Multi-tracer science with optical and radio surveys

David Alonso – Oxford Astrophysics

ArXiv: 1405.1751, 1409.8667, 1505.07596, 1507.03550, 1604.01382 **In collaboration with**: P. Ferreira, M. Santos, R. Maartens, P. Bull, T. Louis

IFT-UAM, June 2016

xford

hysics

1. SKA and HI intensity mapping

Cosmological radio signals

HI intensity mapping

- Large pixels: joint emission from multiple galaxies instead of resolving them.
- We only care about large scales

Battye, Davies & Weller 2004

• "Cheap" way to observe large volumes

SKA

SKA-MID

Two experiments:

- SKA-LOW: 50-350 MHz
- SKA-MID: 350 MHz 14 GHz

Many science cases:

- Continuum survey: no z, many sources
- Weak lensing (with the above)
- HI survey: good z, few sources
- HI intensity mapping (z<3)
- EoR (z>3)
- Non-cosmological (e.g. pulsars)

Maartens et al. 1501.04076

Intensity mapping with the SKA

- Baselines not small enough to cover BAO scales in interferometric mode.
- SKA1-MID will be used as a multi-singledish experiment.
- Save interferometer data for calibration.
- Proposal to provide calibrated autocorrelations has been approved by the SKA office.
- SKA1 survey: 30K sq-deg, 10K hours, 350-1050 MHz.
- KAT7 (7) \rightarrow MeerKAT (64) \rightarrow SKA1 (197)

Santos et al. 1501.03989

The problem of foregrounds

hysics

Multi-tracer science with optical and radio - David Alonso

- Blind methods: minimize assumptions about foregrounds \rightarrow foregrounds are v-smooth
- Blind source equation

hysics

Signal+FG

Wxford hysics

Signal only

Oxford hysics

-0.208 0.856

A store with the second second

Cleaned map

~1% measurements of the radial BAO (DA, F. Villaescusa-Navarro, M. Viel in prep.)

xford

hysics

Most important features still observable! (e.g. radial BAO)

2. Optical surveys – the LSST

Optical surveys:

1.0

0.8 0.6 م

0.4

Elliptical Galaxy at z=0.7

NWWWWWWWW

Spectroscopic surveys

- Good radial and angular resolution •
- Long integration times \rightarrow •
- Low number density and redshift •

Optical surveys

Photometric surveys

hysics

LSST (2022)

- Wide: 20K sq-deg
- Deep: г~27
- Fast: ~100 visits per year
- Big data: ~15 TB per day

Multi-science facility:

- Supernovae
- Galaxy clustering
- Cluster science
- Weak & strong lensing
 - Non-cosmological: Transients, S<mark>olar Syste</mark>m, Milky Way

2007uv LSS LSST Coll. et al. 0912.0201

3. Constraining gravity with multiple tracers

Relativistic effects in LSS

Relativistic effects in LSS

Primordial non-Gaussianity

- Massive objects, hosting galaxies, form in high-density environments.
- Primordial non-Gaussianity affects the clustering statistics of biased tracers.

Dalal et al. arXiv:0710.4560

$$\Delta b_M(k, f_{\rm NL}) = f_{\rm NL} \left[b_M(k, 0) - 1 \right] \frac{3\delta_L \Omega_{\rm m0} H_0^2}{c^2 k^2 T(k) D(z)}$$

Camera et al. arXiv:1305.6928

Multi-tracer science with optical and radio - David Alonso

Matarrese and Verde arXiv:0801.4826

Results: single tracers

Experiment	$\sigma(f_{\rm NL})$	$\sigma(\epsilon_{ m GR}$
Intensity mapping (SKA1-MID)	3.01	2.75
Continuum survey $(S_{\text{cut}} = 1\mu Jy)$	11.8	17.1
Spectroscopic survey (Euclid)	6.64	2.57
Photometric survey (LSST)	1.71	2.33

Multi-tracer analyses

hysics

Multi-tracer analyses

hysics

Scalar-tensor gravity

 $\mathcal{L}_2 = G_2(X,\phi),$ $\mathcal{L}_3 = -G_3(X,\phi)\Box\phi,$ $S[g_{\mu\nu},\phi] = \int \sqrt{-g} \sum_{i=2}^5 \mathcal{L}_i$ $\mathcal{L}_4 = G_4(X,\phi)R + G_{4,X} \left[(\Box\phi)^2 - \phi_{;\mu\nu}\phi^{;\mu\nu} \right],$ 1

$$\mathcal{L}_{5} = G_{5}(X,\phi)G_{\mu\nu}\phi^{;\mu\nu} - \frac{1}{6}G_{5,X}\left[(\Box\phi)^{3} - 3(\Box\phi)\phi_{;\mu\nu}\phi^{;\mu\nu} + 2\phi_{;\mu}{}^{;\nu}\phi_{;\nu}{}^{;\lambda}\phi_{;\lambda}{}^{;\mu}\right]$$

