The Weak Gravity Conjecture & Cosmology Madrid 17-18 March 2016

Gravitational Instantons, Moduli Stabilisation & Axion Inflation

Lukas Witkowski

with
Arthur Hebecker, Patrick Mangat and Stefan Theisen

Large field inflation with axions faces many challenges.

[Arkani-Hamed, Motl, Nicolis, Vafa 2006]

Towards a general no-go principle: The Weak Gravity Conjecture

- General statement about Einstein-Maxwell / Einstein-axion theories.
- Only a conjecture.

[Brown, Cottrell, Shiu, Soler 2015]

How does it manifest itself in explicit models? Loopholes?

· Large field inflation with axions faces many challenges.

[Arkani-Hamed, Motl, Nicolis, Vafa 2006]

Towards a general no-go principle: The Weak Gravity Conjecture

- General statement about Einstein-Maxwell / Einstein-axion theories.
- Only a conjecture.

[Brown, Cottrell, Shiu, Soler 2015]

How does it manifest itself in explicit models? Loopholes?

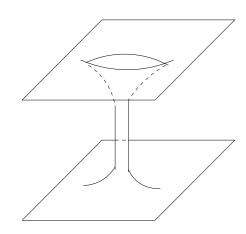
Gravitational Instantons — another general no-go principle?

[Giddings, Strominger 1988]

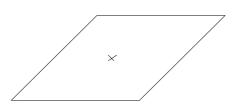
- If they exist, they are a universal feature of Einstein-axion theories.
- Could constrain axion inflation in a fairly model-independent way. [Montero, Uranga, Valenzuela 2015]
- Gravitational Instantons as a manifestation of the Weak Gravity Conjecture? [Bachlechner, Long, Mcallister 2015; Heidenreich, Reece, Rudelius 2015]

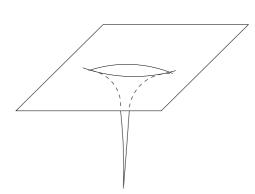
Gravitational Instantons [Giddings, Strominger 1988; Bergshoeff, Collinucci, Gran, Roest, Vandoren 2004]

- Euclidean solutions of 4-dimensional Einstein-axion(-dilaton) systems.
- Solution for metric: $ds^2 = \left(1 + \frac{C}{r^4}\right)^{-1} dr^2 + r^2 d\Omega_3^2$



$$C = 0$$





Wormhole

narrowest radius:

$$r_0 = |C|^{1/4}$$

Extremal Instanton

- · requires a diatonic field
- space is flat

Cored Instanton

- requires a diatonic field
- singular for $r \to 0$

Gravitational Instantons

- Euclidean solutions of Einstein-axion(-dilaton) systems.
- Expected to give rise to a potential for the axion:

$$\delta V \sim \Sigma_n \ e^{-\frac{n}{f}} \cos(\frac{n\theta}{f})$$

- For natural inflation need f > 1.
- For transplanckian axion decay constants f > 1 gravitational instantons with $n \leq f$ should not be trusted and discarded.
- One should only trust such contributions with $n \gtrsim f$. Nevertheless, contributions with $n \sim f$ can easily disrupt large-field inflation by giving rise to unsuppressed higher harmonics. [Montero, Uranga, Valenzuela 2015]

Gravitational Instantons (Wormhole case)

Potential
$$\delta V \sim \Sigma_n \ e^{-\frac{n}{f}} \cos(\frac{n\theta}{f})$$
 Scalar Curvature at throat $R \sim \frac{f}{n}$

Unsuppressed potential = curvature approaches Planck scale

Trust solution only up to a cutoff $R < \Lambda^2$ \Rightarrow $\delta V \sim e^{-1/\Lambda^2}$

Gravitational Instantons (Wormhole case)

Potential
$$\delta V \sim \Sigma_n \ e^{-\frac{n}{f}} \cos(\frac{n\theta}{f})$$
 Scalar Curvature at throat $R \sim \frac{f}{n}$

Unsuppressed potential = curvature approaches Planck scale

Trust solution only up to a cutoff $R < \Lambda^2$ \Rightarrow $\delta V \sim e^{-1/\Lambda^2}$

