Simulations, Data Analysis & High Performance Computing After Planck

Julian Borrill, Reijo Keskitalo & Ted Kisner Computational Cosmology Center, Berkeley Lab & Space Sciences Laboratory, UC Berkeley The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.

Data Analysis

- DA challenge comes from both systematic and statistical uncertainties.
- DA pipeline is an alternating sequence of
 - a) domain-specific systematic mitigation
 - b) S/N-increasing data compression
- Must propagate both data and their covariance for a sufficient statistic.

Analysis Methods

• CMB data volumes:

– Time domain: $\mathcal{N}_{t} \sim \Sigma_{det}$ Sampling Rate (Hz) x Observation Time (s)

- Pixel domain: $\mathcal{N}_{p} \sim \Sigma_{\text{freq, pol}} \ 10^{9} \text{ x Sky Fraction / [Beam (arcmin)]}^{2}$

• CMB data analysis scaling dominated by:

 $-\mathcal{N}_{p}^{3}$ for exact methods with explicit covariance matrices.

– $\mathcal{N}_{mc}\,\mathcal{N}_{t}$ for approximate methods with MC uncertainty quantification.

• Computational constraints (1% cycles/year on Top 10 system):

 $\begin{aligned} &-2000: \ \mathcal{N}_{\rm p} < 10^6 \ \& \ \mathcal{N}_{\rm t} < 10^{12} \\ &-2015: \ \mathcal{N}_{\rm p} < 10^7 \ \& \ \mathcal{N}_{\rm t} < 10^{15} \\ &-2030: \ \mathcal{N}_{\rm p} < 10^8 \ \& \ \mathcal{N}_{\rm t} < 10^{18} \end{aligned}$

Assumes:

- Moore's Law
- 100% & 1% efficiency
- Except in special cases, exact methods now computationally intractable.

Simulations

- Needed for:
 - Forecasting
 - Mission design & development
 - DA validation & verification
 - Data uncertainty quantification & debiasing (MC)
- From top to bottom, trade-off between:
 - computational cost
 - realism/reliability

Forecasting SimDA

Mission Model

- Speed allows for exploration of full mission parameter space, at the price of domain-specific approximations.
- http://portal.nersc.gov/project/mp107/index.html

Production SimDA With Feedback

SimDA: Sub-Domains

Sky Modeling

- Key Challenges:
 - Reliability: noisy, confused, band-passed, beam-convolved templates (inc. Planck) and/or speculative modeling.
 - Self-consistency: eg. CMB secondaries & extra-Galactic foregrounds
 - Usability: software engineering

Component Separation

- Key Challenges:
 - Validation: are these the right algorithms for the (as yet unknown) real foregrounds?
 - Verification: are these algorithms right given (as yet flawed) simulated foregrounds?
 - Polarization!

Statistics & Parameters

- Key Challenges:
 - Reliability: sufficiency of data covariance approximations.
 - Tractability: disk space for many millions of MC maps.

TOD Challenges

- Two bounding challenges:
 - Tractability for massive Monte Carlo sets.
 - Usability for exploratory pre-processing & mission characterization.

Massive Monte Carlos

- Operation count scales with
 - Number of MC realizations: $\mathcal{N}_{\rm mc}$ ~ 10^4
 - Number of map-makings per realization: $\mathcal{N}_{\rm mm}$ ~ 10
 - Number of PCG iterations per map-making: \mathcal{N}_{it} ~ 10
 - Number of operations per PCG iteration: \mathcal{N}_{ops} ~ 10 x \mathcal{N}_{t}
- Required FLOP ~ $10^7 \mathcal{N}_t$ ~ 10^{19} for Planck

High Performance Computing

- 10¹⁹ FLOP ~ 10⁵ CPU-years at 1% efficiency on 1GHz CPU
 - \Rightarrow Massive parallelism + Moore's Law growth
- Whole-data reduction
 - ⇒ Tightly-coupled cores (not grid/cloud/at-home/etc)
- Planck solution:
 - NERSC: Open-access HPC facility with long-term system upgrade plan.
 - New Top 10 system every 2-3 years
 - 6,000 users from 50 countries
 - NASA/DOE MOU guaranteed minimum annual NERSC allocation for mission lifetime:
 - In practice 1% NERSC cycles/year ~ 10⁵ x Peak FLOP/s

