LHC Coverage of RPV Supersymmetry

Herbi Dreiner

Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn

Work done in Collaboration with: Daniel Derks, né Schmeier (Bonn) Manuel Krauss (Bonn) Toby Opferkuch (Bonn) Annika Reinert (Bonn)

Madrid, Sept. 30th, 2016

Supersymmetry with Broken R-Parity

- Reminder: $R_p = (-1)^{3B+L+2S}$
- Superpotential: $W = W_{MSSM} + W_{RpV}$

 $W_{MSSM} = \epsilon_{ab} [(Y_E)_{ij} L^a_i H^b_d \bar{E}_j + (Y_D)_{ij} Q^a_i H^b_d \bar{D}_j$ $+ (Y_U)_{ij} Q^a_i H^b_u \bar{U}_j + \mu H^a_d H^b_u]$

 $W_{RpV} = \epsilon_{ab} [\lambda_{ijk} L^a_i L^b_j \bar{E}_k + \lambda'_{ijk} L^a_i Q^b_j \bar{D}_k + \kappa_i L^a_i H^b_u]$

$$+\lambda_{ijk}''\epsilon_{xyz}\bar{U}_i^x\bar{D}_j^y\bar{D}_k^z$$

Change in Phenomenology

Single sparticle production

$$u_{Lj} + \bar{d}_{Rk} \to \ell_i^+, \quad \text{via } \lambda_{ijk}' \stackrel{>}{\sim} 10^{-3}$$

LSP decays: no dark matter constraint

Baryon and Lepton Number Violation

How well is RpV covered by LHC searches?

Nice paper to classify general RpC SUSY signatures by: Konar, Matchev, Park, Sarangi; PRL 105 (2010)

TABLE I. The set of SUSY particles considered in this analysis, shorthand notation for each multiplet, and the corresponding soft SUSY breaking mass parameter.

\tilde{u}_L, \tilde{d}_L	\tilde{u}_R	\tilde{d}_R	$\tilde{e}_L, \ \tilde{\nu}_L$	\tilde{e}_R	$ ilde{h}^{\pm}, ilde{h}^0_u, ilde{h}^0_d$	$ ilde{b}^0$	$ ilde{w}^{\pm}, ilde{w}^{0}$	\tilde{g}
Q	U	D	L	E	Н	В	W	G
M_Q	M_U	M_D	M_L	M_E	M_H	M_B	M_W	M_G

Classify Decays: strong, mild, none

- General ordering: *GQUDHLWEB*;
- Corresponds to:
- $M_G > M_Q > M_U > M_D > M_H > M_L > M_W > M_E > M_B$

LCP: lightest colored particle

 $\tilde{\chi}_1^0$ LSP

• Signature: $\tilde{d} \rightarrow d + \tilde{\chi}_1^0$

Allow also for CHAMP or R-hadron LSP

(Konar et al.)

TABLE II. Number of hierarchies for the various dominant decay modes of the LCP C.

	n_v	= 0	n_v	= 1	$n_{v} = 2$		
n_ℓ	$n_{j} = 1$	$n_j = 2$	$n_{j} = 1$	$n_j = 2$	$n_{j} = 1$	$n_j = 2$	
0	79 296	26 880	12768	3360	1344	672	
1	30 2 4 0	10 080	1824	480	192	96	
2	19770	6030	1500	180	0	0	
3	4656	1296	312	72	6	6	
4	1656	396	66	6	0	0	

General MSSM signatures at the LHC w/ and w/o R-parity HKD, F. Staub, A. Vicente, W. Porod PRD86 (2012) 035021

- Have gone beyond Konar et al
 - Allowed for separate 3rd generation parameters
 - Allow for all LSPs and RpV decays
 - Redo the dominant decay picture
 - Determine final states

LLE Case

TABLE XI. Results for *R*-parity violation: λ term. The notation is as in Table VI. The upper entry in a given cell of the table refers to no $\not{\!\!E}_T$, the lower entry to $\not{\!\!E}_T$ also being present. All numbers in this table refer to percentages of a specific signature.