Relative correction to inflaton potential: $\frac{\delta V}{V_{inf}} \sim \frac{e^{-1/\Lambda^2}}{H^2}$

[Hebecker, Mangat, Rompineve, LW 2015]

Gravitational Instantons (Wormhole case)

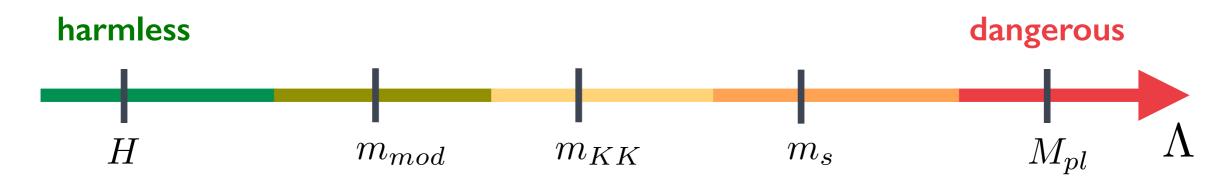
Potential
$$\delta V \sim \Sigma_n \ e^{-\frac{n}{f}} \cos(\frac{n\theta}{f})$$
 Scalar Curvature at throat $R \sim \frac{f}{n}$

Unsuppressed potential = curvature approaches Planck scale

Trust solution only up to a cutoff $R < \Lambda^2$ \Rightarrow $\delta V \sim e^{-1/\Lambda^2}$

Relative correction to inflaton potential: $\frac{\delta V}{V_{inf}} \sim \frac{e^{-1/\Lambda^2}}{H^2}$

[Hebecker, Mangat, Rompineve, LW 2015]



<u>Outline</u>

Do gravitational instantons constrain axion inflation? (What is the cutoff?)

<u>Outline</u>

1.) Review the theoretical basis for gravitational instantons.

Do gravitational instantons constrain axion inflation? (What is the cutoff?)

- 2.) Include moduli: study Einstein-axion-moduli systems
- 3.) Calculate potential due to gravitational instantons.

1. The Case For Gravitational Instantons

Gravitational Instantons

- Euclidean solutions of Einstein-axion(-dilaton) systems.
- Start with theory of an axion θ_0 (ignore gravity and dilaton first):

$$S[\theta_0] = \int_M \frac{1}{2g_\theta^2} F_1 \wedge \star F_1 , \qquad F_1 = d\theta_0 ,$$

• Equivalently, have a dual description in terms of a field B_2 :

$$S[B_2] = \int_M \frac{1}{2g_B^2} H_3 \wedge \star H_3 , \qquad H_3 = dB_2,$$

where $H_3 = g_B^2 \star F_1$ and $g_B^2 = 1/g_\theta^2$.

Gravitational Instantons

- Euclidean solutions of Einstein-axion(-dilaton) systems.
- Start with theory of an axion θ_0 (ignore gravity and dilaton first):

$$S[\theta_0] = \int_M \frac{1}{2g_\theta^2} F_1 \wedge \star F_1 , \qquad F_1 = d\theta_0 ,$$

• Equivalently, have a dual description in terms of a field B_2 :

$$S[B_2] = \int_M \frac{1}{2g_B^2} H_3 \wedge \star H_3 , \qquad H_3 = dB_2,$$

where $H_3 = g_B^2 \star F_1$ and $g_B^2 = 1/g_\theta^2$.

This dualisation can also be done in the path integral.

Now couple the θ_0 / B_2 theory to Einstein gravity:

• Using the θ_0 formulation the stress-energy tensor is

$$T_{\mu\nu}^{(\theta)} = \frac{1}{g_{\theta}^2} \left(-\frac{1}{2} g_{\mu\nu} (\partial \theta_0)^2 + \partial_{\mu} \theta_0 \partial_{\nu} \theta_0 \right) ,$$

• In the B_2 formulation we obtain:

$$T_{\mu\nu}^{(B)} = \frac{1}{g_B^2} \left(-\frac{1}{2 \cdot 3!} g_{\mu\nu} H_3^2 + \frac{1}{2} H_{\mu\rho\sigma} H_{\nu}^{\rho\sigma} \right) .$$

