Some theoretical motivations to introduce non standard initial conditions for LSS with inflationary vector field models

Workshop on Cosmic Microwave Background, Large Scale Structure and 21 cm Surveys, IFT, Madrid

Juan P. Beltrán Almeida

Madrid, 29 de junio de 2016.

JPBA (UAN)

Parity violating features

29/06/2016 1 / 25

- Inflation with vector fields
- 3 Particle production
- 4 Some expectations. NG, GW

5 Final remarks

JPBA (UAN)

Parity violating features

29/06/2016 2 / 25

< □ > < □ > < □ > < □ > < □ > < □ >

- Particle production
- Some expectations. NG, GW

JPBA (UAN)

Parity violating features

29/06/2016

< □ > < □ > < □ > < □ > < □ > < □ >

3/25

- General properties of vector fields in curved spacetime.
- Inflation driven by a vector field, Ford (1989).
- Cosmological "seed" magnetic fields, $e^{\alpha \Phi} F^2$, Ratra (1992).
- Primordial magnetic fields from psudo-Goldstone bosons, Garretson, Field & Carroll (1992).
- Vector curvaton mechanism, K. Dimopoulos (2006).
- Breaking of rotational invariance, Ackerman, Carroll & Wise (2007).
- Vector inflation (reloaded), Golovnev, Mukhanov & Vanchurin (2008).
- Inflation with "anisotropic hair", Watanabe, Kanno & Soda (2009).
- Stability analysis of VF models, Contaldi, Peloso, Himmetoglu, Gumrukcuoglu (2007-2009).
- Vector curvaton without ghost instabilities, Dimopoulos, Karciauskas & Wagstaff (2009).
- CMB anomalies, WMAP 7-9, low multipole anomalies CMB, Planck 2013.
- ۲

More recent/current motivations and expectations

- Primordial magnetic fields.
- Signatures of statistical anisotropies and parity violation in CMB correlators.
- Signatures of anisotropic and parity violating non-Gaussianity.
- Enhancement of gravitation waves.
- Effects on LSS. Non-Gaussian & anisotropic bias.

More recent/current motivations and expectations

- Primordial magnetic fields.
- Signatures of statistical anisotropies and parity violation in CMB correlators.
- Signatures of anisotropic and parity violating non-Gaussianity.
- Enhancement of gravitation waves.
- Effects on LSS. Non-Gaussian & anisotropic bias.
- ...

Inflation with vector fields

Particle production

Some expectations. NG, GW

JPBA (UAN)

Parity violating features

29/06/2016

< □ > < □ > < □ > < □ > < □ > < □ >

6/25

Stable gauge invariant abelian models. Scalar + vector

General scalar + vector models (allowing for derivative interactions):

$$S = \int d^4x \sqrt{-g} \left[R - \mathcal{L}(\phi, A_{\mu}) \right]$$

Stable and causal gauge invariant models:

$$S = \int d^4x \sqrt{-g} \left[R - \mathcal{L}_{\phi}(\phi, \partial \phi) - \frac{1}{4} f_1(\phi) F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} f_2(\phi) F^{\mu\nu} \tilde{F}_{\mu\nu} \right]$$
$$\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$$
$$(\phi) F^{\mu\nu} F_{\mu\nu} \Rightarrow \text{Non-diluting anisotropic source ("anisotropic bair")}.$$

 $f_1(\phi)F^{\mu\nu}F_{\mu\nu} \Rightarrow$ Non-diluting anisotropic source ("anisotropic hair"). $f_2(\phi)F^{\mu\nu}\tilde{F}_{\mu\nu} \Rightarrow$ Parity symmetry breaking.

