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Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5

Cosmic Microwave Background Anisotropies



• Standard 6 parameter concordance cosmology with 
parameters known to percent level precision

• Gaussian-distributed adiabatic fluctuations with nearly 
scale-invariant power spectrum over a wide range of scales

• cold dark matter (“CDM”)

• accelerated expansion today (“Λ”)

• Standard BBN scenario  → Neff and Yp

• Standard ionization history  → Ne as a function of z

 CMB anisotropies (with SN, LSS, etc...) clearly 
taught us a lot about the Universe we live in!

Planck Collaboration: Cosmological parameters

Table 4. Parameter 68 % confidence limits for the base ⇤CDM model from Planck CMB power spectra, in combination with
lensing reconstruction (“lensing”) and external data (“ext,” BAO+JLA+H0). Nuisance parameters are not listed for brevity (they
can be found in the Planck Legacy Archive tables), but the last three parameters give a summary measure of the total foreground
amplitude (in µK2) at ` = 2000 for the three high-` temperature spectra used by the likelihood. In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2453, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh2).

TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

⌦bh2 . . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

⌦ch2 . . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010

100✓MC . . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030

⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012

ln(1010As) . . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023

ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46

⌦⇤ . . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062

⌦m . . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

⌦mh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

⌦mh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029

�8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

�8⌦
0.5
m . . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

�8⌦
0.25
m . . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
�1.6 8.8+1.7

�1.4 8.9+1.3
�1.2 10.0+1.7

�1.5 8.5+1.4
�1.2 8.8+1.2

�1.1

109As . . . . . . . . . . 2.198+0.076
�0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase�2⌧ . . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011

Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021

z⇤ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23

r⇤ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24

100✓⇤ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029

zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29

rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24

kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029

zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23

keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071

100✓s,eq . . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143⇥217
2000 . . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 5. Constraints on 1-parameter extensions to the base⇤CDM model for combinations of Planck power spectra, Planck lensing,
and external data (BAO+JLA+H0, denoted “ext”). Note that we quote 95 % limits here.

Parameter TT TT+lensing TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT,TE,EE+lensing+ext

⌦K . . . . . . . . . . . . . . �0.052+0.049
�0.055 �0.005+0.016

�0.017 �0.0001+0.0054
�0.0052 �0.040+0.038

�0.041 �0.004+0.015
�0.015 0.0008+0.0040

�0.0039
⌃m⌫ [eV] . . . . . . . . . . < 0.715 < 0.675 < 0.234 < 0.492 < 0.589 < 0.194
Ne↵ . . . . . . . . . . . . . . 3.13+0.64

�0.63 3.13+0.62
�0.61 3.15+0.41

�0.40 2.99+0.41
�0.39 2.94+0.38

�0.38 3.04+0.33
�0.33

YP . . . . . . . . . . . . . . . 0.252+0.041
�0.042 0.251+0.040

�0.039 0.251+0.035
�0.036 0.250+0.026

�0.027 0.247+0.026
�0.027 0.249+0.025

�0.026
dns/d ln k . . . . . . . . . . �0.008+0.016

�0.016 �0.003+0.015
�0.015 �0.003+0.015

�0.014 �0.006+0.014
�0.014 �0.002+0.013

�0.013 �0.002+0.013
�0.013

r0.002 . . . . . . . . . . . . . < 0.103 < 0.114 < 0.114 < 0.0987 < 0.112 < 0.113
w . . . . . . . . . . . . . . . �1.54+0.62

�0.50 �1.41+0.64
�0.56 �1.006+0.085

�0.091 �1.55+0.58
�0.48 �1.42+0.62

�0.56 �1.019+0.075
�0.080
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What are the main next targets for CMB anisotropies?

• CMB temperature power spectrum kind of finished...

• E modes cosmic variance limited to high-l
- better constraint on ! from large scale E modes 

- refined CMB damping tail science from small-scale E modes

- CMB lensing and de-lensing of primordial B-modes

• primordial B modes 
- detection of r ~ 10-3 (energy scale of inflation) 

- upper limit on nT < O(0.1) as additional ‘proof of inflation’ 

• CMB anomalies
- stationarity of E and B-modes, lensing potential, etc across the sky

• SZ cluster science
- large cluster samples and (individual) high-res cluster measurements

Lots of competition to reach these goals!



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Only very small distortions of CMB spectrum are still allowed!

Average spectrum



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

„high“ redshifts

„low“   redshifts
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PIXIE: Primordial Inflation Explorer

• 400 spectral channel in the frequency 
range 30 GHz and 6THz (Δν ~ 15GHz)

• about 1000 (!!!) times more sensitive than 
COBE/FIRAS 

• B-mode polarization from inflation (r ≈ 10-3)
• improved limits on µ and y 
• was proposed 2011 as NASA EX mission 

(i.e. cost ~ 200 M$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Average spectrum



NASA 30-yr Roadmap Study
(published Dec 2013)

How does the Universe work?

“Measure the spectrum of the 
CMB with precision several orders 
of magnitude higher than COBE 
FIRAS, from a moderate-scale 
mission or an instrument on CMB 
Polarization Surveyor.”