Now couple the θ_0 / B_2 theory to Einstein gravity:

• Using the θ_0 formulation the stress-energy tensor is

$$T_{\mu\nu}^{(\theta)} = \frac{1}{g_{\theta}^2} \left(-\frac{1}{2} g_{\mu\nu} (\partial \theta_0)^2 + \partial_{\mu} \theta_0 \partial_{\nu} \theta_0 \right) ,$$

• In the B_2 formulation we obtain:

$$T_{\mu\nu}^{(B)} = \frac{1}{g_B^2} \left(-\frac{1}{2 \cdot 3!} g_{\mu\nu} H_3^2 + \frac{1}{2} H_{\mu\rho\sigma} H_{\nu}^{\rho\sigma} \right) .$$

The Einstein equation $G_{\mu\nu}=T_{\mu\nu}^{(B)}$ together with the flux quantisation condition $\int_{S^3}H_3=n$ have a non-trivial solution:

Giddings-Strominger wormhole

[Giddings, Strominger 1988]

Now couple the θ_0 / B_2 theory to Einstein gravity:

• Using the θ_0 formulation the stress-energy tensor is

$$T_{\mu\nu}^{(\theta)} = \frac{1}{g_{\theta}^2} \left(-\frac{1}{2} g_{\mu\nu} (\partial \theta_0)^2 + \partial_{\mu} \theta_0 \partial_{\nu} \theta_0 \right) ,$$

• In the B_2 formulation we obtain:

$$T_{\mu\nu}^{(B)} = \frac{1}{g_B^2} \left(-\frac{1}{2 \cdot 3!} g_{\mu\nu} H_3^2 + \frac{1}{2} H_{\mu\rho\sigma} H_{\nu}^{\rho\sigma} \right) =$$

$$= -\frac{1}{g_\theta^2} \left(-\frac{1}{2} g_{\mu\nu} (\partial \theta_0)^2 + \partial_{\mu} \theta_0 \partial_{\nu} \theta_0 \right) = -T_{\mu\nu}^{(\theta)},$$

where we used $H_3 = g_B^2 \star F_1$ and $g_B^2 = 1/g_\theta^2$.

Obtain different Einstein equations for θ_0 and B_2 theories.

• Gravitational instanton solutions exist for the B_2 theory, but not for $heta_0$.

Which theory is the "correct" one? Possible resolutions:

- The Euclidean θ_0 and B_2 theories coupled to gravity seem to differ.
- Gravitational instanton solutions exist for the B_2 theory, but not for θ_0 .

For wormholes to exist...

- there must be a reason that the B_2 formulation is more fundamental.
- In the B_2 formulation strings are present in the path integral while fundamental instantons are not.

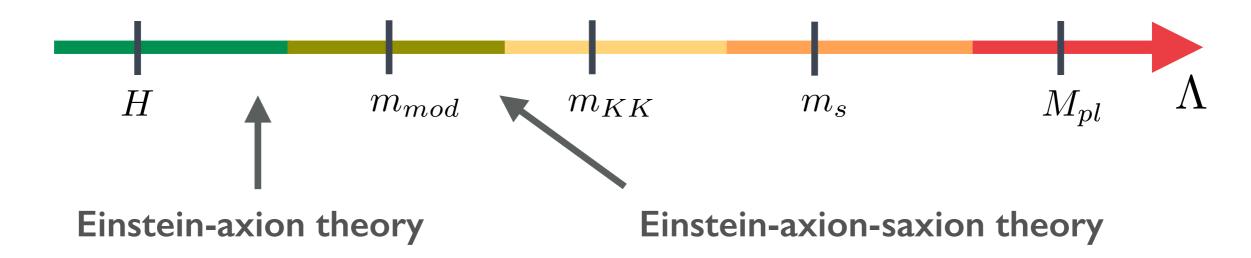
A nod to the WGC:

$$S[\theta_0] = \int_M \frac{1}{2g_\theta^2} F_1 \wedge \star F_1 + iQ_\theta \int_I \theta_0, \qquad F_1 = d\theta_0,$$

$$S[B_2] = \int_M \frac{1}{2g_B^2} H_3 \wedge \star H_3 + iQ_B \int_{\sigma} B_2, \quad H_3 = dB_2,$$