29/06/2016 7 / 25

Sac

Stable gauge invariant abelian models. Scalar + vector

General scalar + vector models (allowing for derivative interactions):

$$S = \int d^4x \sqrt{-g} \left[R - \mathcal{L}(\phi, A_{\mu}) \right]$$

Stable and causal gauge invariant models:

$$S = \int d^4x \sqrt{-g} \left[R - \mathcal{L}_{\phi}(\phi, \partial \phi) - \frac{1}{4} f_1(\phi) F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} f_2(\phi) F^{\mu\nu} \tilde{F}_{\mu\nu} \right]$$
$$\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$$

 $f_1(\phi)F^{\mu\nu}F_{\mu\nu} \Rightarrow$ Non-diluting anisotropic source ("anisotropic hair"). $f_2(\phi)F^{\mu\nu}\tilde{F}_{\mu\nu} \Rightarrow$ Parity symmetry breaking.

Parity violating features

29/06/2016 7 / 25

Sac

Stable gauge invariant abelian models. Scalar + vector

General scalar + vector models (allowing for derivative interactions):

$$S = \int d^4x \sqrt{-g} \left[R - \mathcal{L}(\phi, A_{\mu}) \right]$$

Stable and causal gauge invariant models:

$$S = \int d^4x \sqrt{-g} \left[R - \mathcal{L}_{\phi}(\phi, \partial\phi) - \frac{1}{4} f_1(\phi) F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} f_2(\phi) F^{\mu\nu} \tilde{F}_{\mu\nu} \right]$$
$$\tilde{F}_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F^{\rho\sigma}$$
$$f_1(\phi) F^{\mu\nu} F_{\mu\nu} \Rightarrow \text{ Non-diluting anisotropic source ("anisotropic hair").}$$
$$f_2(\phi) F^{\mu\nu} \tilde{F}_{\mu\nu} \Rightarrow \text{ Parity symmetry breaking.}$$

 f_1

< ロ ト < 同 ト < 三 ト < 三 ト

Consequences of vector fields during inflation

Anisotropic and parity violating correlations in models of the form (some type of) $f_1(\phi)F^2 + f_2(\phi)F\tilde{F}$, Dimopoulos, Karciauskas, Wagstaff, Bartolo, Dimastrogiovanni, Matarrese, Riotto, Liguori, Ricciardone, Peloso, Valenzuela-Toledo, Rodríguez, Lyth, Gumrukcuoglu, Himmetoglu, Shiraishi, Komatsu, Barnaby, Watanabe, Kanno, Soda, Sorbo, Emami, Firouzjahi...

$$P_{\zeta}(k) \Rightarrow P_{\zeta}(\vec{k}) = P_{\zeta}(k) \left[1 + g_{\zeta}(\hat{k} \cdot \hat{n})^2 \right],$$

$$B_{\zeta}(k_1, k_2, k_3) \Rightarrow B_{\zeta}(\vec{k}_1, \vec{k}_2, \vec{k}_3) = B_{\zeta} \left[1 + g_{\zeta} b_1(\hat{k}_i, \hat{n}) + g_{\zeta}^2 b_2(\hat{k}_i, \hat{n}) \right],$$

...

 $g_{\zeta} \sim 0.3$ (back in 2009), $\hat{n} \rightarrow$ along the ecliptic -0.023 < $g_{\zeta} < 0.036$ Planck 2015.

Angle dependent correlations

Gauge symmetry breaking

Many forms to break gauge invariance. A simple way is by introducing a mass term. Other ways are, for instance, the introduction of derivative couplings of the fields $(\partial A)^2, A^2 \partial \cdot A, \partial \cdot A (\partial \phi)^2, A \cdot \partial \phi, \dots$

$$S_{sv} = \int d^4x \sqrt{-g} \left[-\frac{1}{4} f_1(\phi) F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} f_2(\phi) F^{\mu\nu} \tilde{F}_{\mu\nu} - \frac{1}{2} m(\phi)^2 A^2 + \cdots \right]$$

- Statistical anisotropies, parity violating correlations and the mass term add scale dependent effects on the field perturbations.
- Free from ghost instability. Stability of the model for a massive vector curvaton carefully detailed by Dimopoulos, Karciauskas & Wagstaff (2009).

