CMB Spectral Distortions in ACDM and beyond

Jens Chluba

CMB/LSS/21cm Workshop

THE

ROYAL

SOCIET

IFT Madrid, June 20th, 2016

The University of Manchester

Cosmic Microwave Background Anisotropies

Planck all-sky temperature map CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature $\Delta T/T \sim 10^{-5}$

CMB anisotropies (with SN, LSS, etc...) clearly taught us a lot about the Universe we live in!

- Standard 6 parameter concordance cosmology with parameters known to percent level precision
- Gaussian-distributed adiabatic fluctuations with nearly scale-invariant power spectrum over a wide range of scales
- cold dark matter ("CDM")
- accelerated expansion today ("Λ")
- Standard BBN scenario $\rightarrow N_{\text{eff}}$ and Y_{p}
- Standard ionization history $\rightarrow N_e$ as a function of z

Parameter	TT+lowP 68 % limits	TT+lowP+lensing 68 % limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68 % limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68 % limits
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_{\rm c} h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
$100\theta_{\rm MC}$	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> _s	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040

Planck Collaboration, 2015, paper XIII

What are the *main* next targets for CMB anisotropies?

- CMB temperature power spectrum kind of finished...
- E modes cosmic variance limited to high-I
 - better constraint on τ from large scale E modes
 - refined CMB damping tail science from small-scale E modes
 - CMB lensing and de-lensing of primordial B-modes
- primordial B modes
 - detection of $r \sim 10^{-3}$ (energy scale of inflation)
 - upper limit on $n_T < O(0.1)$ as additional 'proof of inflation'
- CMB anomalies
 - stationarity of E and B-modes, lensing potential, etc across the sky
- SZ cluster science
 - large cluster samples and (individual) high-res cluster measurements

Lots of competition to reach these goals!

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

$T_0 = 2.725 \pm 0.001 \,\mathrm{K}$ $|y| \le 1.5 \times 10^{-5}$ $|\mu| \le 9 \times 10^{-5}$

Mather et al., 1994, ApJ, 420, 439 Fixsen et al., 1996, ApJ, 473, 576 Fixsen et al., 2003, ApJ, 594, 67

Only very small distortions of CMB spectrum are still allowed!

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by decaying or annihilating relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)
- Cosmological recombination radiation (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

- Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)
- SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

post-recombination

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by *decaying* or *annihilating* relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

Cosmological recombination radiation
 (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

- Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

pre-recombination epoch

post-recombination

Standard sources

of distortions

PIXIE: Primordial Inflation Explorer

- 400 spectral channel in the frequency range 30 GHz and 6THz (Δv ~ 15GHz)
- about 1000 (!!!) times more sensitive than COBE/FIRAS
- B-mode polarization from inflation ($r \approx 10^{-3}$)
- improved limits on μ and γ

was proposed 2011 as NASA EX mission (i.e. cost ~ 200 M\$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Enduring Quests Daring Visions

NASA Astrophysics in the Next Three Decades

How does the Universe work?

"Measure the spectrum of the CMB with precision several orders of magnitude higher than COBE FIRAS, from a moderate-scale mission or an instrument on CMB Polarization Surveyor."

> New call from NASA expected end 2016

What can CMB spectral distortions add?

- Add a new dimension to CMB science
 - probe the thermal history at different stages of the Universe
- Complementary and independent information!
 - cosmological parameters from the recombination radiation
 - new/additional test of large-scale anomalies
- Several guaranteed signals are expected
 - y-distortion from low redshifts
 - damping signal & recombination radiation
- Test various inflation models
 - damping of the small-scale power spectrum
- Discovery potential

- decaying particles and other exotic sources of distortions

All this largely without any competition from the ground!!!