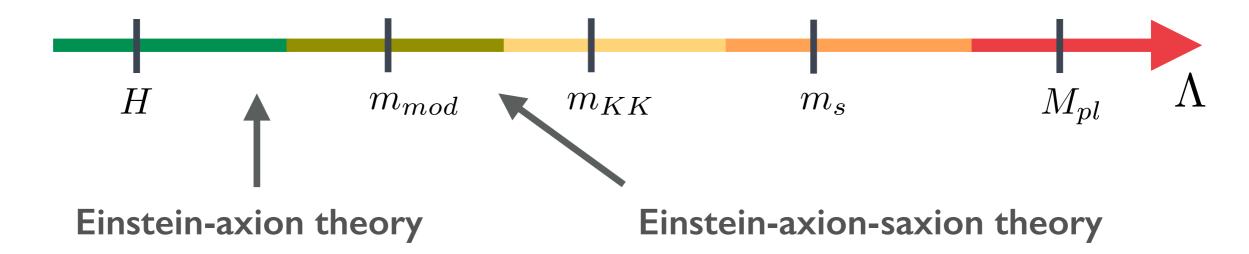
- large axion decay constant: θ_0 theory is weakly coupled, while B_2 theory is strongly coupled: $f\sim 1/g_\theta\gg 1$.
- Taking WGC seriously, this is the regime of light instantons and heavy strings.
- More generally, expect the charged object on the perturbative side to be light.
- Tension with the requirement for wormholes...

2. Gravitational Instantons & Moduli



- For simplicity: include one additional scalar φ (lightest modulus).
- Einstein-axion-saxion theory with moduli potential:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}K(\varphi)g^{\mu\nu}\partial_{\mu}\theta\partial_{\nu}\theta + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right].$$



- For simplicity: include one additional scalar φ (lightest modulus).
- Einstein-axion-saxion theory with moduli potential:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}K(\varphi)g^{\mu\nu}\partial_{\mu}\theta\partial_{\nu}\theta + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right].$$

Should rather study the dual Einstein-Maxwell-saxion theory:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

where $\mathcal{F} = 1/(3!K)$.

Study the dual Einstein-Maxwell-saxion theory:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

Dangers:

- Far away from instanton throat / core the saxion sits at the minimum of the potential $\varphi=\langle\varphi\rangle\equiv 0$.
- Along the instanton throat $\varphi(r)$ will have a non-trivial profile.
- The saxion field value controls other parameters of the effective theory: couplings, masses, etc.
- If φ departs significantly from $\langle \varphi \rangle$ within the instant throat, the validity of the effective Einstein-Maxwell-saxion theory is not guaranteed. Discard such gravitational instantons...

Study the dual Einstein-Maxwell-saxion theory:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

Simplifications:

• Take \mathcal{F} to be of the form $\mathcal{F} = \frac{1}{3!f}e^{-\alpha\varphi}$.

Can use known results & relevant for effective theories from strings.

Study the dual Einstein-Maxwell-saxion theory:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

Simplifications:

• Take \mathcal{F} to be of the form $\mathcal{F} = \frac{1}{3!f}e^{-\alpha\varphi}$.

Can use known results & relevant for effective theories from strings.

Example: axio-dilaton: $\mathcal{K} = -\ln(-i(S-\bar{S}))$, $S = C_0 + i/g_s$

$$\mathcal{L} = \frac{g_s^2}{4} (\partial \frac{1}{q_s})^2 + \frac{g_s^2}{4} (\partial C_0)^2 = \frac{1}{2} (\partial \varphi)^2 + \frac{f^2}{2} e^{2\sqrt{2}\varphi} (\partial \theta)^2$$

where $g_s = \langle g_s \rangle e^{\sqrt{2}\varphi}$, $C_0 = \theta$ and we defined $f^2 = \frac{\langle g_s \rangle^2}{2}$.

$$\mathcal{F} = \frac{1}{3!f}e^{-2\sqrt{2}\varphi}$$

Study the dual Einstein-Maxwell-saxion theory:

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

Simplifications:

• Take \mathcal{F} to be of the form $\mathcal{F} = \frac{1}{3!f}e^{-\alpha\varphi}$.