③ Particle production

4) Some expectations. NG, GW

5 Final remarks

JPBA (UAN)

Parity violating features

Equations of motion

Background metric

Background metric in conformal time

$$ds^2 = a(\tau)^2 (-d\tau^2 + dx_i dx^i),$$

Assume nearly de Sitter geometry $a(\tau) \approx -1/H\tau$ with constant Hubble parameter H,

$$ds^{2} = \frac{1}{H^{2}\tau^{2}}(-d\tau^{2} + dx_{i}dx^{i}).$$

Equations of motion

$$S_{\phi A} = -\frac{1}{4} \int d^4 x \sqrt{-g} \left[f_1(\phi) F^{\mu\nu} F_{\mu\nu} + f_2(\phi) F^{\mu\nu} \tilde{F}_{\mu\nu} + 2m^2(\phi) A^2 \right]$$

$$\downarrow$$

$$\nabla_{\mu} \left(f_1(\phi) F^{\mu\nu} + f_2(\phi) \tilde{F}^{\mu\nu} \right) - m^2(\phi) A^{\nu} = 0, \quad \& \quad \nabla_{\mu} \tilde{F}^{\mu\nu} = 0.$$

JPBA (UAN)

Parity violating features

29/06/2016 11/25

Equations of motion

Homogeneous scalar field $\partial_i \phi = 0 \Rightarrow f_1(\phi) = f_1(\phi(\tau)), f_2(\phi) = f_2(\phi(\tau)) \& m(\phi) = m(\phi(\tau)).$ $\Rightarrow \partial_i f_1 = \partial_i f_2 = \partial_i m = 0.$

$$\begin{bmatrix} \nabla^2 - \partial_\tau^2 - \left(\frac{\partial_\tau m^2}{m^2} + \frac{\partial_\tau a^2}{a^2}\right) \partial_\tau - \left(\frac{\partial_\tau^2 m^2}{m^2} + \frac{\partial_\tau^2 a^2}{a^2} - \left(\frac{\partial_\tau m^2}{m^2}\right)^2 - \left(\frac{\partial_\tau a^2}{a^2}\right)^2 + \frac{m^2 a^2}{f_1}\right) \end{bmatrix} A_0 = 0$$

$$\left(\nabla^2 - \partial_\tau^2 - \frac{m^2 a^2}{f_1} - \frac{\partial_\tau f_1}{f_1} \partial_\tau + \frac{\partial_\tau f_2}{f_1} \nabla \times \right) A_i + \left[\frac{\partial_\tau f_1}{f_1} - \left(\frac{\partial_\tau m^2}{m^2} + \frac{\partial_\tau a^2}{a^2}\right)\right] \partial_i A_0 = 0$$

Further assume power law evolution of the coupling functions

$$m^2(a) \propto a^{2r}, \quad f_1(a) \propto a^{2\alpha}, \quad f_2(a) \propto a^{2\beta}.$$

Special case $\alpha = \beta$ (Sorbo & Caprini 2014) $\Rightarrow f_2 = \gamma f_1$ for constant γ . Going to Fourier space $F(\tau, \vec{x}) = \int \frac{d^3x}{(2\pi)^{3/2}} F(\tau, \vec{k}) e^{i\vec{k}\cdot\vec{x}}$ and choosing $\vec{k} = (k, 0, 0)$ the transverse components decouple:

$$\left[\partial_{\tau}^2 + k^2 - \frac{\alpha(\alpha+1)}{\tau^2} + \frac{m^2 a^2}{f_1} \pm \frac{2\xi k}{\tau}\right] \tilde{A}_{\pm} = 0.$$
(1)

$$\tilde{A}_{\pm} = \sqrt{f_1} \frac{A_y \pm iA_z}{\sqrt{2}}, \quad \xi = -\alpha\gamma$$

JPBA (UAN)

Parity violating features

▶ < Ē ▶ Ē ∽ Q (29/06/2016 12/25

29/06/2016

13/25

Solutions in fifferent regimes

Work in progress with Juan C. Bueno-Sánchez.

