Small-scale lensing as a diffusion process Workshop on the large-scale structure, Madrid

Pierre Fleury

University of Cape Town University of the Western Cape

June 28th 2016

UNIVERSITY of the WESTERN CAPE

Based on [1508.07903] with Julien Larena and Jean-Philippe Uzan

Introduction

Statement

Accurate interpretation of cosmological observations requires to account for **lensing** corrections.

Current situation

Cosmic lensing is generally described with the perturbation theory, in which matter is modelled as a **fluid**.

Problem

This approximation breaks down when very **narrow light beams** are involved (e.g. for SN observations).

The lensing Jacobi matrix

The Jacobi matrix \mathcal{D} relates the morphology of a light beam to its observed angular aperture

The lensing Jacobi matrix

The Jacobi matrix \mathcal{D} relates the morphology of a light beam to its observed angular aperture

Its determinant defines the geometric distances

 $D_{\mathsf{A}} = \sqrt{|\det \mathcal{D}(v_{\mathcal{S}})|}$ and $D_{\mathsf{L}} = (1+z)^2 D_{\mathsf{A}}$.

The Sachs equation

Evolution of ${\cal D}$ ruled by the geodesic deviation equation

$$\frac{\mathsf{d}^2\mathcal{D}^A{}_B}{\mathsf{d}v^2} = \mathcal{R}^A_C\mathcal{D}^C{}_B$$

with the optical tidal matrix (projected Riemann tensor)

$$\mathcal{R}_{AB} \equiv R_{\mu\nu\rho\sigma} s^{\mu}_{A} k^{\nu} k^{\rho} s^{\sigma}_{B},$$

The Sachs equation

Evolution of ${\cal D}$ ruled by the geodesic deviation equation

$$\frac{\mathsf{d}^2\mathcal{D}^A{}_B}{\mathsf{d}v^2}=\mathcal{R}^A_C\mathcal{D}^C{}_B$$

with the optical tidal matrix (projected Riemann tensor)

$$\mathcal{R}_{AB} \equiv R_{\mu\nu\rho\sigma} s^{\mu}_{A} k^{\nu} k^{\rho} s^{\sigma}_{B},$$

decomposed in to Ricci part and a Weyl part as

$$\mathfrak{R}\equiv-rac{1}{2}R_{\mu
u}k^{\mu}k^{
u}$$

 $\mathfrak{W}_{AB}\equiv C_{\mu
u
ho\sigma}s^{\mu}_{A}k^{
u}k^{
ho}s^{\sigma}_{B}$

Ricci and Weyl lensing

• Ricci focuses due to diffuse matter inside the beam, as

$$\Re \equiv -\frac{1}{2} R_{\mu\nu} k^{\mu} k^{\nu} = -4\pi G T_{\mu\nu} k^{\mu} k^{\nu} = -4\pi G \omega^2 (\rho + p).$$

• Weyl distorts and focuses mostly due to matter outside the beam.

Ricci and Weyl lensing

• Ricci focuses due to diffuse matter inside the beam, as

$$\Re \equiv -\frac{1}{2} R_{\mu\nu} k^{\mu} k^{\nu} = -4\pi G T_{\mu\nu} k^{\mu} k^{\nu} = -4\pi G \omega^2 (\rho + p).$$

• Weyl distorts and focuses mostly due to matter outside the beam.

Ricci and Weyl lensing

What is considered Ricci or Weyl depends on the beam's scale.

Question

How to efficiently model lensing due to very-small-scale structures?

Analogy with Brownian motion

Analogy with Brownian motion

- Brownian motion due to a myriad of collisions between the particle and water molecules.
- It cannot be described with a fluid approach.
- Mathematical model: stochastic force.

The Sachs-Langevin equation

$$\frac{\mathsf{d}^2 \boldsymbol{\mathcal{D}}}{\mathsf{d} \boldsymbol{v}^2} = \left(\langle \boldsymbol{\mathcal{R}} \rangle + \delta \boldsymbol{\mathcal{R}} \right) \boldsymbol{\mathcal{D}}$$

- $\langle {\cal R} \rangle$ (deterministic) encodes the large-scale structure;
- $\delta \mathcal{R}$ (stochastic) models small-scale fluctuations.