		$n_v = 0$			$n_{v} = 1$			$n_{v} = 2$	
n_l	$n_{j} = 1$	$n_j = 2$	$n_{j} > 2$	$n_{j} = 1$	$n_j = 2$	$n_{j} > 2$	$n_{j} = 1$	$n_j = 2$	$n_{j} > 2$
1	0	0	0	0	0	0	0	0	0
	0	4.28	4.15	0	0.17	0.22	0	0.02	0.01
2	0	0.4	0.31	0	0.08	0.03	0	5×10^{-3}	1×10^{-3}
	24.17	10.63	20.16	1.32	0.45	1.4	0.15	0.03	0.07
3	5.98	2.18	3.32	1.13	0.28	0.29	0.09	0.02	4×10^{-3}
	0.39	2.25	2.21	0.04	0.12	0.1	4×10^{-4}	4×10^{-3}	5×10^{-3}
4	0	0.15	0.14	0	4×10^{-3}	6×10^{-3}	0	3×10^{-4}	3×10^{-4}
	3.3	0.74	5.82	0.15	0.03	0.2	3×10^{-3}	$6 imes 10^{-4}$	0.01
5	0.58	0.1	0.68	0.05	5×10^{-3}	0.03	6×10^{-5}	1×10^{-5}	3×10^{-4}
	0.11	0.31	0.38	4×10^{-3}	0.01	0.01	8×10^{-5}	$3 imes 10^{-4}$	$7 imes 10^{-4}$
6	0	0	0.01	0	1×10^{-4}	$2 imes 10^{-4}$	0	0	2×10^{-5}
	0.15	0.03	0.46	4×10^{-3}	$6 imes 10^{-4}$	9×10^{-3}	9×10^{-5}	1×10^{-5}	$8 imes 10^{-4}$
7	0	0	0.01	$7 imes 10^{-4}$	2×10^{-5}	2×10^{-5}	0	0	0
	0	6×10^{-3}	2×10^{-3}	0	0	5×10^{-6}	0	0	0

UDD Case

TABLE XIII. Results for *R*-parity violation: λ'' term. The notation is as in Table VI. The upper entry in a given cell of the table refers to no $\not{\!\!E}_T$, the lower entry to $\not{\!\!E}_T$ also being present. All numbers in this table refer to percentages of a specific signature.

		$n_v = 0$			$n_{v} = 1$			$n_{v} = 2$	
n_l	$n_j = 2$	$n_{j} = 3$	$n_{j} > 3$	$n_j = 2$	$n_{j} = 3$	$n_{j} > 3$	$n_j = 2$	$n_{j} = 3$	$n_{j} > 3$
0	9.38	4.69	37.98	0	0	4.21	0	0	0.3
	0	0	7.87	0	0	0.76	0	0	0.03
1	0	0	0	0	0	0	0	0	0
	0	0	8.19	0	0	0.56	0	0	0.03
2	0	0	17.45	0	0	0.65	0	0	0.05
	0	0	3.71	0	0	0.22	0	0	0.01
3	0	0	0	0	0	0	0	0	0
	0	0	1.42	0	0	0.06	0	0	3×10^{-3}
4	0	0	1.92	0	0	0.05	0	0	4×10^{-3}
	0	0	0.44	0	0	0.02	0	0	1×10^{-3}

UDD Case

		$n_v = 0$			$n_{v} = 1$			$n_{v} = 2$	
n_l	$n_j = 2$	$n_{j} = 3$	$n_{j} > 3$	$n_j = 2$	$n_{j} = 3$	$n_{j} > 3$	$n_j = 2$	$n_{j} = 3$	$n_j > 3$
0	9.38	4.69	37.98	0	0	4.21	0	0	0.3
	0	0	7.87	0	0	0.76	0	0	0.03
1	0	0	0	0	0	0	0	0	0
	0	0	8.19	0	0	0.56	0	0	0.03
2	0	0	17.45	0	0	0.65	0	0	0.05
	0	0	3.71	0	0	0.22	0	0	0.01
3	0	0	0	0	0	0	0	0	0
	0	0	1.42	0	0	0.06	0	0	3×10^{-3}
4	0	0	1.92	0	0	0.05	0	0	4×10^{-3}
	0	0	0.44	0	0	0.02	0	0	1×10^{-3}