Horndeski Lagrangian:

- Most general scalar-tensor theory with 2nd-order equations of motion
- Enormous functional freedom.
- Reduced in the Bellini-Sawicki parametrization:
 - $\cdot \, lpha_K$: parametrizes standard kinetic term
 - $\cdot \alpha_B$: off-diagonal kinetic terms. Scale-dependent gravitational constant.
 - $\cdot \alpha_M = \frac{d \log(M_*^2)}{d \log(a)}$: evolving gravitational constant.

 $c_{GW} = 1 + \alpha_T$: speed of tensors.

DA, P. Ferreira, E. Bellini, M Zumalacarregui (in prep.)

Constraining Horndeski gravity

4. Combining photo-z's and IM.

1 Combined cosmological constraints

- Complementary coverage of scales.
- Complementary tracer properties (e.g. bias, magnification).

DA, P. Ferreira, M. Jarvis (in prep.)

2 Reducing photo-z systematics

Clustering redshifts:

- Idea: reconstruct photo-z distribution using cross-correlations with spectro-z
- Cross correlate photo-z bin with thin spectro-z bins.
- The amplitude of the cross-correlation traces the shape of the photo-z distribution.
- IM could work just as well!

DA, P. Ferreira, M. Jarvis (in prep.)

2 Reducing photo-z systematics

Clustering redshifts:

- Idea: reconstruct photo-z distribution using cross-correlations with spectro-z •
- Cross correlate photo-z bin with thin spectro-z bins. •
- The amplitude of the cross-correlation traces the shape of the photo-z distribution. •
- IM could work just as well!

xford

wa

 w_0

DA, P. Ferreira, M. Jarvis (in prep.)

3 Reducing foreground systematics

Villaescusa-Navarro et al. 1410.7393

- Badly behaved foregrounds could be impossible to subtract.
- E.g. leaked polarized synchrotron.
- Foregrounds cancel out in crosscorrelation.
- This was used to make 1st detection of IM signal (Masui et al. 1208.0331)
- Not yet done with photo-z surveys.

Jointly sample the underlying density distribution.

$$\{\mathbf{z}, \delta\} \leftarrow p(\mathbf{z}, \delta | \mathbf{m}, \hat{\mathbf{n}}, \delta_{\mathrm{HI}})$$

Can be done in a Gibbs-sampling way:

 $\mathbf{z}_{n+1} \leftarrow p(\mathbf{z}|\mathbf{m}, \hat{\mathbf{n}}, \mathbf{x}, \delta_n) = \prod_{g} p(z^g|m^g) p(z|\delta_n(\hat{n}^g))$

$$\delta_{n+1} \leftarrow p(\delta | \mathbf{z}_{n+1}, \mathbf{\hat{n}}, \delta_{\mathrm{HI}}) = p(\delta | \delta_g(\mathbf{z}_{n+1}, \mathbf{\hat{n}}), \delta_{\mathrm{HI}})$$

Jasche & Wandelt 1106.2757

Galaxy overdensity according in the (n+1)-th realization

DA, P. Ferreira, M. Jarvis (in prep.)

Multi-tracer science with optical and radio - David Alonso

Oxford hysics

DA, P. Ferreira, M. Jarvis (in prep.)

- The posterior distributions are a lot more informative.
- On average, reduced photo-z uncertainties (>10%)
- On high-density regions, σ_z reduced by a factor of ~10
- Clean sample can be selected:
 - · ~30% better photo-z's
 - Impervious to photo-z bias
- Improved redshift usable for non-clustering analyses (e.g. SNe?)

xford

hysics

DA, P. Ferreira, M. Jarvis (in prep.)

DA, P. Ferreira, M. Jarvis (in prep.)

5. Measuring growth with kSZ

Growth from kSZ

xford

hysics

Method:

- CMB experiment + overlapping spectroscopic survey
- tSZ-selected clusters with kSZ measurements

kSZ

• Use galaxy positions to reconstruct cluster velocities.

$$\mathbf{v}(t,\mathbf{k}) = \frac{Hf}{a} \frac{i\mathbf{k}}{k^2} \delta(t,\mathbf{k})$$

• Match reconstructed velocity with kS7 measurement.