New call from NASA  
expected end 2016



What can CMB spectral distortions add?
• Add a new dimension to CMB science

- probe the thermal history at different stages of the Universe

• Complementary and independent information!
- cosmological parameters from the recombination radiation

- new/additional test of large-scale anomalies

• Several guaranteed signals are expected
- y-distortion from low redshifts

- damping signal & recombination radiation

• Test various inflation models
- damping of the small-scale power spectrum 

• Discovery potential
- decaying particles and other exotic sources of distortions

All this largely without any competition from the ground!!!

PIXIE/PRISM-S





        

     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106
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thermal history of the 
Universe at z < few x 106

pre- post-recombination epoch
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Measurements of CMB spectrum will open a new 
unexplored window to the early Universe!
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Example: Energy release by decaying relict particle

Computation carried out with CosmoTherm      
(JC & Sunyaev 2012)

• initial condition: full 
equilibrium 

• total energy release:       
    Δρ/ρ~1.3x10-6

• most of energy 
release around:

    zX~2x106

• positive µ-distortion 

• high frequency 
distortion frozen 
around z≃5x105

• late (z<103) free-free 
absorption at very 
low frequencies 
(Te<Tγ) 

redshift

difference between 
electron and photon 
temperature 

today x=2 x 10-2 means ν~1GHz



Quasi-Exact Treatment of the Thermalization Problem

• But: distortions are small ⇒ thermalization problem becomes linear!

• Case-by-case computation of the distortion (e.g., with CosmoTherm, JC & 
Sunyaev, 2012, ArXiv:1109.6552) still rather time-consuming 

• Simple solution: compute “response function” of the thermalization 
problem ⇒ Green’s function approach (JC, 2013, ArXiv:1304.6120) 

• Final distortion for fixed energy-release history given by

�I⌫ ⇡
Z 1

0
Gth(⌫, z

0)
d(Q/⇢�)

dz0
dz0

• For real forecasts of future prospects a precise & fast method for 
computing the spectral distortion is needed!

Thermalization Green’s function

• Fast and quasi-exact! No additional approximations!

CosmoTherm available at: www.Chluba.de/CosmoTherm

http://cosmos.astro.uiuc.edu/rico
http://cosmos.astro.uiuc.edu/rico
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Response function: 
energy injection ⇒ distortion

JC & Sunyaev, 2012, ArXiv:1109.6552
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Distortion Green’s function for energy release
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Intensity signal for different heating redshifts

Response function: 
energy injection ⇒ distortion

Distortion Green’s function for energy release

JC & Sunyaev, 2012, ArXiv:1109.6552
JC, 2013, ArXiv:1304.6120

hybrid distortion probes 
time-dependence of 
energy-release history
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Intensity signal for different heating redshifts

Response function: 
energy injection ⇒ distortion

Distortion Green’s function for energy release

JC & Sunyaev, 2012, ArXiv:1109.6552
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Distortion contains much more 
information than previously thought!

hybrid distortion probes 
time-dependence of 
energy-release history



Transition from y-distortion → µ-distortion

Figure from Wayne Hu’s PhD thesis, 1995, but see also discussion in Burigana, 1991

increasing num
ber of scatterings 

Photon production 
neglected



Transition from y-distortion → µ-distortion

Figure from Wayne Hu’s PhD thesis, 1995, but see also discussion in Burigana, 1991

increasing num
ber of scatterings 

Photon production 
neglected

hybrid distortion is not 
just superposition of y- 
and µ- case!!!



Distortion not just superposition of µ and y-distortion!

Computation carried out with CosmoTherm      
(JC & Sunyaev 2011)

Decaying particle with 
lifetime tX ~ 2.4 x 109 sec

First explicit calculation that showed that there is more!



Distortion not just superposition of µ and y-distortion!

Computation carried out with CosmoTherm      
(JC & Sunyaev 2011)

Decaying particle with 
lifetime tX ~ 2.4 x 109 sec

   Final distortion not just 
µ + y! More information!

First explicit calculation that showed that there is more!
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Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Reionization and structure formation



Simple estimates for the distortion

• Gas temperature T ≃ 104 K

• Thomson optical depth  ! ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6

=) y ' kTe

mec2
⌧ ⇡ 2⇥ 10�7



Average CMB spectral distortions
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Average CMB spectral distortions
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⇒ relativistic corrections 
measurable! (Hill et al. 2015) 
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•                               (~ 10% from IGM and reionization rest from ICM) 

• > 1000 σ detection with PIXIE-type experiment

• optical depth-weighted temperature: 

• ~ 30 σ detection with PIXIE-type experiment

hyi ' 1.8⇥ 10�6

hkTei⌧ ' 0.208 keV(⌘ 2.4⇥ 106 K)

Taking the Universe’s temperature

Hill et al., 2015, ArXiv:1507.01583
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FIG. 1: The mean tSZ signal of the universe. The dashed
cyan and solid blue curves show non-relativistic and relativis-
tic calculations, respectively. The signal is dominated by hot,
ionized electrons in galaxy groups and clusters. Error bars are
shown only on the relativistic curve for clarity, and include
the PIXIE instrumental noise, component separation noise,
and cosmic variance (CV). PIXIE can detect the signal at
1470� significance; CV reduces the e↵ective signal-to-noise to
230�. For comparison, the thin green curve shows the

µ distortion (multiplied by 100 to render it visible).