- For the rest of the talk focus on RpV-CMSSM
- See what has already been covered, possibly by recasting

RpV-CMSSM LHC Searches

- Consider strong pair production: $\tilde{g}\tilde{g}, \tilde{q}\tilde{q}$
- Followed by cascade decay to $\tilde{\chi}_1^0$ LSP
- For prompt LSP-decay $(\ell = e, \mu)$

LLE:
$$\tilde{\chi}_{1}^{0} \rightarrow \begin{cases} \ell^{\pm} \ell^{\mp} \nu, & L_{1} L_{2,3} \bar{E}_{1,2}, L_{2} L_{3} \bar{E}_{1,2} \\ \ell^{\pm} \tau^{\mp} \nu, & L_{1} L_{2,3} \bar{E}_{3}, L_{2} L_{3} \bar{E}_{3} \end{cases}$$

$$\begin{array}{ll} \textbf{UDD:} & \tilde{\chi}_{1}^{0} \rightarrow \begin{cases} 3 \, \mathrm{j}, & U_{1,2} D_{1} D_{2} \\ b + 2 \, \mathrm{j}, & \bar{U}_{1,2} \bar{D}_{1,2} \bar{D}_{3} \\ t + 2 \, \mathrm{j}, & \bar{U}_{3} \bar{D}_{1} \bar{D}_{2} \\ t + b + \, \mathrm{j}, & \bar{U}_{3} \bar{D}_{1,2} \bar{D}_{3} \end{cases} \end{array}$$

LHC Searches

 $\tilde{\chi}_{1}^{0} \rightarrow \begin{cases} \ell^{\pm} + 2j, & L_{1,2}Q_{1,2}\bar{D}_{1,2} \\ \tau^{\pm} + 2j, & L_{3}Q_{1,2}\bar{D}_{1,2} \\ \ell^{\pm} + b + j, & L_{1,2}Q_{1,2}\bar{D}_{3} \\ \tau^{\pm} + b + j, & L_{3}Q_{1,2}\bar{D}_{3} \\ \ell^{\pm} + t + j, & L_{1,2}Q_{3}\bar{D}_{1,2} \\ \tau^{\pm} + t + j, & L_{3}Q_{3}\bar{D}_{1,2} \\ \ell^{\pm} + t + b, & L_{1,2}Q_{3}\bar{D}_{3} \\ \tau^{\pm} + t + b, & L_{3}Q_{3}\bar{D}_{3} \end{cases}$ LQD:

ATLAS SUSY Searches* - 95% CL Lower Limits Status: August 2016

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$ $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0} \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM (bino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{GGM (higgsino-NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{GGM (higgsino NLSP)} \\ \text{Gravitino LSP} \end{array}$	$\begin{array}{c} 0\text{-}3 \ e, \mu/1\text{-}2 \ \tau \\ 0 \\ \text{mono-jet} \\ 0 \\ 0 \\ 3 \ e, \mu \\ 2 \ e, \mu \ (\text{SS}) \\ 1\text{-}2 \ \tau + 0\text{-}1 \ e \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 <i>l</i> 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 0-3 jets 0-2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 3.2 13.3 13.3 13.2 13.2 3.2 20.3 13.3 20.3 20.3	\tilde{q} , \tilde{g} \tilde{q} , \tilde{g} \tilde{q} \tilde{q} \tilde{q} \tilde{q} \tilde{g}	1.85 TeV $m(\tilde{q})=m(\tilde{g})$.35 TeV $m(\tilde{\chi}_1^0)<200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ $m(\tilde{q})-m(\tilde{\chi}_1^0)<5 \text{ GeV}$ $m(\tilde{q})-m(\tilde{\chi}_1^0)<5 \text{ GeV}$ 1.86 TeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ 1.83 TeV $m(\tilde{\chi}_1^0)<400 \text{ GeV}, m(\tilde{\chi}^{\pm})=0.5(m(\tilde{\chi}_1^0)+m(\tilde{g}))$ 1.7 TeV $m(\tilde{\chi}_1^0)<400 \text{ GeV}$ 1.6 TeV $m(\tilde{\chi}_1^0)<500 \text{ GeV}$ 2.0 TeV 1.65 TeV $c\tau(\text{NLSP})<0.1 \text{ mm}$ 37 TeV $m(\tilde{\chi}_1^0)<950 \text{ GeV}, c\tau(\text{NLSP})<0.1 \text{ mm}, \mu<0$ $m(\tilde{\chi}_1^0)>680 \text{ GeV}, c\tau(\text{NLSP})<0.1 \text{ mm}, \mu>0$ $m(\tilde{X}_1^0)>640 \text{ GeV}$ $m(\tilde{X}_1^0)>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{q})=1.5 \text{ TeV}$	1507.05525 ATLAS-CONF-2016-078 1604.07773 ATLAS-CONF-2016-078 ATLAS-CONF-2016-078 ATLAS-CONF-2016-037 ATLAS-CONF-2016-037 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. ẽ med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \ \tilde{g} \rightarrow b\bar{t}\tilde{\chi}_{1}^{+} \end{array} $	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	14.8 14.8 20.1	<i>ğ ğ I ğ I I</i>	1.89 TeV $m(\tilde{\chi}_1^0)=0$ GeV 1.89 TeV $m(\tilde{\chi}_1^0)=0$ GeV .37 TeV $m(\tilde{\chi}_1^0)<300$ GeV	ATLAS-CONF-2016-052 ATLAS-CONF-2016-052 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{\pm} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow C\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}(\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (SS) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \\ 0 \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 \ e, \mu \end{array}$	2 b 1 b 1-2 b 0-2 jets/1-2 c mono-jet 1 b 1 b 6 jets + 2 b	Yes Yes Yes Yes Yes Yes Yes Yes	3.2 13.2 .7/13.3 .7/13.3 3.2 20.3 13.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}) < 100 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 150 \mathrm{GeV}, m(\tilde{\chi}_{1}^{+}) = m(\tilde{\chi}_{1}^{0}) + 100 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{+}) = 2m(\tilde{\chi}_{1}^{0}), m(\tilde{\chi}_{1}^{0}) = 55 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 1 \mathrm{GeV} \\ & m(\tilde{\tau}_{1}) - m(\tilde{\chi}_{1}^{0}) = 5 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 150 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 300 \mathrm{GeV} \\ & m(\tilde{\chi}_{1}^{0}) = 0 \mathrm{GeV} \end{split}$	1606.08772 ATLAS-CONF-2016-037 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2016-077 1604.07773 1403.5222 ATLAS-CONF-2016-038 1506.08616
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\nu} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} D \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1}, h \rightarrow b \bar{b} / W W \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ GGM (wino NLSP) weak processing of the set o$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 4 \ e, \mu \\ 4 \ e, \mu \\ d. \qquad 1 \ e, \mu + \gamma \\ d. \qquad 2 \gamma \end{array}$	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	20.3 13.3 14.8 13.3 20.3 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{split} & m(\tilde{\chi}_{1}^{0}) {=} 0 \ GeV \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 \ GeV, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}) {=} 0 \ GeV, \ m(\tilde{\tau}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{1}^{\pm}) {+} m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ \tilde{\ell} \ decoupled \\ & m(\tilde{\chi}_{1}^{\pm}) {=} m(\tilde{\chi}_{2}^{0}), \ m(\tilde{\chi}_{1}^{0}) {=} 0, \ \tilde{\ell} \ decoupled \\ & m(\tilde{\chi}_{2}^{0}) {=} m(\tilde{\chi}_{3}^{0}), \ m(\tilde{\ell}_{1}^{0}) {=} 0, \ m(\tilde{\ell}, \tilde{\nu}) {=} 0.5(m(\tilde{\chi}_{2}^{0}) {+} m(\tilde{\chi}_{1}^{0})) \\ & c\tau {<} 1 \ mm \\ & c\tau {<} 1 \ mm \end{split}$	1403.5294 ATLAS-CONF-2016-096 ATLAS-CONF-2016-093 ATLAS-CONF-2016-096 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived Direct $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}$ prod., long-lived Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) +$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \varphi \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	$ \begin{array}{ccc} \tilde{\chi}_1^{\pm} & \text{Disapp. trk} \\ \tilde{\chi}_1^{\pm} & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ & \text{dE/dx trk} \\ \tau(e,\mu) & 1-2 \mu \\ 1 & 2 \gamma \\ & \text{displ. } ee/e\mu/\mu \\ & \text{displ. vtx + je} \end{array} $	1 jet - 1-5 jets - - - - τ ts - ts -	Yes Yes - - Yes - Yes	20.3 18.4 27.9 3.2 3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c ccccc} \tilde{x}_{1}^{\pm} & 270 \ {\rm GeV} \\ \hline \tilde{x}_{1}^{\pm} & 495 \ {\rm GeV} \\ \hline \tilde{s} & 850 \ {\rm GeV} \\ \hline \tilde{s} \\ \hline \tilde{s} \\ \hline \tilde{s} \\ \hline \tilde{x}_{1}^{0} & 537 \ {\rm GeV} \\ \hline \tilde{x}_{1}^{0} & 440 \ {\rm GeV} \\ \hline \tilde{x}_{1}^{0} & 1.0 \ {\rm TeV} \\ \hline \tilde{x}_{1}^{0} & 1.0 \ {\rm TeV} \\ \hline \end{array} $	$\begin{split} & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) = 0.2 \; ns \\ & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0) \sim 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) < 15 \; ns \\ & m(\tilde{\chi}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; s \\ \hline \mathbf{1.57 \; TeV} \\ & \mathbf{1.57 \; TeV} \\ & M(\tilde{\chi}_1^0) = 100 \; GeV, \; \tau > 10 \; ns \\ \; 10 < tan\beta < 50 \\ \; 1 < \tau(\tilde{\chi}_1^0) < 3 \; ns, \; SPS8 \; model \\ \; 7 < c\tau(\tilde{\chi}_1^0) < 740 \; nm, \; m(\tilde{g}) = 1.3 \; TeV \\ \; 6 < c\tau(\tilde{\chi}_1^0) < 480 \; nm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu\nu$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\nu_{e}, e\tau$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$\begin{array}{c c} & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (SS) \\ e, \mu\mu\nu & 4 \ e, \mu \\ & 3 \ e, \mu + \tau \\ & 0 & 4 \\ & 0 & 4 \\ & 1 \ e, \mu & 8 \\ & 1 \ e, \mu & 8 \\ & 0 \\ & 2 \ e, \mu \end{array}$	-5 large- <i>R</i> je -5 large- <i>R</i> je -5 large- <i>R</i> je -10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes ets - ets - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 14.8 14.8 14.8 15.4 20.3	$ \begin{array}{c} \tilde{v}_{\tau} \\ \tilde{q}, \tilde{g} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{f}_{1} \\ \tilde{f}_{2} \\ \tilde{f}_{1} \\ \tilde{f}_{1} \\ \tilde{f}_{2} \\ \tilde{f}_{2} \\ \tilde{f}_{3} \\ \tilde{f}_{4} \\ \tilde{f}_{2} \\ \tilde{f}_{5} \\ \tilde{f}_{1} \\ \tilde{f}_{1} \\ \tilde{f}_{1} \\ \tilde{f}_{2} \\ \tilde{f}_{2} \\ \tilde{f}_{3} \\ \tilde{f}_{4} \\ \tilde{f}_{5} \\ \tilde{f}_{5} \\ \tilde{f}_{1} \\ \tilde{f}_{1} \\ \tilde{f}_{1} \\ \tilde{f}_{2} \\ \tilde{f}_{2} \\ \tilde{f}_{3} \\ \tilde{f}_{4} \\ \tilde{f}_{5} \\ \tilde{f}_{5} \\ \tilde{f}_{5} \\ \tilde{f}_{1} \\ \tilde{f}_{1} \\ \tilde{f}_{2} \\ \tilde{f}_{3} \\ \tilde{f}_{4} \\ \tilde{f}_{5} $	$\begin{array}{c c} \textbf{1.9 TeV} & \lambda_{311}'=0.11, \lambda_{132/133/233}=0.07\\ \textbf{1.45 TeV} & \textbf{m}(\tilde{q})=\textbf{m}(\tilde{g}), c\tau_{LSP}<1 \text{ mm}\\ \textbf{eV} & \textbf{m}(\tilde{\chi}_1^0)>400 \text{GeV}, \lambda_{12k}\neq 0 \ (k=1,2)\\ \textbf{m}(\tilde{\chi}_1^0)>0.2\times\textbf{m}(\tilde{\chi}_1^\pm), \lambda_{133}\neq 0\\ \textbf{BR}(t)=\textbf{BR}(b)=\textbf{BR}(c)=0\%\\ \textbf{1.55 TeV} & \textbf{m}(\tilde{\chi}_1^0)=800 \text{ GeV}\\ \textbf{1.75 TeV} & \textbf{m}(\tilde{\chi}_1^0)=700 \text{ GeV}\\ \textbf{1.4 TeV} & \textbf{625 GeV}<\textbf{m}(\tilde{t}_1)<850 \text{ GeV}\\ \textbf{BR}(\tilde{t}_1\rightarrow be/\mu)>20\% \end{array}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-094 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV	m($ ilde{\chi}_{1}^{0}$)<200 GeV	1501.01325
	*Only a selection of the	he available m	ass limits	on ne	^w 1	0 ⁻¹ 1	Mass scale [TeV]	-