DA et al. 1604.01382

$$\chi^2(Hf) = rac{(\Delta \mathrm{T}(\hat{\mathbf{n}}) - au(Y) oldsymbol{v}(\delta, Hf). \hat{\mathbf{n}}/c)^2}{\sigma^2}$$

$$\frac{\Delta \mathbf{T}}{\mathbf{T}}\Big|_{\mathbf{tSZ}} (\nu, \hat{\mathbf{n}}) = f_{\mathbf{tSZ}}(\nu) \frac{\sigma_T}{m_e c^2} \int P_e(l_z, \hat{\mathbf{n}}) \, dl_z$$
$$\frac{\Delta \mathbf{T}}{\mathbf{T}}\Big|_{\mathbf{tSZ}} (\hat{\mathbf{n}}) = -\sigma_T \int (\boldsymbol{\beta} \cdot \hat{\mathbf{n}}) \, n_e(l_z, \hat{\mathbf{n}}) \, dl_z$$

Measuring the kSZ effect

- tSZ can be separated using multifrequency.
- kSZ has black-body spectrum
- Must be separated using different scale dependence.
- Three methods:
 - AP filter: assume only a clear spectral separation.
 - Most conservative method.
 - Constrained realizations: assume knowledge of CMB power spectrum.
 - Less conservative, still safe.
 - Matched filter: assume knowledge of CMB power spectrum AND cluster profiles.
 - Optimal. Dependent on cluster assumptions.

Velocity reconstruction

• Simple density-velocity relation in the linear regime.

$$\mathbf{v}(t,\mathbf{k}) = \frac{Hf}{a} \frac{i\mathbf{k}}{k^2} \delta(t,\mathbf{k})$$

- Better estimates possible (e.g.ℵ 2LPT, full Bayesian modelling).
- Estimated reconstruction error from simulations.
- Linear method works well after smoothing (e.g. bad in highdensity regions).

DA et al. 1604.01382

xford

hysics

Constraints from S-IV experiments

Conclusions

- In the next decade we will have an unprecedented coverage of the sky, in terms of area, depth and frequency bandwidth.
- 21cm intensity mapping is a cheap method to cover large portions of the sky, enabling large-scale cosmological studies.
- Robust observables, such as the BAO should be impervious to the effect of foregrounds.
- HI is also a great probe to combine with other tracers (e.g. low bias, no lensing).
- Relativistic LSS effects are only observables using multi-tracer techniques. fnl measurements will benefit greatly from cross-correlations.
- Constraints on modified-gravity parameters will improve by a factor of ~10 with Stage-IV experiments.
- IM and photo-z's are almost complementary probes in terms of scale-coverage.
- A combination of both can:
 - Improve cosmological constraints.
 - Eliminate/mitigate individual systematics.
 - Improve individual redshift estimates and help reconstruct the true density field.
- The combination of CMB and LSS observations offers multiple new cosmological probes.
- Combining velocity reconstruction from spectroscopic surveys and kSZ measurements can yield alternative measurements of the growth rate.
- A good understanding of cluster physics is indispensable

Conclusions

- In the next decade we will have an unprecedented coverage of the sky, in terms of area, depth and frequency bandwidth.
- 21cm intensity mapping is a cheap method to cover large portions of the sky, enabling large-scale cosmological studies.
- Robust observables, such as the BAO should be impervious to the effect of foregrounds.
- HI is also a great probe to combine with other tracers (e.g. low bias, no lensing).
- Relativistic LSS effects are only observables using multi-tracer techniques. fnl measurements will benefit greatly from cross-correlations.
- Constraints on modified-gravity parameters will improve by a factor of ~10 with Stage-IV experiments.
- IM and photo-z's are almost complementary probes in terms of scale-coverage.
- A combination of both can:
 - Improve cosmological constraints.
 - Eliminate/mitigate individual systematics.
 - Improve individual redshift estimates and help reconstruct the true density field.
- The combination of CMB and LSS observations offers multiple new cosmological probes.
- Combining velocity reconstruction from spectroscopic surveys and kSZ measurements can yield alternative measurements of the growth rate.
- A good understanding of cluster physics is indispensable
 iGracias!

Relativistic effects in LSS

$$\Delta_{N} = b \,\delta_{M} - \left[\frac{1}{\mathcal{H}} \frac{\partial v_{r}}{\partial \chi}\right] + \left[(5s-2)\left[\kappa - \frac{2}{\chi} \int \Phi d\eta\right] + \left[\frac{2-5s}{\mathcal{H}\chi} + 5s - f_{\text{evo}} + \frac{\dot{\mathcal{H}}}{\mathcal{H}}\right] \left[\psi + \int \dot{\Phi} d\eta - v_{r}\right] + \frac{\dot{\phi}}{\mathcal{H}} + \psi + (5s-2)\phi$$

hysics