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Introduction

Statement

Accurate interpretation of cosmological observations requires to account
for lensing corrections.

Current situation

Cosmic lensing is generally described with the perturbation theory, in
which matter is modelled as a fluid.

Problem

This approximation breaks down when very narrow light beams are
involved (e.g. for SN observations).
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The lensing Jacobi matrix

The Jacobi matrix D relates the morphology of a light beam to its
observed angular aperture

ξA(v) = DA
B (v)θB0

ξ2

v2>v1

v=0

kμ
ξ1

kμ

v1

(dξ/dv)0=θ0

Its determinant defines the geometric distances

DA =
√
|detD(vS)| and DL = (1 + z)2DA.
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The Sachs equation

Evolution of D ruled by the geodesic deviation equation

d2DA
B

dv2
= RA

CDC
B

with the optical tidal matrix (projected Riemann tensor)

RAB ≡ Rµνρσs
µ
Ak

νkρsσB ,

decomposed in to Ricci part and a Weyl part as

R =

(
R 0
0 R

)
︸ ︷︷ ︸

generates focusing

+

(
−W1 W2

W2 W1

)
︸ ︷︷ ︸

generates distortions

R ≡ −1

2
Rµνk

µkν

WAB ≡ Cµνρσs
µ
Ak

νkρsσB
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Ricci and Weyl lensing

R
W

S

Ricci focuses due to diffuse matter inside the beam, as

R ≡ −1

2
Rµνk

µkν = −4πGTµνk
µkν = −4πGω2(ρ+ p).

Weyl distorts and focuses mostly due to matter outside the beam.
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Ricci and Weyl lensing

W
W

S

What is considered Ricci or Weyl depends on the beam’s scale.

Question

How to efficiently model lensing due to very-small-scale structures?
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Analogy with Brownian motion

water

dust particle

Brownian motion due to a myriad of collisions between the particle
and water molecules.

It cannot be described with a fluid approach.

Mathematical model: stochastic force.
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The Sachs-Langevin equation

d2D
dv2

= (〈R〉+ δR)D

〈R〉 (deterministic) encodes the large-scale structure;

δR (stochastic) models small-scale fluctuations.

Hypotheses: statistical isotropy and white noises.

〈WA〉 = 0,

〈δR(v)WA(w)〉 = 0,

〈δR(v)δR(w)〉 = CR(v)δ(v − w)

〈WA(v)WB(w)〉 = CW(v)δABδ(v − w)

Covariance amplitude of X such that CX ∼ (δX )2∆vcoh.
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The lensing Fokker-Planck equation

The probability density function p(D, Ḋ; v) satisfies

∂p

∂v
= −ḊAB

∂p

∂DAB
− 〈R〉DAB

∂p

∂ḊAB

+
1

2
(CR δAEδCF + CW δACδEF − CW εACεEF )DEBDFD

∂2p

∂ḊAB∂ḊCD

,

with a drift term and a diffusion term.

It generates evolutions equations for the moments of p(D, Ḋ; v).

Order-n moments form a closed system (no hierarchy).

Everything is contained in the functions 〈R〉 (v), CR(v), CW(v).
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General results

Correction to the mean angular distance. Let D0 be such
that D̈0 = 〈R〉D0 (e.g. FLRW distance, or Kantowki-Dyer-Roeder
distance), then

δ
(1)
DA
≡ 〈DA〉 − D0

D0
at first order in Weyl fluctuations

= −
∫ v

0
dv1

∫ v1

0
dv2

∫ v2

0
dv3

[
D2

0 (v3)

D0(v1)D0(v2)

]2

2CW(v3)

Dispersion of the angular distance σ2
DA
≡
〈
D2

A

〉
− 〈DA〉2,

d3

dx3

(
σDA

D0

)2

−2D6
0 (CR−2CW)

(
σDA

D0

)2

≈ 2CRD
6
0 +6

∫
dx

[
d2δ

(1)
DA

dx2

]2

,

with dx ≡ dv/D2
0 .
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Application to a Swiss-cheese model
The Einstein-Straus method in brief

FL spacetime Construction
1 start from a homogeneous

and isotropic model;

2 pick a comoving sphere;

3 concentrate the matter it
contains at the center;

4 do it again, without
overlapping holes.

Amount of holes quantified by
the smoothness parameter

ᾱ ≡ VFL

V
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Application to a Swiss-cheese model
Comparison with numerical simulations
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Non-gaussianity: a limitation
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Conclusion

The idea

Modelling small-scale lensing as a diffusion process.

Advantages

Simple and flexible approach.

Paves the way to a multiscale treatment of cosmic lensing.

Potential applications: accurate estimation of SN lensing; lensing by a
stochastic background of gravitational waves, etc.

To be done

Apply the formalism to realistic cosmological models, and compare
with observations.

Merge with the standard treatment of lensing by the large-scale
structure.

Address the problem of non-Gaussianity.
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The (Kantowski-)Dyer-Roeder approximation
[Kantowski 69, Dyer & Roeder 72,73,74]

Effective distance-redshift relation in a clumpy universe.

Hypotheses:

1 Affine parameter-redshift relation identical to FL.

2 Neglected Weyl focusing.

3 Reduced Ricci focusing wrt FL: Reff = αRFL

Leads to the KDR equation

d2DA

dz2
+

(
2

1 + z
+

d lnH

dz

)
dDA

dz
+

3αΩm0

2

[
H0

H(z)

]2

(1 + z)DA(z) = 0.

Pierre Fleury (UCT/UWC) Stochastic small-scale lensing June 28th 2016 13 / 13



Swiss-cheese models and the (Kantowski-)Dyer-Roeder
approximation
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CMB VS SNe

α=0
SNe

SNe
α=1
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