole}^7$

⁷Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck 2013 results. XXVII., A.N. & Quartin '16

Frequency dependence??

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Dominated by dipole
$$\Delta_1 = \beta + \text{intrinsic dipole}^{-7}$$

$$L(\nu, \hat{\boldsymbol{n}}) = \mu \Delta_1 + \frac{\delta T}{T_0} - \tilde{\beta} \mu \frac{\delta T}{T_0} + \tilde{\beta} \left(\frac{\delta T_{ab}}{T_0} \right) + \\ + \left[\left(\mu^2 - \frac{1}{3} \right) \Delta_1^2 + \frac{1}{3} \Delta_1^2 + 2 \Delta_1 \mu \frac{\delta T}{T_0} \right] Q(\nu) \,.$$

- Quadrupole (10⁻⁷)
- Monopole (10⁻⁷)
- Couplings (10⁻⁸)

⁷Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck 2013 results. XXVII., A.N. & Quartin '16

Frequency dependence??

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Dominated by dipole $\Delta_1 = \beta + \text{intrinsic dipole}^7$

$$L(\nu, \hat{\boldsymbol{n}}) = \mu \Delta_1 + \frac{\delta T}{T_0} - \tilde{\beta} \mu \frac{\delta T}{T_0} + \tilde{\beta} \left(\frac{\delta T_{ab}}{T_0} \right) + \\ + \left[\left(\mu^2 - \frac{1}{3} \right) \Delta_1^2 + \frac{1}{3} \Delta_1^2 + 2 \Delta_1 \mu \frac{\delta T}{T_0} \right] Q(\nu) \, .$$

- Quadrupole (10⁻⁷)
- Monopole (10⁻⁷)
- Couplings (10⁻⁸)
- "Spurious" spectral *y*-distortions : degenerate with primordial *y*-distortions, and tSZ

⁷Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck 2013 results. XXVII., A.N. & Quartin '16

Spurious y signal

A.N. & M.Quartin, 2016

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Doppler effect is used to calibrate the detectors!

- WMAP calibrated using $\beta_{ORBITAL}$ ($\approx 10^{-4}$)
- Planck 2013 on β_{SUN} (using WMAP!)
- Planck 2015 calibrated on $\beta_{ORBITAL}$

δ

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Splitting
$$\beta_{TOT} = \beta_{S} + \beta_{O}$$
:

$$\begin{aligned} \mathcal{I}_{\nu} &= \frac{\delta T}{T_0} + \beta_{\mathbf{S}} \cdot \hat{\mathbf{n}} + \beta_{\mathbf{O}} \cdot \hat{\mathbf{n}} + \\ &+ Q(\nu) \left[(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})^2 + (\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}})^2 + 2(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})(\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}}) \right] \end{aligned}$$

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Splitting
$$\beta_{TOT} = \beta_{S} + \beta_{O}$$
:

$$\begin{aligned} \delta I_{\nu} &= \frac{\delta T}{T_0} + \beta_{\mathbf{S}} \cdot \hat{\mathbf{n}} + \beta_{\mathbf{O}} \cdot \hat{\mathbf{n}} + \\ &+ Q(\nu) \left[(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})^2 + (\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}})^2 + 2(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})(\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}}) \right] \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

• Leading $\beta_{0} \cdot \hat{n} \approx 10^{-4}$

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Splitting
$$\beta_{TOT} = \beta_{S} + \beta_{O}$$
:

$$\delta I_{\nu} = \frac{\delta T}{T_0} + \beta_{\mathbf{S}} \cdot \hat{\mathbf{n}} + \beta_{\mathbf{O}} \cdot \hat{\mathbf{n}} + + Q(\nu) \left[(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})^2 + (\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}})^2 + 2(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})(\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}}) \right]$$

- Leading $\beta_{0} \cdot \hat{n} \approx 10^{-4}$
- Subleading $\approx 10^{-6}$, 1-year or 6-months periodicity $Q(\nu) \approx (1.25, 1.5, 2.0, 3.1)$ for HFI!

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Splitting
$$\beta_{TOT} = \beta_{S} + \beta_{O}$$
:

$$\delta I_{\nu} = \frac{\delta T}{T_0} + \beta_{\mathbf{S}} \cdot \hat{\mathbf{n}} + \beta_{\mathbf{O}} \cdot \hat{\mathbf{n}} + + Q(\nu) \left[(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})^2 + (\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}})^2 + 2(\beta_{\mathbf{S}} \cdot \hat{\mathbf{n}})(\beta_{\mathbf{O}} \cdot \hat{\mathbf{n}}) \right]$$

- Leading $\beta_{0} \cdot \hat{n} \approx 10^{-4}$
- Subleading $\approx 10^{-6}$, 1-year or 6-months periodicity $Q(\nu) \approx (1.25, 1.5, 2.0, 3.1)$ for HFI!
- Q(ν) corrections should be included in Planck
 Calibration: might represent up to O(1%) systematics

(A.N. & M.Quartin '2015)

WMAP/Planck Quadrupole-Octupole alignments

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Another anomaly:

• From a_{2m} and $a_{3m} \rightarrow$ Multipole vectors $\rightarrow \hat{n}_2, \hat{n}_3$.

WMAP/Planck Quadrupole-Octupole alignments

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Another anomaly:

• From a_{2m} and $a_{3m} \rightarrow$ Multipole vectors $\rightarrow \hat{n}_2, \hat{n}_3$.

• $\hat{n}_2 \cdot \hat{n}_3 \approx 0.99$

WMAP/Planck Quadrupole-Octupole alignments

CMB

CMB & Proper motion

Anomalies

Frequency dependence

Another anomaly:

• From a_{2m} and $a_{3m} \rightarrow$ Multipole vectors $\rightarrow \hat{n}_2, \hat{n}_3$.

• $\hat{n}_2 \cdot \hat{n}_3 \approx 0.99$

 And also Dipole-Quadrupole-Octupole (n
₁, n
₂, n
₃) aligned (e.g.Copi et al. '13)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Removing Doppler quadrupole

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Planck data initially showed less alignment than WMAP: 2.3σ for $\hat{n}_1 \cdot \hat{n}_2$ (SMICA 2013)

Removing Doppler quadrupole

CMB

CMB & Prope motion

Anomalies

Frequency dependence

• Planck data initially showed less alignment than WMAP: 2.3σ for $\hat{n}_1 \cdot \hat{n}_2$ (SMICA 2013)

(日)

• After removing Doppler $\rightarrow 2.9\sigma$ (Copi et al. '13), (agreement with WMAP)

Removing Doppler quadrupole

CMB

CMB & Proper motion

Anomalies

Frequency dependence

• Planck data initially showed less alignment than WMAP: 2.3σ for $\hat{n}_1 \cdot \hat{n}_2$ (SMICA 2013)

- After removing Doppler $\rightarrow 2.9\sigma$ (Copi et al. '13), (agreement with WMAP)
- Using $Q_{\rm eff} \approx 1.7$ on SMICA 2013, (A.N. & M.Quartin, JCAP 2015) $\rightarrow 3.3\sigma$ for $\hat{n}_1 \cdot \hat{n}_2$