⌦
m

= 0.282) [45] and the halo mass function of Ref. [46].
We use the ICM electron pressure profile fitting func-
tion from Ref. [47], which is extracted from cosmological
hydrodynamics simulations [39]. This pressure profile
matches a wide range of recent tSZ and X-ray obser-
vations (e.g., [48–52]) and fully specifies the ICM elec-
tron pressure as a function of cluster mass, redshift, and
cluster-centric distance. Finally, to calculate the rela-
tivistic corrections, we use the T

e

(M, z) relation from
Ref. [53], with a +20% correction applied to the masses
derived from X-ray data in that work, to account for de-
viations from hydrostatic equilibrium in the ICM [14].

The sky-averaged tSZ signal also receives contribu-
tions from electrons in the IGM and during reioniza-
tion. Our reionization model is described in Ref. [54]
and B15. The IGM and reionization contributions are
subdominant to the ICM signal by more than an or-
der of magnitude. They are approximated well by the
non-relativistic tSZ spectrum due to the electrons’ low
temperature (k

B

T
e

. few eV), and thus are fully char-
acterized by the Compton-y parameter. We add these
contributions to that from the ICM to obtain the total
sky-averaged tSZ signal. We verify the accuracy of our
analytic calculations by comparing to numerical simula-
tions, finding that the predicted hyi values agree to within
2% (see B15).

Fig. 1 shows the mean tSZ signal of the universe, for
both the non-relativistic and relativistic cases, as well as

FIG. 2: Di↵erence between relativistic and non-relativistic
predictions for the mean tSZ signal of the universe. The solid
magenta curve shows the di↵erence between the tSZ predic-
tions from Fig. 1. The dashed orange curve shows an approxi-
mation based on moments of the optical depth-weighted ICM
electron temperature distribution, which matches the full cal-
culation to . 0.1% precision. The dash-dotted black

curve shows the lowest-order “residual” (non-y/non-
µ) distortion [56]. The relativistic tSZ signal is par-

tially degenerate with this distortion, and thus makes

it harder to access the r-type signal. The shaded blue
area shows the PIXIE instrumental noise plus component sep-
aration noise, while the shaded red area shows the additional
uncertainty from CV (note that important o↵-diagonal con-
tributions are not shown). PIXIE can distinguish between
the relativistic and non-relativistic predictions at 30� signifi-
cance.

the µ distortion signal for comparison. We show

below that currently proposed experiments can

measure the relativistic e↵ects at high precision.

The non-relativistic results can be summarized fully by
the Compton-y parameter. We find hyi

ICM

= 1.58⇥10�6,
hyi

IGM

= 8.9 ⇥ 10�8, and hyi
reion

= 9.8 ⇥ 10�8 for the
contributions from the ICM, IGM, and reionization, re-
spectively. Note that hyi

ICM

depends sensitively on �
8

,
the amplitude of matter density perturbations (going
roughly as �5

8

); if we assumed Planck 2015 cosmologi-
cal parameters [55] instead of WMAP9, the prediction
would be ⇡ 10% higher. Regardless, the ICM contribu-
tion dominates over those from the IGM and reionization,
although it may be possible to isolate the latter

by masking the ICM using deep galaxy or clus-

ter catalogs, or via cross-correlation techniques.

All hyi contributions are much larger in ampli-

tude than the µ distortion signal. In agreement with
early estimates [36], the total hyi is roughly one order of
magnitude below the COBE-FIRAS bound.

To emphasize the relativistic e↵ects, Fig. 2 shows the
di↵erence between the non-relativistic and relativistic
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Average CMB spectral distortions
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Fluctuations of the y-parameter at large scales

Example: 
Simulation of reionization process 
(1Gpc/h) by Alvarez & Abel

• spatial variations of the 
optical depth and 
temperature cause 
small-spatial variations 
of the y-parameter at 
different angular scales

• could tell us about the 
reionization sources 
and structure formation 
process

• additional independent 
piece of information! 

• Cross-correlations with 
other signals 



The dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes

Planck collaboration: CMB power spectra, likelihoods, and parameters
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Figure 47. CMB-only power spectra measured by Planck (blue),
ACT (orange), and SPT (green). The best-fit PlanckTT+lowP
⇤CDM model is shown by the grey solid line. ACT data at
` > 1000 and SPT data at ` > 2000 are marginalized CMB
bandpowers from multi-frequency spectra presented in Das et al.
(2013) and George et al. (2014) as extracted in this work. Lower
multipole ACT (500 < ` < 1000) and SPT (650 < ` < 3000)
CMB power extracted by Calabrese et al. (2013) from multi-
frequency spectra presented in Das et al. (2013) and Story et al.
(2012) are also shown. Note that the binned values in the range
3000 < ` < 4000 appear higher than the unbinned best-fit line
because of the binning (this is numerically confirmed by the re-
sidual plot in Planck Collaboration XIII 2015, figure 9).

spectra are reported in Fig. 47. We also show ACT and SPT
bandpowers at lower multipoles as extracted by Calabrese et al.
(2013). This figure shows the state of the art of current CMB
observations, with Planck covering the low-to-high-multipole
range and ACT and SPT extending into the damping region. We
consider the CMB to be negligible at ` > 4000 and note that
these ACT and SPT bandpowers have an overall calibration un-
certainty (2 % for ACT and 1.2 % for SPT).