Can use known results & relevant for effective theories from strings.

• As we are only interested in controlled departures of φ from its vev we approximate the potential by its mass term only:

$$V(\varphi) = \frac{1}{2}m^2\varphi^2 \ ,$$

with $m \ll 1$.

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

- Grav. inst. solutions for the above system w/o a potential exist.
- Finding a general solution with $V=\frac{1}{2}m^2\varphi^2$ is hard...

$$S = \int d^4x \sqrt{g} \left[-\frac{1}{2}R + \frac{1}{2}\mathcal{F}(\varphi)H^2 + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi + V(\varphi) \right],$$

- Grav. inst. solutions for the above system w/o a potential exist.
- Finding a general solution with $V = \frac{1}{2}m^2\varphi^2$ is hard...

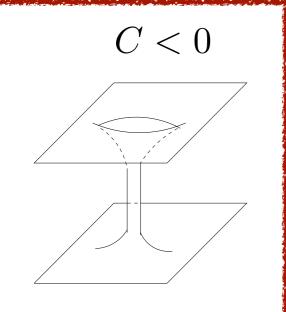
Observation:

- For $r \lesssim 1/m$ the solution for V=0 becomes an increasingly good approximation to the solution of the full system.
- The boundary condition $\varphi(r \to \infty) = 0$ is unchanged.
- One can show that the system is well-behaved for $r \gtrsim 1/m$: e.g. can show that $\varphi(r)$ either falls off monotonically or is bounded.
- Take solution for V=0 as an approximate solution for $m\ll 1$.

3. How Large A Contribution? Wormhole Case

Gravitational Instantons

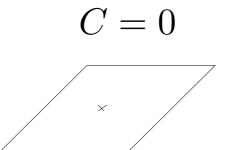
- Use known solutions for a massless dilaton.
- Solution for metric: $ds^2 = \left(1 + \frac{C}{r^4}\right)^{-1} dr^2 + r^2 d\Omega_3^2$



Wormhole

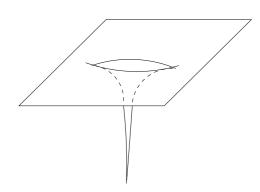
narrowest radius:

$$r_0 = |C|^{1/4}$$



Extremal Instanton

- · requires a diatonic field
- space is flat

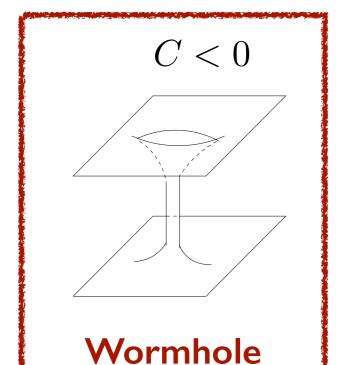


Cored Instanton

- requires a diatonic field
- singular for $r \to 0$

Gravitational Instantons

- · Use known solutions for a massless dilaton.
- Solution for metric: $ds^2 = \left(1 + \frac{C}{r^4}\right)^{-1} dr^2 + r^2 d\Omega_3^2$



narrowest radius:

$$r_0 = |C|^{1/4}$$

Here: focus on wormholes.

Issues:

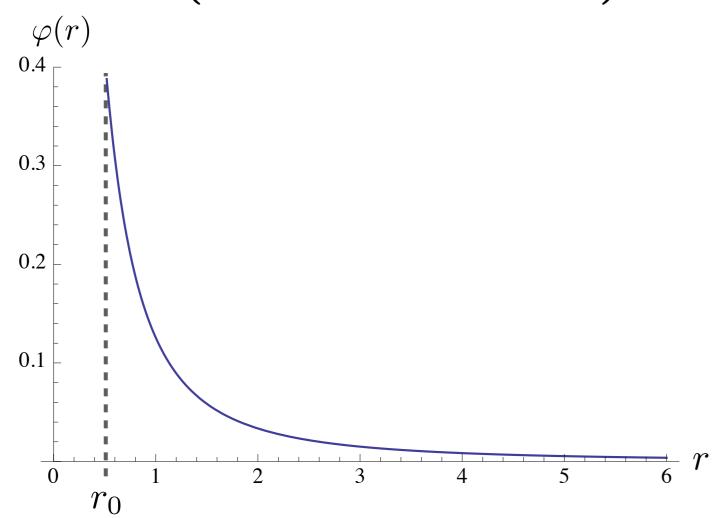
- Instantons or bounces?
- Do they give rise to a potential?