The Sachs-Langevin equation

$$\frac{\mathsf{d}^{2}\boldsymbol{\mathcal{D}}}{\mathsf{d}\boldsymbol{v}^{2}}=\left(\langle\boldsymbol{\mathcal{R}}\rangle+\delta\boldsymbol{\mathcal{R}}\right)\boldsymbol{\mathcal{D}}$$

- $\langle {\cal R} \rangle$ (deterministic) encodes the large-scale structure;
- $\delta \mathcal{R}$ (stochastic) models small-scale fluctuations.

Hypotheses: statistical isotropy and white noises.

$$egin{aligned} & \langle \mathcal{W}_{\mathcal{A}}
angle = 0, \ & \langle \delta \mathcal{R}(v) \mathcal{W}_{\mathcal{A}}(w)
angle = 0, \ & \langle \delta \mathcal{R}(v) \delta \mathcal{R}(w)
angle = \mathcal{C}_{\mathcal{R}}(v) \delta(v-w) \ & \langle \mathcal{W}_{\mathcal{A}}(v) \mathcal{W}_{\mathcal{B}}(w)
angle = \mathcal{C}_{\mathcal{W}}(v) \delta_{\mathcal{AB}} \delta(v-w) \end{aligned}$$

Covariance amplitude of X such that $C_X \sim (\delta X)^2 \Delta v_{\rm coh}$.

Pierre Fleury (UCT/UWC)

The lensing Fokker-Planck equation

The probability density function $p(\mathcal{D}, \dot{\mathcal{D}}; v)$ satisfies

$$\begin{aligned} \frac{\partial p}{\partial v} &= -\dot{\mathcal{D}}_{AB} \frac{\partial p}{\partial \mathcal{D}_{AB}} - \langle \mathfrak{R} \rangle \, \mathcal{D}_{AB} \frac{\partial p}{\partial \dot{\mathcal{D}}_{AB}} \\ &+ \frac{1}{2} \left(C_{\mathfrak{R}} \, \delta_{AE} \delta_{CF} + C_{W} \, \delta_{AC} \delta_{EF} - C_{W} \, \varepsilon_{AC} \varepsilon_{EF} \right) \mathcal{D}_{EB} \mathcal{D}_{FD} \frac{\partial^{2} p}{\partial \dot{\mathcal{D}}_{AB} \partial \dot{\mathcal{D}}_{CD}}, \end{aligned}$$

with a drift term and a diffusion term.

- It generates evolutions equations for the moments of $p(\mathcal{D}, \dot{\mathcal{D}}; v)$.
- Order-*n* moments form a closed system (no hierarchy).
- Everything is contained in the functions $\langle \mathcal{R} \rangle(\nu)$, $C_{\mathcal{R}}(\nu)$, $C_{\mathcal{W}}(\nu)$.

General results

• Correction to the mean angular distance. Let D_0 be such that $\ddot{D}_0 = \langle \mathcal{R} \rangle D_0$ (e.g. FLRW distance, or Kantowki-Dyer-Roeder distance), then

$$\begin{split} \delta_{D_A}^{(1)} &\equiv \frac{\langle D_A \rangle - D_0}{D_0} & \text{at first order in Weyl fluctuations} \\ &= -\int_0^v dv_1 \int_0^{v_1} dv_2 \int_0^{v_2} dv_3 \left[\frac{D_0^2(v_3)}{D_0(v_1) D_0(v_2)} \right]^2 2C_{\mathcal{W}}(v_3) \end{split}$$