JPBA (UAN)

Parity violation term dominates

Massless case (Dimopoulos & Karciauskas JHEP06(2012)040, Sorbo & Caprini JCAP10(2014)056, ...)

$$\tilde{A}_{\pm} = \frac{H}{\sqrt{2k}} W_{-i\xi,\alpha+1/2}(2ik\tau)$$

For $|k\tau| \ll \xi$ and $\xi \gg 1$, parity violation dominates the evolution and for superhorizon scales and $|k\tau| \ll 8/\xi \ll 1$

$$\tilde{A}_{+} \approx \sqrt{\frac{|\tau|}{2\pi}} e^{\pi \xi/2} \Gamma(|1+2\alpha|) (|2\xi k\tau|)^{-|\alpha+1/2|}$$

Exponential amplification of the +1 helicity mode.

JPBA (UAN)

Parity violating features

29/06/2016 14 / 25

Mass term dominates

Solution for massive case

$$\tilde{A}_{m\pm} = \sqrt{-\tau} \left[D_1 J_\nu \left(\frac{M}{(r-\alpha)H} \right) + D_2 J_{-\nu} \left(\frac{M}{(r-\alpha)H} \right) \right]$$

Introduces scale dependence in the perturbations spectrum in a non trivial way!

Super horizon evolution keep imprints of the scale dependence due to the mass term

$$\tilde{A}_{m+} \approx \sqrt{\frac{|\tau|}{2\pi}} G\left(\frac{M}{H}\right) e^{\pi\xi/2} (|2\xi k\tau|)^{-|\alpha+1/2|}$$

JPBA (UAN)

Parity violating features

29/06/2016 15 / 25

→ Ξ > < Ξ</p>

Power spectrum Q dominates at the end of inflation

$$\begin{aligned} \mathcal{P}_{-} &= \frac{k^3}{2\pi^2} \lim_{V \to 0} |w_{+}|^2 \\ &= \left(\frac{H}{2\pi}\right)^2 \frac{(2|c|)^{2\nu_q - 1} 2|b| |M_2^+|^2 \Gamma^2(\nu_q)}{9\pi^2} \left(\frac{k}{aH}\right)^{3-\nu_q} \left(\frac{|\dot{f}_2|}{Hf_1}\right)^{-\nu_q} \end{aligned}$$

(With w = A/a) Non trivial scale dependence in the perturbations spectrum. Flat spectrum for

$$\nu_q = 3 = \frac{1}{2|c|} |2\alpha + 1| \implies \alpha_f = -\frac{1}{2} \pm 3|c|.$$

Exponential scale dependent amplification is imprinted in the PS

$$\begin{aligned} \mathcal{P}_{+} &= \frac{k^{3}}{2\pi^{2}} \lim_{V \to 0} |w_{-}|^{2} \\ &= \left(\frac{H}{2\pi}\right)^{2} \frac{\Gamma^{2}(\nu_{q})}{2} \frac{2|b|e^{2X/|c|}}{9\pi^{2}} |M_{-}^{2}|^{2} (2|c|)^{2\nu_{q}-1} \left(\frac{k}{aH}\right)^{3-\nu_{q}} \left(\frac{|\dot{f}_{2}|}{Hf_{1}}\right)^{-\nu_{q}}. \end{aligned}$$

JPBA (UAN)