- Only exist for dilation couplings $\alpha < 2\sqrt{2/3}$.
- Saxion profile:

$$\varphi(r) = \frac{2}{\alpha} \ln \left\{ \frac{\cos\left(\sqrt{\frac{3}{2}} \frac{\alpha}{2} \arccos\left(\frac{\sqrt{|C|}}{r^4}\right)\right)}{\cos\left(\sqrt{\frac{3}{2}} \frac{\pi\alpha}{4}\right)} \right\} , \qquad C = -\frac{1}{3!4\pi^4} \frac{n^2}{f^2} \cos^2\left(\sqrt{\frac{3}{2}} \frac{\pi\alpha}{4}\right) .$$

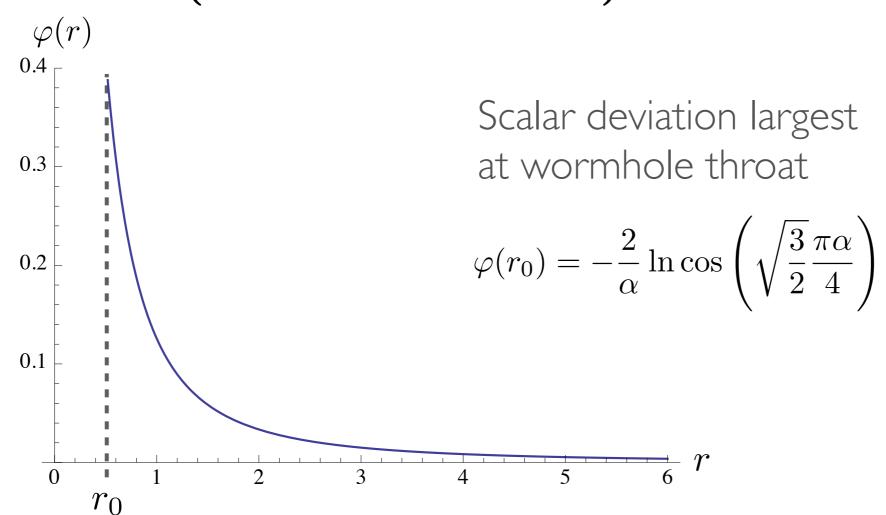
- Only exist for dilation couplings $\alpha < 2\sqrt{2/3}$.
- Saxion profile:

$$\varphi(r) = \frac{2}{\alpha} \ln \left\{ \frac{\cos\left(\sqrt{\frac{3}{2}} \frac{\alpha}{2} \arccos\left(\frac{\sqrt{|C|}}{r^4}\right)\right)}{\cos\left(\sqrt{\frac{3}{2}} \frac{\pi\alpha}{4}\right)} \right\} , \qquad C = -\frac{1}{3!4\pi^4} \frac{n^2}{f^2} \cos^2\left(\sqrt{\frac{3}{2}} \frac{\pi\alpha}{4}\right) .$$

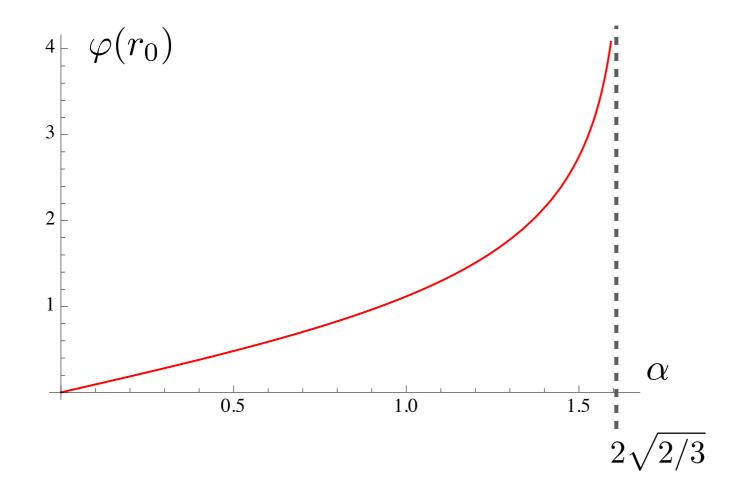


- Only exist for dilation couplings $\alpha < 2\sqrt{2/3}$.
- Saxion profile:

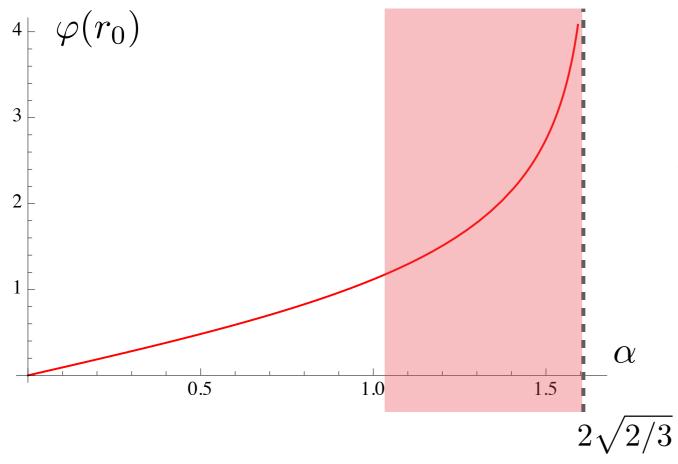
$$\varphi(r) = \frac{2}{\alpha} \ln \left\{ \frac{\cos\left(\sqrt{\frac{3}{2}} \frac{\alpha}{2} \arccos\left(\frac{\sqrt{|C|}}{r^4}\right)\right)}{\cos\left(\sqrt{\frac{3}{2}} \frac{\pi\alpha}{4}\right)} \right\} , \qquad C = -\frac{1}{3!4\pi^4} \frac{n^2}{f^2} \cos^2\left(\sqrt{\frac{3}{2}} \frac{\pi\alpha}{4}\right) .$$



- Maximal scalar deviation at r_0 : $\varphi(r_0) = -\frac{2}{\alpha} \ln \cos \left(\sqrt{\frac{3}{2}} \frac{\pi \alpha}{4} \right)$
- Do not want deviation to be larger than a certain amount $\Delta \varphi$.
- Note that $\varphi(r_0)$ grows monotonically with α :



- Maximal saxion deviation at r_0 : $\varphi(r_0) = -\frac{2}{\alpha} \ln \cos \left(\sqrt{\frac{3}{2}} \frac{\pi \alpha}{4} \right)$.
- Do not want deviation to be larger than a certain amount $\Delta \varphi$.
- Note that $\varphi(r_0)$ grows monotonically with α :



Enforcing $\varphi(r_0) < \Delta \varphi$ is equivalent to discarding wormholes in theories with a dilatons coupling $\alpha > \alpha_{max}$.

• Including a saxion seems in principle possible. Do not have to cut off analysis of gravitational instantons at the moduli scale.

• Instanton action:
$$S = (2\pi)^2 \sqrt{6} \frac{1}{\alpha} \left(\tan \sqrt{\frac{3}{2}} \frac{\pi \alpha}{4} \right) r_0^2$$

- Note that the action grows with α . The smallest action arises for $\alpha=0$. In this case the saxion is stabilized hard at a high scale.
- Hence, once we allow for light moduli the gravitational instanton contributions become weaker.

• Including a saxion seems in principle possible. Do not have to cut off analysis of gravitational instantons at the moduli scale.

• Instanton action:
$$S = (2\pi)^2 \sqrt{6} \frac{1}{\alpha} \left(\tan \sqrt{\frac{3}{2}} \frac{\pi \alpha}{4} \right) r_0^2$$

- Note that the action grows with α . The smallest action arises for $\alpha=0$. In this case the saxion is stabilized hard at a high scale.
- Hence, once we allow for light moduli the gravitational instanton contributions become weaker.
- Question remains: how small a value r_0 can one trust?
- The presence of moduli did not automatically lead to a cutoff.