states or phenomena is shown.

Mass scale [TeV]

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Long-	Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e$ GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow eev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G}$	dE/dx trk (μ) 1-2 μ 2 γ displ. $ee/e\mu/\mu\mu$ displ. vtx + jets	- - - -	- Yes -	3.2 19.1 20.3 20.3 20.3	$ \begin{array}{c} \tilde{g} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{0} \end{array} $
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$	$e\mu,e\tau,\mu\tau$	-	-	3.2	$\tilde{\nu}_{\tau}$
	Bilinear RPV CMSSM	$2 e, \mu$ (SS)	0-3 <i>b</i>	Yes	20.3	\tilde{q}, \tilde{g}
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu \mu$	$_{UV}$ 4 e, μ	-	Yes	13.3	χ_1^{\pm}
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau v_e, e \tau v_{\tau}$	$3 e, \mu + \tau$	-	Yes	20.3	$\tilde{\chi}_1^{\pm}$
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$	0 4-5	large- <i>R</i> j	ets -	14.8	ĝ
B	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	0 4-5	large- <i>R</i> j	ets -	14.8	ĝ
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$	1 <i>e</i> , <i>µ</i> 8-1	10 jets/0-4	4 <i>b</i> -	14.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	1 <i>e</i> , <i>µ</i> 8-1	10 jets/0-4	4 <i>b</i> -	14.8	Ĩ
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0 2	2 jets + 2 i	b -	15.4	\tilde{t}_1
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$	2 <i>e</i> , <i>µ</i>	2 <i>b</i>	-	20.3	\tilde{t}_1
<u> Dther</u>	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	ĩ

*Only a selection of the available mass limits on new states or phenomena is shown.