Scale dependent amplification

$$\exp\left[\frac{2X}{|c|}\right] = \exp\left[\frac{2Q_{\bar{t}}}{|c|H}\right] = \exp\left[\frac{2}{|c|}\left(\frac{k}{aH}\right)^{b/2(b-c)}\left(\frac{|\dot{f}_2|}{Hf_1}\right)^{b/2(b-c)}\left(\frac{M}{H}\right)^{c/(c-b)}\right]$$
$$Q^2 = \frac{k}{a}\frac{|\dot{f}_2|}{f_1} \propto a^{2c}, M^2 = \frac{m^2}{f_1} \propto a^{2b}, \text{ with } b = \beta - \alpha.$$

590

- 2 Inflation with vector fields
- 3 Particle production

5 Final remarks

JPBA (UAN)

Parity violating features

29/06/2016 18 / 25

-

Some expectations

Multipolar expansion of the BS

$$B_{\zeta} = \sum_{L=0} c_L P_L(\mathbf{\hat{k}}_1 \cdot \mathbf{\hat{k}}_2) P(k_1) P(k_2) + perm.$$

 $c_L =$ observable parameters $P_L =$ Legendre polynomials

 $c_L \rightarrow$ encodes information about statistical anisotropy and parity violation.

$$g = -\frac{48N_{CMB}^2\rho_{E^{vev}}}{\epsilon\rho_{\phi}}, c_0 = -\frac{4N_{CMB}}{3\pi}\frac{e^{2\pi\xi}}{\xi^3}g, c_1 \neq 0 = -\frac{3c_0}{2}, c_2 = \frac{c_0}{2}$$

Bartolo, Matarrese, Peloso, Shiraishi, JCAP07(2015)039

 $\begin{array}{l} \underline{\text{Planck 2015}} \rightarrow -0.0225 < g < 0.0363, -10.7 < c_0 < 16.7, \\ -89 < c_1 < 324, -57 < c_2 < 47 \; . \end{array}$

Optimal estimator for tracking the parity odd features.

JPBA (UAN)

Parity violating features

29/06/2016 19 / 25

Some expectations

Multipolar expansion of the BS

$$B_{\zeta} = \sum_{L=0} c_L P_L(\mathbf{\hat{k}}_1 \cdot \mathbf{\hat{k}}_2) P(k_1) P(k_2) + perm.$$

 $c_L =$ observable parameters $P_L =$ Legendre polynomials

 $c_L \rightarrow$ encodes information about statistical anisotropy and parity violation.

$$g = -\frac{48N_{CMB}^2\rho_{E^{vev}}}{\epsilon\rho_{\phi}}, c_0 = -\frac{4N_{CMB}}{3\pi}\frac{e^{2\pi\xi}}{\xi^3}g, c_1 \neq 0 = -\frac{3c_0}{2}, c_2 = \frac{c_0}{2}$$

Bartolo, Matarrese, Peloso, Shiraishi, JCAP07(2015)039

Optimal estimator for tracking the parity odd features.

JPBA (UAN)

Gravitational waves production

Equation of motion for the tensor modes (using gauge $h_i^{\ i} = \partial_j h_{ij} = 0$):

$$\frac{d^2 h_{ij}}{d\tau^2} + 2\frac{a'}{a}\frac{dh_{ij}}{d\tau} - \Delta h_{ij} = \frac{2}{M_p^2}T_{ij} = \frac{2}{M_p^2}\Pi_{ij}{}^{lm}T_{lm}.$$

Projector operator:

$$\Pi_{ij}{}^{lm} = \Pi_i{}^l\Pi_j{}^m - \frac{1}{2}\Pi_{ij}\Pi^{lm}, \quad \Pi_{ij} = \delta_{ij} - \frac{\partial_i\partial_j}{\Delta}.$$

- $\Pi_{ij}{}^{lm}$ projects the spatial energy-momentum tensor T_{ij} in the transverse direction.
- T_{ij} is traceless and divergenceless: $T_{ii} = \partial_j T_{ji} = 0$.
- Gravitational waves are only sourced by the transverse components $ilde{A}_{\pm}$.