<u>Wormholes</u>

- Question remains: how small a value r_0 can one trust?
- In string theory the notion of the self-dual radius $r_{sd}=\sqrt{\alpha'}=\frac{l_s}{2\pi}$ in a circle / toroidal compactification provides a natural cutoff.
- Here the distance in question is the minimal radius r_0 of the S^3 at the throat of the wormhole solution. No notion of T-duality...

- Question remains: how small a value r_0 can one trust?
- In string theory the notion of the self-dual radius $r_{sd}=\sqrt{\alpha'}=\frac{l_s}{2\pi}$ in a circle / toroidal compactification provides a natural cutoff.
- Here the distance in question is the minimal radius r_0 of the S^3 at the throat of the wormhole solution. No notion of T-duality...
- Consider two possibilities:
 - 1.) Take r_0 as the self-dual radius of a circle compactification:

$$r_0 = l_s/2\pi$$

2.) Take the area of the S^3 to be unity in string lengths:

$$2\pi^2 r_0^3 = l_s^3 \implies r_0 = l_s/(2\pi^2)^{1/3}$$

Last, want to rewrite everything in Planck units $1 \equiv M_{pl}^2 = \frac{4\pi \mathcal{V}_s}{g_s^2 l_s^2}$:

e^{-S} for $\alpha = 0$	$\mathcal{V}_s = 1$	$\mathcal{V}_s = 100$
$r_0 = \frac{l_s}{2\pi}$	$4\cdot 10^{-7}$	10^{-640}
$r_0 = \frac{l_s}{(2\pi^2)^{1/3}}$	$2 \cdot 10^{-35}$	10^{-3500}

Compare to typical potential for large-field inflation: $V \sim 10^{-8}$

Conclusions

- Examined gravitational instantons (here: only wormholes) in Einstein-axion/ Maxwell-dilaton theories to study gravitational instantons in the presence of light moduli.
- Only considered moduli with dilatonic couplings. Would be interesting to generalize!
- In the presence of a light modulus gravitational instantons give weaker potential contributions compared to the case where all moduli are stabilized at a high scale.
- Without further input from string theory / quantum gravity it is difficult to decide whether gravitational instantons are strong enough to spoil axion inflation.
- The role of gravitational instantons for the Weak Gravity Conjecture is still to be clarified.

Many Thanks To The Organizers!

Especially the W Organizer.

• This dualisation can also be done in the (Euclidean) path integral:

$$Z \sim \int d[B_2] \exp\left(-\int_M \frac{1}{2g_B^2} dB_2 \wedge \star dB_2\right).$$

• Write in terms of H_3 and enforce $dH_3=0$ via a Lagrange multiplier θ_0 :

$$Z \sim \int d[H_3]d[\theta_0] \exp\left\{-\int_M \frac{1}{2g_B^2} \left(H_3 \wedge \star H_3 + 2ig_B^2 \theta_0 dH_3\right)\right\}.$$

<u>Review</u>

• This dualisation can also be done in the (Euclidean) path integral:

$$Z \sim \int d[B_2] \exp\left(-\int_M \frac{1}{2g_B^2} dB_2 \wedge \star dB_2\right).$$

• Write in terms of H_3 and enforce $dH_3=0$ via a Lagrange multiplier θ_0 :

$$Z \sim \int d[H_3]d[\theta_0] \exp\left\{-\int_M \frac{1}{2g_B^2} (H_3 \wedge \star H_3 + 2ig_B^2 \theta_0 dH_3)\right\}.$$

Integrate the last term by parts and complete the square:

$$Z \sim \int d[H_3]d[\theta_0] \exp\left\{-\int_M \frac{1}{2g_B^2} \left[\left(H_3 - ig_B^2 \star d\theta_0\right) \wedge \star \left(H_3 - ig_B^2 \star d\theta_0\right) + g_B^4 d\theta_0 \wedge \star d\theta_0 \right] \right\}.$$

Shift the integration variable and evaluate the Gaussian integral

$$Z \sim \int d[\theta_0] \exp\left(-\int_M \frac{1}{2g_\theta^2} d\theta_0 \wedge \star d\theta_0\right),$$

with
$$g_{\theta}^2 = 1/g_B^2$$
 .