The inclusion of ACT and SPT improves the full-mission
Planck spectrum extraction presented in Sect. 5.5 only margin-
ally. The main contribution of ACT and SPT is to constrain
small components (e.g., the tSZ, kSZ, and tSZ⇥CIB) that are
not well determined by Planck alone. However, those compon-
ents are sub-dominant for Planck and are well described by the
prior based on the 2013 Planck+highL solutions imposed in the
Planck-alone analysis. The CIB amplitude estimate improves by
40 % when including ACT and SPT, but the CIB power is also
reasonably well constrained by Planck alone. The main Planck
contaminants are the Poisson sources, which are treated as in-
dependent and do not benefit from ACT and SPT. As a result,
the errors on the extracted Planck spectrum are only slightly re-
duced, with little additional cosmological information added by
including ACT and SPT for the baseline ⇤CDM model (see also
Planck Collaboration XIII 2015, section 4).

6. Conclusions

The Planck 2015 angular power spectra of the cosmic mi-
crowave background derived in this paper are displayed in

Fig. 48. These spectra in TT (top), T E (middle), and EE (bot-
tom) are all quite consistent with the best-fit base-⇤CDM model
obtained from TT data alone (red lines). The horizontal axis is
logarithmic at ` < 30, where the spectra are shown for individual
multipoles, and linear at ` � 30, where the data are binned. The
error bars correspond to the diagonal elements of the covariance
matrix. The lower panels display the residuals, the data being
presented with di↵erent vertical axes, a larger one at left for the
low-` part and a zoomed-in axis at right for the high-` part.

The 2015 Planck likelihood presented in this work is based
on more temperature data than in the 2013 release, and on
new polarization data. It benefits from several improvements
in the processing of the raw data, and in the modelling of
astrophysical foregrounds and instrumental noise. Apart from
a revision of the overall calibration of the maps, discussed
in Planck Collaboration I (2015), the most significant improve-
ments are in the likelihood procedures:

(i) a joint temperature-polarization pixel-based likelihood at
`  29, with more high-frequency information used for fore-
ground removal, and smaller sky masks (Sects. 2.1 and 2.2);

(ii) an improved Gaussian likelihood at ` � 30 that includes
a di↵erent strategy for estimating power spectra from data-
subset cross-correlations, using half-mission data instead of
detector sets (which allows us to reduce the e↵ect of cor-
related noise between detectors, see Sects. 3.2.1 and 3.4.3),
and better foreground templates, especially for Galactic dust
(Sect. 3.3.1) that allow us to mask a smaller fraction of the
sky (Sect. 3.2.2) and to retain large-angle temperature in-
formation from the 217 GHz map that was neglected in the
2013 release (Sect. 3.2.4).

We performed several consistency checks of the robustness
of our likelihood-making process, by introducing more or less
freedom and nuisance parameters in the modelling of fore-
grounds and instrumental noise, and by including di↵erent as-
sumptions about the relative calibration uncertainties across fre-
quency channels and about the beam window functions.

For temperature, the reconstructed CMB spectrum and er-
ror bars are remarkably insensitive to all these di↵erent as-
sumptions. Our final high-` temperature likelihood, referred to
as “PlanckTT” marginalizes over 15 nuisance parameters (12
modelling the foregrounds, and 3 for calibration uncertainties).
Additional nuisance parameters (in particular, those associated
with beam uncertainties) were found to have a negligible impact,
and can be kept fixed in the baseline likelihood.

For polarization, the situation is di↵erent. Variation of the as-
sumptions leads to scattered results, with larger deviations than
would be expected due to changes in the data subsets used, and
at a level that is significant compared to the statistical error bars.
This suggests that further systematic e↵ects need to be either
modelled or removed. In particular, our attempt to model cal-
ibration errors and temperature-to-polarization leakage suggests
that the T E and EE power spectra are a↵ected by systematics at
a level of roughly 1 µK2. Removal of polarization systematics at
this level of precision requires further work, beyond the scope of
this release. The 2015 high-` polarized likelihoods, referred to
as “PlikTE” and “PlikEE”, or “PlikTT,EE,TE” for the com-
bined version, ignore these corrections. They only include 12
additional nuisance parameters accounting for polarized fore-
grounds. Although these likelihoods are distributed in the Planck
Legacy Archive,15 we stick to the PlanckTT+lowP choice in the
baseline analysis of this paper and the companion papers such

15 http://pla.esac.esa.int/pla/
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Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 
‘just’ the tensor-to-scalar ratio from B-modes!
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JC, Hamann & Patil, 2015



Distortions caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
JC, 2016, ArXiv:1603.02496
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• Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Effective energy release caused by damping effect

JC, Khatri & Sunyaev, 2012

gauge-independent dipole effect of polarization higher multipoles
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Which modes dissipate in the µ and y-eras?

JC, Erickcek & Ben-Dayan, 2012

• Modes with wavenumber                  
50 Mpc-1 < k < 104 Mpc-1  
dissipate their energy 
during the µ-era

• Modes with k < 50 Mpc-1 
cause y-distortion

• Single mode with 
wavenumber k 
dissipates its energy at 

    

  zd ~ 4.5x105(k Mpc/103)2/3



So what does one expect within ΛCDM?



