Behind the ACTPol map Some aspects of data processing

Loie Maurin ACTPol collaboration Pontificia Universidad Católica

Collaboration

9 **9** 36 3

Q 11 10 10

Location

 Chajnantor plateau, Atacama desert (Chile)

- 5190m
- Low PWV
- Good transmission at 90 and 150 GHz
- Great neighborhood (POLARBEAR, CLASS, APEX, ALMA, Simons Observatory coming soon...)

Telescope

Instrument

3 optics tubes:
2013: 1 array at 150GHz
2014: 2 arrays at 150GHz
2015: 2 arrays at 150GHz, 1 at 90/150GHz

 Each array: ~1000 detectors

• 2015: HWP

Thornton et al. 2016

Dichroic array

Centaurus A ~10 hours of data

ACTPol PA3 90 GHz

ACTPol PA3 150 GHz

Credit: Marius Lungu

From the sky to the data

10000

Raw data

- 3 x 1056 detectors sampled at 400Hz
- Scanning information
- Housekeeping information

1. 1.

- thermometers
- ► HWP
- flags
- IV curves, Bias Steps
- Stored in 10 minutes chunks (TOD)

2016: ~ 25 TB !

Raw data

Loïc Maurin - Madrid CMB workshop - June 2016

1 1 1 P - 1

Raw data

A 124

Loïc Maurin - Madrid CMB workshop - June 2016

1.0.4

Where is the signal?

A CARL OF STREET, SAN AN

Loïc Maurin - Madrid CMB workshop - June 2016

Atmosphere

4 J T

What is good data?

•What are the properties of good data?

A CONTRACTOR OF A CONTRACTOR OF

- should correlate well to the atmosphere (dominant signal)
- atmosphere contamination shouldn't be too large (PWV > 3mm)
- high frequency noise should "look good"
 - \checkmark noise level in expected range
 - \checkmark statistics should be close enough to gaussianity
- glitches and jumps should be flagged
- According to these criteria, we flag:
 - chunks of a TOD for individual detector
 - whole TOD for individual detector

whole TOD for all detectors

What is good data?

1 **6** 3 7 1

Loïc Maurin - Madrid CMB workshop - June 2016

What do we have to calibrate our data?

detector responsivity measurements

- ✓ IV curves
- ✓Bias steps
- observations
 - \checkmark atmospheric signal
 - \checkmark planet observations

Calibration

Before

Frequency domain

After

Frequency domain

Can we make a map now?

Not yet!

- Time constants
 - \checkmark from IV curves
 - \checkmark from planets
- Pointing
 - ✓ relative detector offsets from all planets observations
 - ✓ absolute boresight pointing per TOD from model fitted on planets (and possibly point sources)
- Noise model
 - \checkmark compute TOD correlation matrix
 - \checkmark remove dominant modes
 - \checkmark estimate residual (uncorrelated) per detector noise

- Beam
 - \checkmark from planets
 - \checkmark from simulations (GRASP)

Optics characterization

PUC Team: R. Dünner, P. Fluxa, A. Schillacci, C. Béchet (postdoc position available, contact: rdunner@astro.puc.cl)

- Goals:
 - Mirror alignment
 - Telescope modeling

Beam simulation

- Techniques:
 - photogrammetry
 - Solidworks/Agisoft-Photoscan
 - GRASP simulation

3D reconstruction

Agisoft-Photoscan

faces: 1,706,142 vertices: 855,108

N 4 1 4

Perspective 30°

Loïc Maurin - Madrid CMB workshop - June 2016

Maps 2013

Naess et al (2014)

N 4 1

Loïc Maurin - Madrid CMB workshop - June 2016

10.1

CMB

Loïc Maurin - Madrid CMB workshop - June 2016

10.4

CIB lensing

医外耳 网络马克 法正式法 化合物 经代出公司 计算法 网络拉拉马

e 37

DM haloes lensing

A REAL PROPERTY AND A REAL

Convergence field stacked around galaxies from BOSS

Madhavacheril et al (2014)

1.1.1

• 2013+2014 data

- First CMB multichroic array on the sky (since 2015)
- AdvACT is being deployed

Simons Observatory on the way

Thank you