Implementation/Architecture Evolution

Architecture Evolution

- Clock speed is no longer able to maintain Moore's Law.
- Many-core and GPU are two major approaches.
- Both of these will require
 - significant code development
 - performance experiments & auto-tuning
- Eg. NERSC's Cray XE6 system *Hopper*
 - 6384 nodes
 - 2 sockets per node
 - 2 NUMA nodes per socket
 - 6 cores per NUMA node
- What is the best way to run hybrid code on such a system?

Configuration With Concurrency

Results: Planck Full Focal Plane 8

- 10⁴ Monte Carlo realizations reduced to 10⁶ maps
 - multiple maps made per simulation

Data & HPC Growth

EPOCH

Next Generation Challenges

- Computational Efficiency
 - Required FLOP ~ 107 \mathcal{N}_{t}
 - Available FLOP ~ 10^5 x Peak
 - Efficiency: $\epsilon > 10^2 \mathcal{N}_t$ / Peak
 - compare suborbital & space!

- Next-generation HPC challenges
 - Energy constraints limiting Watt/FLOP (Tianhe-2 ~ Belize!)
 - More complex architectures will be harder to program efficiently
 - system heterogeneity, deep memory hierarchies, dark silicon, etc
 - End of Moore's Law

Pre-Processing & Mission Characterization

- A limiting factor for Planck has been our ability to easily and quickly
 - simulate detector-level data in full detail
 - prototype pre-processing/mission characterization algorithms.
- As sensitivity increases, mitigating systematics and characterizing their residuals becomes ever more important.

TOAST Overview

- Competing requirements:
 - Massively parallel & very efficient even on coming HPC architectures
 - Easy for non-HPC experts to adapt, extend & run
- Re-implement entire TOAST framework as open source python modules
 - Expanded developer base
 - Rapid prototyping
 - Split generic and experiment-specific elements
- Efficiency issues:
 - Start-up cost: pre-bundle libraries (eg. pyinstaller)
 - I/O avoidance: pass data between modules in memory
 - Compute efficiency: link to compiled C(++) code at key points

Example: Single-Detector Maps

- Single-detector maps provide powerful systematics tests since they avoid beam, bandpass mismatch issues.
 - Also provide checks on single-detector systematics (side-lobes etc)
- Polarized single-detector maps require observations of each pixel with many attack angles.
- Comparing scanning strategies is an inherently time-domain activity.
- Satellite scans parameterized by precession & spin angles & rates.
- Compare 4 cases:
 - Planck
 - LiteBIRD (with HWP)
 - COrE fast spin
 - COrE slow spin

Example: Single-Detector Hit Maps

Example: Single-Detector Condition Maps

TOAST Status

- Base framework & generic tools/scripts
 - Public git repo <u>https://github.com/hpc4cmb/toast</u>
- Experiment-specific extensions & scripts:
 - Private git repos https://github.com/hpc4cmb/toast-X
 - X: toast-planck, toast-litebird, toast-core, toast-cmbs4, etc
- Planned additions/extensions:
 - Xeon Phi KNL port/optimization
 - On-the-fly band-pass integration
 - HWP-varying beam, bandpass
 - Multichroic/multiplexed cross-talk
 - Planet/variable source observations
 - Atmosphere & ground-pickup

Energy-Constrained Node Evolution

DMI 1 x4 MCDRAM MCDRAM MCDRAM MCDRAM D PCle М Gen 3 **36 Tiles** onnected b 2D Mesh nterconne F. misc **1** MCDRAM MCDRAM MCDRAM MCDRAM Package

2 x16

X4

Magny-Cours (24 threads)

=>

Knights Landing (~160 threads)

A Modest Proposal

- A two-tier community-wide program:
 - developing common, generic capabilities in the public domain
 - deploying them for specific analyses within our various collaborations