JPBA (UAN)

Parity violating features

29/06/2016 20 / 25

イロト 不同 ト イヨト イヨト

Gravitational waves production

Equation of motion for the tensor modes (using gauge $h_i^{\ i} = \partial_j h_{ij} = 0$):

$$\frac{d^2 h_{ij}}{d\tau^2} + 2\frac{a'}{a}\frac{dh_{ij}}{d\tau} - \Delta h_{ij} = \frac{2}{M_p^2}T_{ij} = \frac{2}{M_p^2}\Pi_{ij}{}^{lm}T_{lm}.$$

Projector operator:

$$\Pi_{ij}{}^{lm} = \Pi_i{}^l\Pi_j{}^m - \frac{1}{2}\Pi_{ij}\Pi^{lm}, \quad \Pi_{ij} = \delta_{ij} - \frac{\partial_i\partial_j}{\Delta}.$$

- Π_{ij}^{lm} projects the spatial energy-momentum tensor T_{ij} in the transverse direction.
- T_{ij} is traceless and divergenceless: $T_{ii} = \partial_j T_{ji} = 0$.

JPBA (UAN)

Parity violating features

29/06/2016 20 / 25

くロ と く 戸 と く 三 と 一

Gravitational waves production

EM tensor for the vector field:

$$T_{\mu\nu} = f_1 \left(\frac{1}{4} g_{\mu\nu} F^2 - F_{\mu\alpha} F_{\nu}^{\ \alpha} \right) - m^2 (A_{\mu} A_{\nu} - \frac{1}{2} g_{\mu\nu} A^2)$$

Spacial components :

$$T_{ij} = -f_1 F_{i\alpha} F_j^{\ \alpha} - m^2 A_i A_j + \left(\frac{f_1}{4} F^2 - \frac{m^2}{2} A^2\right) \delta_{ij}.$$

EM components that source tensor modes equation:

$$T_{ij} = \Pi_{ij}^{lm} \left[-f_1 F_{l\alpha} F_m^{\ \alpha} - m^2 A_l A_m + (\cdots) \delta_{lm} \right].$$
⁽²⁾

 (\cdots) terms are projected out by $\Pi_{ij}{}^{lm}$. Canonical variables $\tilde{h}_{ij} = ah_{ij}$:

$$\left[\frac{d^2}{d\tau^2} + \left(k^2 - \frac{a''}{a}\right)\right]\tilde{h}_{ij}(\vec{k}) = \frac{2a}{M_p^2} \mathrm{T}_{ij}(\vec{k}).$$

JPBA (UAN)

Parity violating features

29/06/2016 21 / 25

Chiral GW

Enhancement of the + polarisation (Sorbo JCAP06(2011)003, Barnaby, Moxon, Namba, Peloso, Shiu, Zhou PhysRevD.86.103508, Cook & Sorbo JCAP11(2013)047, ...)

$$\mathcal{P}^{+} = \frac{H^2}{\pi^2 M_P^2} (1 + 8.6 \times 10^{-7} \frac{H^2}{M_P^2} \frac{e^{4\pi\xi}}{\xi^6})$$
$$\mathcal{P}^{-} = \frac{H^2}{\pi^2 M_P^2} (1 + 1.8 \times 10^{-9} \frac{H^2}{M_P^2} \frac{e^{4\pi\xi}}{\xi^6})$$

Expectation

$$\mathcal{P}^{+} = \frac{H^2}{\pi^2 M_P^2} (1 + 8.6 \times 10^{-7} \frac{H^2}{M_P^2} G_+(k, M) \frac{e^{4\pi\xi}}{\xi^6})$$
$$\mathcal{P}^{-} = \frac{H^2}{\pi^2 M_P^2} (1 + 1.8 \times 10^{-9} \frac{H^2}{M_P^2} G_-(k, M) \frac{e^{4\pi\xi}}{\xi^6})$$

JPBA (UAN)