Example: Energy release by decaying relict particle

- initial condition: *full* equilibrium
- total energy release:
 Δρ/ρ~1.3x10⁻⁶
- most of energy release around:

*z*_X~2x10⁶

- positive µ-distortion
- high frequency distortion frozen around z~5x10⁵
- late (z<10³) free-free absorption at very low frequencies $(T_e < T_Y)$

Computation carried out with **CosmoTherm** (JC & Sunyaev 2012)

Quasi-Exact Treatment of the Thermalization Problem

- For real forecasts of future prospects a precise & fast method for computing the spectral distortion is needed!
- Case-by-case computation of the distortion (e.g., with CosmoTherm, JC & Sunyaev, 2012, ArXiv:1109.6552) still rather time-consuming
- But: distortions are small ⇒ thermalization problem becomes linear!
- Simple solution: compute "response function" of the thermalization problem ⇒ Green's function approach (JC, 2013, ArXiv:1304.6120)
- Final distortion for fixed energy-release history given by

$$\Delta I_{\nu} \approx \int_{0}^{\infty} G_{\rm th}(\nu, z') \frac{\mathrm{d}(Q/\rho_{\gamma})}{\mathrm{d}z'} \mathrm{d}z'$$

Thermalization Green's function

Fast and quasi-exact! No additional approximations!

CosmoTherm available at: www.Chluba.de/CosmoTherm

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

Transition from y-distortion $\rightarrow \mu$ -distortion

Figure from Wayne Hu's PhD thesis, 1995, but see also discussion in Burigana, 1991

Transition from y-distortion $\rightarrow \mu$ -distortion

Figure from Wayne Hu's PhD thesis, 1995, but see also discussion in Burigana, 1991

Distortion *not* just superposition of μ and γ -distortion!

Computation carried out with CosmoTherm (JC & Sunyaev 2011)

First explicit calculation that showed that there is more!

Distortion *not* just superposition of μ and γ -distortion!

Computation carried out with Cosmo Therm (JC & Sunyaev 2011)

First explicit calculation that showed that there is more!

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by *decaying* or *annihilating* relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

Cosmological recombination radiation
 (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

- Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

more exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

pre-recombination epoch

post-recombination

Standard sources

of distortions

Reionization and structure formation

Simple estimates for the distortion

- Gas temperature $T \simeq 10^4$ K
- Thomson optical depth $\tau \simeq 0.1$

$$\implies \quad y \simeq \frac{kT_{\rm e}}{m_{\rm e}c^2} \, \tau \approx 2 \times 10^{-7}$$

- second order Doppler effect $y \simeq \text{few x } 10^{-8}$
- structure formation / SZ effect (e.g., Refregier et al., 2003) $y \simeq \text{few x } 10^{-7} 10^{-6}$

Average CMB spectral distortions

Average CMB spectral distortions

JC & Sunyaev, 2012, ArXiv:1109.6552 JC, 2013, ArXiv:1304.6120

Taking the Universe's temperature

- $\langle y \rangle \simeq 1.8 imes 10^{-6}$ (~ 10% from IGM and reionization rest from ICM)
- > 1000 σ detection with PIXIE-type experiment
- optical depth-weighted temperature: $\langle kT_{\rm e} \rangle_{\tau} \simeq 0.208 \, {\rm keV} (\equiv 2.4 \times 10^6 \, {\rm K})$
- ~ 30 σ detection with PIXIE-type experiment

Average CMB spectral distortions

Fluctuations of the y-parameter at large scales

- spatial variations of the optical depth and temperature cause small-spatial variations of the y-parameter at different angular scales
- could tell us about the reionization sources and structure formation process
- additional independent piece of information!
- Cross-correlations with other signals

Example: Simulation of reionization process (1Gpc/h) by *Alvarez & Abel* The dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Dissipation of small-scale acoustic modes

Energy release caused by dissipation process

'Obvious' dependencies:

- Amplitude of the small-scale power spectrum
- Shape of the small-scale power spectrum
- Dissipation scale $\rightarrow k_D \sim (H_0 \ \Omega_{rel}^{1/2} N_{e,0})^{1/2} (1+z)^{3/2}$ at early times

not so 'obvious' dependencies:

- primordial non-Gaussianity in the ultra squeezed limit (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)
- Type of the perturbations (adiabatic ↔ isocurvature) (Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)
- Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 'just' the tensor-to-scalar ratio from B-modes!