Average CMB spectral distortions

1 3 6 10 30 60 100 300 600 1000 3000
ν  [GHz]

10-1

100

101

102

103

104
Δ

I  
[ J

y 
sr

-1
]

low redshift y-distortion for y = 2 x 10-6

relativistic correction to y signal
Damping signal

negative
 branch

negative branch

PIXIE sensitivity

negative 
branch

Late time
absorption

Computed directly 
with CosmoTherm
(with description of JC, Khatri 
& Sunyaev, 2012 for heating)



Spectral distortion caused by the cooling of ordinary matter

103 104 105 106 107

z
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

1 
- T

e / 
T z

no distortion
with distortion
effective photon temperature

End of HI recombination

Electrons & baryons always 
slightly cooler than photons

JC, 2005; JC & Sunyaev, 2012
Khatri, Sunyaev & JC, 2012

• adiabatic expansion 
⇒  Tγ ~ (1+z) ↔ Tm ~ (1+z)²

• photons continuously cooled / 
down-scattered since day one 
of the Universe!      

• Compton heating balances 
adiabatic cooling

⇒ 

• at high redshift same scaling 
as annihilation (           ) and 
acoustic mode damping

⇒ partial cancellation

/ N2
X
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a4dt
' �Hk↵hT� / (1 + z)6

• negative µ and y distortion      

• late free-free absorption at 
very low frequencies

• Distortion a few times below 
PIXIE’s current sensitivity
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Average CMB spectral distortions
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Figure 3. Comparison of the posterior distributions for the dissipation sce-
nario I (Table 1) obtained with method B (red contours) and the PCA (black
contours). The vertical lines indicate the mean values. Method B predicts
lower values for µ than the distortion eigenmode analysis.

We immediately mention that one alternative approach, which
could mitigate the above problem, could be to determine the aver-
age CMB temperature using the integral properties of the µ, y and
r-distortions. Since these are created by a scattering process, the
number density of photons should not change. Thus, determining
the e↵ective temperature of the CMB by computing the total photon
number density (N� / T 3

� ) from the measured spectrum, the distor-
tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.

3.3 Results from the di↵erent methods

We are now in the position to explicitly compute the µ- and y-
parameters for the di↵erent distortion scenarios discussed above.
With the PCA, we are furthermore able to obtain the eigenmode
amplitudes, µ1 and µ2. We stop at the second residual distortion
eigenmode, since observing µ2 is already very futuristic for stan-
dard scenarios. We also mention that the values for y are only used
as a comparison, since the y-distortion from the low-redshift Uni-
verse is much larger in all cases.

In our estimates, we include the measurement uncertainties for
the relevant⇤CDM parameters (Planck Collaboration et al. 2015b).
For the dissipation scenarios, these are mainly related to the power
spectrum parameters, while for the adiabatic cooling distortion it
is the baryon density (assuming standard BBN). The results are
summarized in Table 1. For the dissipation scenarios, we obtained
the error estimates by using the relevant covariance matrix for the
Planck data, while the error for the adiabatic cooling e↵ect was
directly estimated using Gaussian error propagation.

Figure 4. Posterior distributions for the dissipation scenario II (Table 1) ob-
tained with the PCA. We omitted y as its posteriors remains fairly Gaussain.
The vertical lines indicate the mean values.

Table 2. Explicit projections of the full CosmoTherm output using the dis-
tortion eigenmodes for PIXIE-like settings. The last column also gives the
estimates 1� error for PIXIE in its current design (Chluba & Jeong 2014),
which degrades quickly for the µk . In parenthesis we show estimates for the
expected significance in terms of distortion measurements.

Parameter Dissipation I Adiabatic cooling PIXIE 1�

y/10�9 3.54 (' 3.0�) �0.623 (' 0.5�) 1.20
µ/10�8 2.00 (' 1.5�) �0.334 (' 0.2�) 1.37
µ1/10�8 3.82 (' 0.3�) �0.588 (' 0.04�) 14.8
µ2/10�9 �1.18 (' 0.0�) �0.054 (' 0.0�) 761

For the y-parameter estimates, method A and B are equivalent
and give results which are quite close to those of the PCA, which
should be considered the most precise representation of what would
be recovered in a distortion analysis. The methods C and D are also
equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future

5 The figure was obtained using the Markov Chain Monte Carlo (MCMC)
tool of the Greens software package (Chluba 2013b) available at
www.Chluba.de/CosmoTherm.

c� 0000 RAS, MNRAS 000, 000–000

Predicted damping distortion in terms of µ and y

y = 3.67+0.18
�0.17 ⇥ 10�9

µ = 1.62+0.12
�0.11 ⇥ 10�8

Simple estimate:

y = 3.63+0.17
�0.17 ⇥ 10�9

µ = 2.00+0.14
�0.13 ⇥ 10�8

Detailed projection:

• Errors dominated by 
power spectrum 
parameters

• Detailed projections 
give slightly higher 
value for µ (~ 2.6σ)

• y-part swamped by 
low redshift distortion

• µ could be detectable 
at 1.5σ with PIXIE in 
current setting          
(see also JC, Khatri & Sunyaev, 2015)

• a factor of ~3.4 short 
of clear 5σ detection
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Figure 5. Posteriors for di↵erent combinations of data sets. In both panel, the red lines indicate the Planck TT,TE,EE+lowP+PIXIE (⌘ basically like without
PIXIE) constraints for the extended model with running. The black contours show the Planck+3.4⇥PIXIE (left panel) and Planck+10⇥PIXIE (right panel)
constraints. Vertical lines indicate the fiducial values for each data set. Adding spectral distortions helps diminishing the uncertainty in the values of nrun by a
factor of ' 3 for Planck+10⇥PIXIE.