Parity violating features

29/06/2016 22 / 25

Sac

Chiral GW

Enhancement of the + polarisation (Sorbo JCAP06(2011)003, Barnaby, Moxon, Namba, Peloso, Shiu, Zhou PhysRevD.86.103508, Cook & Sorbo JCAP11(2013)047, ...)

$$\mathcal{P}^{+} = \frac{H^2}{\pi^2 M_P^2} (1 + 8.6 \times 10^{-7} \frac{H^2}{M_P^2} \frac{e^{4\pi\xi}}{\xi^6})$$
$$\mathcal{P}^{-} = \frac{H^2}{\pi^2 M_P^2} (1 + 1.8 \times 10^{-9} \frac{H^2}{M_P^2} \frac{e^{4\pi\xi}}{\xi^6})$$

Expectation

$$\begin{aligned} \mathcal{P}^{+} &= \frac{H^2}{\pi^2 M_P^2} (1 + 8.6 \times 10^{-7} \frac{H^2}{M_P^2} G_+(k, M) \frac{e^{4\pi\xi}}{\xi^6}) \\ \mathcal{P}^{-} &= \frac{H^2}{\pi^2 M_P^2} (1 + 1.8 \times 10^{-9} \frac{H^2}{M_P^2} G_-(k, M) \frac{e^{4\pi\xi}}{\xi^6}) \end{aligned}$$

JPBA (UAN)

Parity violating features

Э 29/06/2016 22/25

Sac

<ロト < 回ト < 回ト < ヨト < ヨト

GW statistics, anisotropic bias and anisotropic IC

Testing the statistics of GW, Shiraishi, Hikage, Namba, Namikawa, Hazumi arXiv:1606.06082. (Scale dependent and sizeable GW due to source fields like axions)

 $\langle BBB \rangle$ at 3σ with LiteBIRD

Scale and c_L depending bias

 $P_g = b_1^2 P_m$

 $P_g = b_1^2(g, c_0, c_1, c_2)P_m + \cdots$

JPBA (UAN)

Parity violating features

29/06/2016 23 / 25

イロト 不同 ト イヨト イヨト

GW statistics, anisotropic bias and anisotropic IC

Testing the statistics of GW, Shiraishi, Hikage, Namba, Namikawa, Hazumi arXiv:1606.06082. (Scale dependent and sizeable GW due to source fields like axions)

 $\langle BBB \rangle$ at 3σ with LiteBIRD

Scale and c_L depending bias

$$P_g = b_1^2 P_m$$

 $P_g = b_1^2(g, c_0, c_1, c_2)P_m + \cdots$

JPBA (UAN)

Parity violating features

29/06/2016 23 / 25

くロ と く 戸 と く 三 と 一

GW statistics, anisotropic bias and anisotropic IC

Testing the statistics of GW, Shiraishi, Hikage, Namba, Namikawa, Hazumi arXiv:1606.06082. (Scale dependent and sizeable GW due to source fields like axions)

 $\langle BBB \rangle$ at 3σ with LiteBIRD

Scale and c_L depending bias

$$P_g = b_1^2 P_m$$

$$P_g = b_1^2(g, c_0, c_1, c_2)P_m + \cdots$$

JPBA (UAN)

29/06/2016 23 / 25

- 2 Inflation with vector fields
- 3 Particle production
- 4 Some expectations. NG, GW

5 Final remarks

JPBA (UAN)

Parity violating features

29/06/2016 24 / 25

-

Final remarks and hopes

- Interesting possibilities for the GW production mechanism with the mass term. Scale dependent GW.
- Statistical anisotropy, parity violating and scale dependent effect are interesting effects that naturally arise in vector field models.
- Going beyond shapes in NG, probing scale and angle dependence with LSS $(f_{NL} \sim 1)$. Signatures on bias parameters?

200

< ロ ト < 同 ト < 三 ト < 三 ト