Distortion due to mixing of blackbodies

JC, Hamann & Patil, 2015

Distortions caused by superposition of blackbodies

• average spectrum

$$\Rightarrow y \simeq \frac{1}{2} \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 8 \times 10^{-10}$$
$$\Delta T_{\rm sup} \simeq T \left\langle \left(\frac{\Delta T}{T}\right)^2 \right\rangle \approx 4.4 \,\mathrm{nK}$$

known with very high precision

- CMB dipole ($\beta \sim 1.23 \times 10^{-3}$) $\Rightarrow y = \frac{\beta^2}{6} \approx (2.525 \pm 0.012) \times 10^{-7}$ $\Delta T_{sup} \simeq T \frac{\beta_c^2}{3} \approx 1.4 \mu K$
- electrons are up-scattered
- can (and should) be taken out down to the level of y ~ 10⁻⁹

JC & Sunyaev, 2004 JC, Khatri & Sunyaev, 2012 JC, 2016, ArXiv:1603.02496

COBE/DMR: *∆T* = 3.353 mK

Effective energy release caused by damping effect

Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Which modes dissipate in the µ and y-eras?

 Single mode with wavenumber k dissipates its energy at

 $z_{\rm d} \sim 4.5 \times 10^5 (k \,{\rm Mpc}/10^3)^{2/3}$

- Modes with wavenumber 50 Mpc⁻¹ < k < 10⁴ Mpc⁻¹ dissipate their energy during the µ-era
- Modes with *k* < 50 Mpc⁻¹ cause *y*-distortion

JC, Erickcek & Ben-Dayan, 2012

So what does one expect within \CDM?

Average CMB spectral distortions

Spectral distortion caused by the cooling of ordinary matter

$$\mu \simeq 1.4 \left. \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right|_{\mu} \approx -3 \times 10^{-9} \quad y \simeq \frac{1}{4} \left. \frac{\Delta \rho_{\gamma}}{\rho_{\gamma}} \right|_{y} \approx -6 \times 10^{-10}$$

JC, 2005; JC & Sunyaev, 2012 Khatri, Sunyaev & JC, 2012 adiabatic expansion

$$\Rightarrow T_{\gamma} \sim (1+z) \leftrightarrow T_{\rm m} \sim (1+z)^2$$

- photons continuously cooled / down-scattered since day one of the Universe!
- Compton heating balances adiabatic cooling

$$\Rightarrow \frac{\mathrm{d}a^4 \rho_{\gamma}}{a^4 \mathrm{d}t} \simeq -Hk\alpha_{\mathrm{h}}T_{\gamma} \propto (1+z)^6$$

- at high redshift same scaling as annihilation ($\propto N_X^2$) and acoustic mode damping
- ⇒ partial cancellation
 - *negative* μ and y distortion
- late free-free absorption at very low frequencies
- Distortion a few times below PIXIE's current sensitivity

Average CMB spectral distortions

Predicted damping distortion in terms of µ and y

Improvements of PIXIE are being discussed!

Testing running with distortions

Testing running with distortions

- combined constraint Planck & PIXIE not affected much by distortion information
- at ~3.4 x PIXIE, constraint on running improved ~1.5 times
- centroid moves towards fiducial model
- at 10 x PIXIE, constraint on running improved 3 times over Planck alone
- μ could be detected at ~15σ and μ₁ at ~2.6σ
- combining with future imager (e.g., COrE+) distortions could still improve constraint on running (e.g., JC & Jeong, 2014)

Distortions provide general power spectrum constraints!

Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹

improved limits at smaller scales can rule out many inflationary models

Distortions provide general power spectrum constraints!

- Amplitude of power spectrum rather uncertain at k > 3 Mpc⁻¹
- improved limits at smaller scales can rule out many inflationary models
- CMB spectral distortions would extend our lever arm to k ~ 10⁴ Mpc⁻¹
- very complementary piece of information about early-universe physics

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013

The cosmological recombination radiation

Rubino-Martin et al. 2006, 2008; Sunyaev & JC, 2009

New detailed and fast computation!