General results

• Correction to the mean angular distance. Let D_0 be such that $\ddot{D}_0 = \langle \mathcal{R} \rangle D_0$ (e.g. FLRW distance, or Kantowki-Dyer-Roeder distance), then

$$\begin{split} \delta_{D_{\mathsf{A}}}^{(1)} &\equiv \frac{\langle D_{\mathsf{A}} \rangle - D_0}{D_0} \quad \text{at first order in Weyl fluctuations} \\ &= -\int_0^v \mathsf{d} v_1 \int_0^{v_1} \mathsf{d} v_2 \int_0^{v_2} \mathsf{d} v_3 \left[\frac{D_0^2(v_3)}{D_0(v_1) D_0(v_2)} \right]^2 2C_{\mathcal{W}}(v_3) \end{split}$$

• Dispersion of the angular distance $\sigma_{D_A}^2 \equiv \left\langle D_A^2 \right\rangle - \left\langle D_A \right\rangle^2$,

$$\frac{\mathrm{d}^3}{\mathrm{d}x^3} \left(\frac{\sigma_{D_{\mathrm{A}}}}{D_0}\right)^2 - 2D_0^6(C_{\mathrm{R}} - 2C_{\mathrm{W}}) \left(\frac{\sigma_{D_{\mathrm{A}}}}{D_0}\right)^2 \approx 2C_{\mathrm{R}}D_0^6 + 6\int \mathrm{d}x \left[\frac{\mathrm{d}^2\delta_{D_{\mathrm{A}}}^{(1)}}{\mathrm{d}x^2}\right]^2,$$

with $dx \equiv dv/D_0^2$.

The Einstein-Straus method in brief

The Einstein-Straus method in brief

Construction

- start from a homogeneous and isotropic model;
- pick a comoving sphere;

The Einstein-Straus method in brief

Construction

- start from a homogeneous and isotropic model;
- pick a comoving sphere;
- concentrate the matter it contains at the center;

The Einstein-Straus method in brief

Construction

- start from a homogeneous and isotropic model;
- pick a comoving sphere;
- concentrate the matter it contains at the center;
- do it again, without overlapping holes.

Amount of holes quantified by the smoothness parameter

$$\bar{\alpha} \equiv \frac{V_{\mathsf{FL}}}{V}$$

The Einstein-Straus method in brief

Construction

- start from a homogeneous and isotropic model;
- pick a comoving sphere;
- concentrate the matter it contains at the center;
- do it again, without overlapping holes.

Amount of holes quantified by the smoothness parameter

$$\bar{\alpha} \equiv \frac{V_{\mathsf{FL}}}{V}$$

Comparison with numerical simulations

Comparison with numerical simulations

Non-gaussianity: a limitation

Conclusion

The idea

Modelling small-scale lensing as a diffusion process.

Advantages

- Simple and flexible approach.
- Paves the way to a multiscale treatment of cosmic lensing.
- Potential applications: accurate estimation of SN lensing; lensing by a stochastic background of gravitational waves, etc.

To be done

- Apply the formalism to realistic cosmological models, and compare with observations.
- Merge with the standard treatment of lensing by the large-scale structure.
- Address the problem of non-Gaussianity.

The (Kantowski-)Dyer-Roeder approximation [Kantowski 69, Dyer & Roeder 72,73,74]

Effective distance-redshift relation in a clumpy universe.

Hypotheses:

- Affine parameter-redshift relation identical to FL.
- Neglected Weyl focusing.
- Seduced Ricci focusing wrt FL: $\Re_{eff} = \alpha \Re_{FL}$

Leads to the KDR equation

$$rac{\mathsf{d}^2 D_\mathrm{A}}{\mathsf{d} z^2} + \left(rac{2}{1+z} + rac{\mathsf{d} \ln H}{\mathsf{d} z}
ight) rac{\mathsf{d} D_\mathrm{A}}{\mathsf{d} z} + rac{3lpha \Omega_\mathrm{m0}}{2} \left[rac{H_0}{H(z)}
ight]^2 (1+z) D_\mathrm{A}(z) = 0.$$

Swiss-cheese models and the (Kantowski-)Dyer-Roeder approximation

CMB VS SNe