Table 3. Improvement of constraints on the small-scale power spectrum by combining Planck with a PIXIE-like experiment for di↵erent channel sensitivities.
For the spectral distortion parameters, we also show the e↵ective significance of the signal with respect to the spectral distortion measurement. The distortion
amplitude µ2 remained undetectable (. 0.02�) with distortions alone and thus remains a derived parameter even for 10⇥PIXIE sensitivity. In the last column
we show the Planck ⇤CDM values for comparison.

Parameter Planck alone +PIXIE +3.4⇥PIXIE +10⇥PIXIE Planck ⇤CDM values

ln(1010As) 3.103+0.036
�0.036 3.103+0.037

�0.037 3.101+0.037
�0.037 3.100+0.036

�0.036 3.094+0.034
�0.034

nS 0.9639+0.0050
�0.0050 0.9640+0.0050

�0.0050 0.9647+0.0049
�0.0048 0.9653+0.0048

�0.0047 0.9645+0.0049
�0.0049

103nrun �5.7+7.1
�7.1 �5.2+6.9

�7.2 �2.8+4.6
�5.1 �0.81+2.4

�2.5 0

µ/10�8 1.59+0.54
�0.40 1.62+0.55

�0.42 (1.2�) 1.81+0.36
�0.33 (4.5�) 1.993+0.053

�0.053 (15�) 2.00+0.14
�0.13

µ1/10�8 3.39+0.58
�0.49 3.43+0.58

�0.52 (0.23�) 3.63+0.38
�0.38 (0.83�) 3.819+0.044

�0.044 (2.6�) 3.81+0.22
�0.20

µ2/10�9 �2.79+2.05
�1.53 �2.69+2.08

�1.61 (0�) �2.02+1.42
�1.31 (0�) �1.28+0.43

�0.43 (0�) �1.19+0.22
�0.20

2012b,a), or an enhanced cooling process through the coupling of
another non-relativistic particle to the CMB is required (e.g., Ali-
Haı̈moud et al. 2015). Conversely, if the µ-distortion signal is much
larger than expected, then the small-scale power spectrum could be
strongly enhanced, possibly containing a localized feature (Chluba
et al. 2012a, 2015b), or another heating mechanism (e.g., a decay-
ing particle Hu & Silk 1993b; Chluba & Sunyaev 2012; Chluba
2013a; Dimastrogiovanni et al. 2015) has to be at work. Thus, spec-
tral distortions provide a powerful new avenue for testing ⇤CDM
cosmology without purely relying on an extrapolation from large
(k . 1 Mpc�1) to small scales (1 Mpc�1 . k . few ⇥ 104 Mpc�1).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements,
the name of the game will be foregrounds. The biggest challenge
is that, aside from the large y-distortion introduced at late times,
all known foregrounds are orders of magnitudes larger than the pri-

mordial signals. This means that tiny e↵ects related to the spectral
and spatial variation of the foreground signals need to be taken into
account. Ways to tackle this problem are i) to measure the spec-
trum in as many individual channels as possible, ideally with high
angular resolution and sensitivity, and ii) to exploit synergies with
other future or existing datasets to inform the modeling of aver-
aged signals. In both cases, refined modeling of the foregrounds
with extended parametrizations are required to capture the e↵ects
of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively dif-
ferent regime in terms of its spectral capabilities, where instead of
playing with a few channels we have a few hundred at our disposal.
Most of these channels are at high frequencies (⌫ & 1 THz), above
the CMB bands and can be used to subtract the dust and cosmic
infrared background components at lower frequencies (Kogut et al.
2011). Simple, commonly used two-temperature modified black-
body spectra (e.g., Finkbeiner et al. 1999) will not provide su�-
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Figure 5. Posteriors for di↵erent combinations of data sets. In both panel, the red lines indicate the Planck TT,TE,EE+lowP+PIXIE (⌘ basically like without
PIXIE) constraints for the extended model with running. The black contours show the Planck+3.4⇥PIXIE (left panel) and Planck+10⇥PIXIE (right panel)
constraints. Vertical lines indicate the fiducial values for each data set. Adding spectral distortions helps diminishing the uncertainty in the values of nrun by a
factor of ' 3 for Planck+10⇥PIXIE.

Table 3. Improvement of constraints on the small-scale power spectrum by combining Planck with a PIXIE-like experiment for di↵erent channel sensitivities.
For the spectral distortion parameters, we also show the e↵ective significance of the signal with respect to the spectral distortion measurement. The distortion
amplitude µ2 remained undetectable (. 0.02�) with distortions alone and thus remains a derived parameter even for 10⇥PIXIE sensitivity. In the last column
we show the Planck ⇤CDM values for comparison.