CosmoSpec: fast and accurate computation of the CRR

- Like in old days of CMB anisotropies!
- detailed forecasts and feasibility studies
- non-standard physics (variation of α, energy injection etc.)

CosmoSpec will be available here:

Average CMB spectral distortions

Average CMB spectral distortions

Cosmological Time in Years

Dark matter annihilations / decays

- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

JC, 2009, arXiv:0910.3663

Annihilating/decaying (dark matter) particles

Latest Planck limits on annihilation cross section

95% c.l.

- AMS/Pamela models in tension
- but interpretation model-dependent
- Sommerfeld enhancement?
- clumping factors?
- annihilation channels?

Planck Collaboration, paper XIII, 2015

For current constraint only (weak) upper limits from distortion...

Green's function for photon injection

- Photon injection Green's function gives even richer phenomenology of distortion signals
- Depends on the details of the photon production process for redshifts z < few x 10⁵
- difference between high and low frequency photon injection

Physical mechanisms that lead to spectral distortions

- Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)
- Heating by *decaying* or *annihilating* relic particles (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)
- Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)
- Dissipation of primordial acoustic modes & magnetic fields

(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

Cosmological recombination radiation
 (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

"high" redshifts

"low" redshifts

- Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003)
- Shock waves arising due to large-scale structure formation

(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

SZ-effect from clusters; effects of reionization

(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

other exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

post-recombination

Standard sources

of distortions

Physical mechanisms that lead to spectral distortions

- Photon injection Cooling by adiabatically expanding ordinary matter (JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011) Heating by *decaying* or *annihilating* relic particles pre-recombination epoch (Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013) Evaporation of primordial black holes & superconducting strings (Carr et al. 2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013) Dissipation of primordial acoustic modes & magnetic fields (Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013) Cosmological recombination radiation (Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009) "high" redshifts "low" redshifts post-recombination Signatures due to first supernovae and their remnants (Oh, Cooray & Kamionkowski, 2003) Shock waves arising due to large-scale structure formation (Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)
 - SZ-effect from clusters; effects of reionization (Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

other exotic processes

(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

Evolution of the HI Lyman-series distortion

Different regimes for photon injection

Spectral distortions of the CMB dipole

- motion with respect to CMB blackbody monopole
- ⇒ CMB temperature dipole
- including primordial distortions of the CMB
- ⇒ CMB dipole is distorted

 $\eta_{\rm d}(\nu, \mathbf{n}) \approx -\nu \partial_{\nu} \eta_{\rm m}(\nu) \,\beta \cos \Theta$

- spectrum of the dipole is sensitive to the *derivative* of the monopole spectrum
- anisotropy does not need *absolute* calibration but just *inter-channel* calibration
- but signal is ~1000 times smaller...
- foregrounds will also leak into the dipole in this way
- check of systematics

Balashev, Kholupenko, JC, Ivanchik & Varshalovich, ApJ, 2015 (ArXiv:1505.06028)

Spectral distortions of the CMB dipole

- motion with respect to CMB blackbody monopole
- ⇒ CMB temperature dipole
- including primordial distortions of the CMB
- ⇒ CMB dipole is distorted

 $\eta_{\rm d}(\nu, \mathbf{n}) \approx -\nu \partial_{\nu} \eta_{\rm m}(\nu) \beta \cos \Theta$

- spectrum of the dipole is sensitive to the *derivative* of the monopole spectrum
- anisotropy does not need absolute calibration but just inter-channel calibration
- but signal is ~1000 times smaller...
- foregrounds will also leak into the dipole in this way
- check of systematics

Balashev, Kholupenko, JC, Ivanchik & Varshalovich, ApJ, 2015 (ArXiv:1505.06028)

Conclusions

CMB spectral distortions will open a new window to the early Universe

- new probe of the inflation epoch and particle physics
- complementary and independent source of information not just confirmation
- in standard cosmology several processes lead to early energy release at a level that will be detectable in the future
- extremely interesting *future* for CMB-based science!

We should make use of all this information!