Parameter Planck alone +PIXIE +3.4⇥PIXIE +10⇥PIXIE Planck ⇤CDM values

ln(1010As) 3.103+0.036
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�0.037 3.100+0.036
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�0.42 (1.2�) 1.81+0.36
�0.33 (4.5�) 1.993+0.053

�0.053 (15�) 2.00+0.14
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�0.38 (0.83�) 3.819+0.044

�0.044 (2.6�) 3.81+0.22
�0.20
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�1.61 (0�) �2.02+1.42
�1.31 (0�) �1.28+0.43
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2012b,a), or an enhanced cooling process through the coupling of
another non-relativistic particle to the CMB is required (e.g., Ali-
Haı̈moud et al. 2015). Conversely, if the µ-distortion signal is much
larger than expected, then the small-scale power spectrum could be
strongly enhanced, possibly containing a localized feature (Chluba
et al. 2012a, 2015b), or another heating mechanism (e.g., a decay-
ing particle Hu & Silk 1993b; Chluba & Sunyaev 2012; Chluba
2013a; Dimastrogiovanni et al. 2015) has to be at work. Thus, spec-
tral distortions provide a powerful new avenue for testing ⇤CDM
cosmology without purely relying on an extrapolation from large
(k . 1 Mpc�1) to small scales (1 Mpc�1 . k . few ⇥ 104 Mpc�1).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements,
the name of the game will be foregrounds. The biggest challenge
is that, aside from the large y-distortion introduced at late times,
all known foregrounds are orders of magnitudes larger than the pri-

mordial signals. This means that tiny e↵ects related to the spectral
and spatial variation of the foreground signals need to be taken into
account. Ways to tackle this problem are i) to measure the spec-
trum in as many individual channels as possible, ideally with high
angular resolution and sensitivity, and ii) to exploit synergies with
other future or existing datasets to inform the modeling of aver-
aged signals. In both cases, refined modeling of the foregrounds
with extended parametrizations are required to capture the e↵ects
of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively dif-
ferent regime in terms of its spectral capabilities, where instead of
playing with a few channels we have a few hundred at our disposal.
Most of these channels are at high frequencies (⌫ & 1 THz), above
the CMB bands and can be used to subtract the dust and cosmic
infrared background components at lower frequencies (Kogut et al.
2011). Simple, commonly used two-temperature modified black-
body spectra (e.g., Finkbeiner et al. 1999) will not provide su�-
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Distortions provide general power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013



Distortions provide general power spectrum constraints!

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improved limits at smaller scales can rule out many inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about early-universe physics

             

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

Probe extra 
≃10 e-folds 
of inflation!



The cosmological recombination radiation
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Another way to do CMB-based cosmology!
Direct probe of recombination physics!



New detailed and fast computation!

JC & Ali-Haimoud, arXiv:1510.03877
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CosmoSpec: fast and accurate computation of the CRR

JC & Ali-Haimoud, arXiv:1510.03877

• Like in old days of CMB anisotropies!

• detailed forecasts and feasibility studies

• non-standard physics (variation of α, 
energy injection etc.)

CosmoSpec will be available here:

www.Chluba.de/CosmoSpec
 

http://www.Chluba.de/CosmoSpec
http://www.Chluba.de/CosmoSpec


Average CMB spectral distortions
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Average CMB spectral distortions
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Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the positions



        
pre- post-recombination epoch

        

y-distortion era

µ-
er

a

T-
er

a

µ-
y-

er
a

CMB spectrum adds another dimension to the problem!

H
I&

H
e

extra time-slicing



Annihilating/decaying (dark matter) particles 



Planck Collaboration, paper XIII, 2015

95% c.l.

Latest Planck limits on annihilation cross section

• AMS/Pamela 
models in tension

• but interpretation 
model-dependent

• Sommerfeld 
enhancement?

• clumping factors?

• annihilation 
channels?

Planck Collaboration: Cosmological parameters

0 2 4 6 8

pann [10�27cm3 s�1 GeV�1]

0.950

0.975

1.000

1.025

n s

Planck TT,TE,EE+lowP

Planck TE+lowP

Planck EE+lowP

Planck TT+lowP

WMAP9

Fig. 40. 2-dimensional marginal distributions in the pann–ns
plane for Planck TT+lowP (red), EE+lowP (yellow), TE+lowP
(green), and Planck TT,TE,EE+lowP (blue) data combinations.
We also show the constraints obtained using WMAP9 data (light
blue).

We then add pann as an additional parameter to those of the base
⇤CDM cosmology. Table 6 shows the constraints for various
data combinations.

Table 6. Constraints on pann in units of cm3 s�1 GeV�1.

Data combinations pann (95 % upper limits)

TT+lowP . . . . . . . . . . . . . . . . . < 5.7 ⇥ 10�27

EE+lowP . . . . . . . . . . . . . . . . . < 1.4 ⇥ 10�27

TE+lowP . . . . . . . . . . . . . . . . . < 5.9 ⇥ 10�28

TT+lowP+lensing . . . . . . . . . . . < 4.4 ⇥ 10�27

TT,TE,EE+lowP . . . . . . . . . . . . < 4.1 ⇥ 10�28

TT,TE,EE+lowP+lensing . . . . . . < 3.4 ⇥ 10�28

TT,TE,EE+lowP+ext . . . . . . . . . < 3.5 ⇥ 10�28

The constraints on pann from the Planck TT+lowP spec-
tra are about 3 times weaker than the 95 % limit of pann <
2.1 ⇥ 10�27 cm3 s�1 GeV�1 derived from WMAP9, which in-
cludes WMAP polarization data at low multipoles. However, the
Planck T E or E E spectra improve the constraints on pann by
about an order of magnitude compared to those from Planck T T
alone. This is because the main e↵ect of dark matter annihila-
tion is to increase the width of last scattering, leading to a sup-
pression of the amplitude of the peaks both in temperature and
polarization. As a result, the e↵ects of DM annihilation on the
power spectra at high multipole are degenerate with other param-
eters of base ⇤CDM, such as ns and As (Chen & Kamionkowski
2004; Padmanabhan & Finkbeiner 2005). At large angular scales
(` . 200), however, dark matter annihilation can produce an
enhancement in polarization caused by the increased ionization
fraction in the freeze-out tail following recombination. As a re-
sult, large-angle polarization information is crucial in breaking
the degeneracies between parameters, as illustrated in Fig. 40.
The strongest constraints on pann therefore come from the full
Planck temperature and polarization likelihood and there is little
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Fig. 41. Constraints on the self-annihilation cross-section at re-
combination, h�3iz ⇤ , times the e�ciency parameter, fe↵ (Eq. 81).
The blue area shows the parameter space excluded by the Planck
TT,TE,EE+lowP data at 95 % CL. The yellow line indicates the
constraint using WMAP9 data. The dashed green line delineates
the region ultimately accessible by a cosmic variance limited ex-
periment with angular resolution comparable to that of Planck.
The horizontal red band includes the values of the thermal-relic
cross-section multiplied by the appropriate fe↵ for di↵erent DM
annihilation channels. The dark grey circles show the best-fit
DM models for the PAMELA/AMS-02/Fermi cosmic-ray ex-
cesses, as calculated in Cholis & Hooper (2013) (caption of their
figure 6). The light grey stars show the best-fit DM models for
the Fermi Galactic centre gamma-ray excess, as calculated by
Calore et al. (2014) (their tables I, II, and III), with the light
grey area indicating the astrophysical uncertainties on the best-
fit cross-sections.

improvement if other astrophysical data, or Planck lensing, are
added.30

We verified the robustness of the Planck TT,TE,EE+lowP
constraint by also allowing other extensions of ⇤CDM (Ne↵ ,
dns/d ln k, or YP) to vary together with pann. We found that the
constraint is weakened by up to 20 %. Furthermore, we have ver-
ified that we obtain consistent results when relaxing the priors
on the amplitudes of the Galactic dust templates or if we use the
CamSpec likelihood instead of the baseline Plik likelihood.

Figure 41 shows the constraints from WMAP9, Planck
TT,TE,EE+lowP, and a forecast for a cosmic variance limited
experiment with similar angular resolution to Planck31. The hor-
izontal red band includes the values of the thermal-relic cross-
section multiplied by the appropriate fe↵ for di↵erent DM anni-
hilation channels. For example, the upper red line corresponds to
fe↵ = 0.67, which is appropriate for a DM particle of mass m� =
10 GeV annihilating into e+e�, while the lower red line corre-
sponds to fe↵ = 0.13, for a DM particle annihilating into 2⇡+⇡�
through an intermediate mediator (see e.g., Arkani-Hamed et al.
2009). The Planck data exclude at 95 % confidence level a ther-

30It is interesting to note that the constraint derived from Planck
TT,TE,EE+lowP is consistent with the forecast given in Galli et al.
(2009), pann < 3 ⇥ 10�28 cm3 s�1 GeV�1.

31We assumed that the cosmic variance limited experiment would
measure the angular power spectra up to a maximum multipole of
`max = 2500, observing a sky fraction fsky = 0.65.

51

For current constraint only (weak) upper limits from distortion...
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Green’s function for photon injection

JC 2015, ArXiv:1506.06582

• Photon injection Green’s function gives even richer phenomenology 
of distortion signals

• Depends on the details of the photon production process for 
redshifts z < few x 105

• difference between high and low frequency photon injection 



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• other exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Standard sources 
of distortions



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)
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(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)
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Photon injection



Evolution of the HI Lyman-series distortion

JC & Thomas, MNRAS, 2010

 Ly α  Ly β Ly γ

Computation includes all important radiative 
transfer processes (e.g. photon diffusion; 
two-photon processes; Raman-scattering) 



Photon injection at later times
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Figure 7. Photon injection Green’s function for injection at intermediate redshifts, 5 ⇥ 104 . zi . 3 ⇥ 105. The photon injection Green’s function shows a rich
phenomenology. We have x ' 0.017 (⌫/GHz).
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Different regimes for photon injection
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Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!

We should make use of 
all this information!



cold dilute

Photon energy Photon energy Photon energyPhoton energy

D
ist

or
tio

n 
Si

gn
al

Photon energy Photon energy Photon energy Photon energy

Photon energyPhoton energyPhoton energyPhoton energy
y-distortion µ-distortion temperature shifty+µ+residual distortion

Redshift104 2 x 1063 x 105103

Time 2 months8 years7,000 years380,000 years

H
yd

ro
ge

n 
lin

es

N
eu

tr
al

 H
el

iu
m

 li
ne

s

Io
ni

ze
d 

H
el

iu
m

 li
ne

s

La
st

 S
ca

tte
rin

g 
Su

rfa
ce

time-dependent information

full thermalizationscattering efficientscattering inefficient intermediate regime

hot dense

Recombination signal

Ly
m

an
-α

Ba
lm

er
-α

Pa
sc

he
n-
α

Distortion ≃10-7-10-6 
relative to blackbody

Maximum of 
CMB blackbody

Maximum of 
CMB blackbody

Blackbody era
Distortion 
visibility

5 x 106

33
%

4% 0.
2%

0.
00

3%

Silk & Chluba, Science, 2014

Recombination era