 10^{-1}

ATLAS-Aug 2016

ATLAS RpV-Searches

Analysis	final state	process	RPV couplings	Notes	CM?
		explicit RPV searches			·
ATLAS-CONF-2016-057, see 1	multi-jet $(N \text{ b-jets})$	$\tilde{g} \to qqq$ and $\tilde{g} \to qq\tilde{\chi}_1^0 \to 5q$	$\lambda^{\prime\prime}$	new 13 TeV data	
PRD 91 112016, see 2	\geq 6-jet or \geq 7-jet	$ ilde{g} ightarrow qqq$	$\lambda_{112}'',\lambda_{113}'',\lambda_{123}'',\lambda_{312}'',\lambda_{331}'',\lambda_{332}''$		
	Total jet mass (large- R)	${ ilde g} o qq [{ ilde \chi}^0_1 o qqq]$	$\lambda_{ijk}^{\prime\prime}$		
PRL 115 031801, see 3	$e^{\pm}\mu^{\mp}, e^{\pm}\tau^{\mp}, \mu^{\pm}\tau^{\mp}$	$q\bar{q} o \tilde{\nu}_{\tau} o \ell^{\pm} \ell^{\mp}$	$\lambda_{311}' \times \{\lambda_{132}, \lambda_{133}, \lambda_{232}\}$	only considered $\tilde{\nu}_{\tau}$ mediator	\checkmark
PRD 90 052001, see 4	$\geq 4\ell$ where $\geq \{0, 1, 2\}$ are τ 's	$\tilde{\chi}_1^{\pm} \to W[\tilde{\chi}_1^0 \to \ell\ell\nu]$	$\lambda_{121},\lambda_{122},\lambda_{133},\lambda_{233}$		
(ATLAS-CONF-2015-018)		$\tilde{\ell} o \ell[\tilde{\chi}^0_1 o \ell\ell \nu]$			
		$\tilde{\nu} \to \nu [\tilde{\chi}_1^0 \to \ell \ell \nu]$			
		$\tilde{g} ightarrow qq[ilde{\chi}^0_1 ightarrow \ell\ell u]$			
JHEP 06 (2014) 035, see 5	SS or $3\ell + \geq \{0, 1, 3\}$ b-jets	$\tilde{g} \to t[\tilde{t} \to bs]$	$\lambda_{323}'' = 1$		
(ATLAS-CONF-2015-018)		$ ilde{g} ightarrow qq[ilde{\chi}^0_1 ightarrow \ell\ell u]$	λ_{ijk}	includes $ au$'s in ℓ	
		$[\tilde{\chi}_1^{\pm} \to \ell bb][\tilde{\chi}_1^{\pm} \to \ell W]$	κ_i		\checkmark
		$[\tilde{t} \to t(\tilde{\chi}_1^{\pm} \to \nu W)]\dots$	κ_i		
		$\dots [\tilde{t} \to t(\tilde{\chi}_1^0 \to \nu bb)]$			
JHEP 04 (2015) 116, see 6	isolated ℓ + jets	$ ilde{g} ightarrow qq[ilde{\chi}^0_1 ightarrow \ell/ u qq]$	λ_{ijk}	includes $ au$'s in ℓ	
(ATLAS-CONF-2015-018)		$ ilde q o q[ilde \chi_1^0 o \ell/ u q q]$	λ_{ijk}	includes $ au$'s in ℓ	
JHEP 09 (2014) 176, see 7	2-6 jets	$ ilde{g} ightarrow qq[ilde{\chi}^0_1 ightarrow \ell/ u qq]$	λ'_{ijk} with $j \neq 3$	MET > 160 GeV!	
$(ATLAS_{5}CONF-2015-018)$		$ ilde{q} o q[ilde{\chi}_1^0 o \ell/ u q q]$		optimised for RPC	
JHEP 10 (2013) 130, see 8	7-10 jets	$\tilde{g} \to qq[\tilde{\chi}_1^0 \to \nu qq]$	λ'_{ijk} with $j \neq 3$		
(ATLAS-CONF-2015-018)					
ATLAS-CONF-2015-015, see 9	$e^{\pm}e^{\mp}b\bar{b}, e^{\pm}\mu^{\mp}b\bar{b}, \mu^{\pm}\mu^{\mp}b\bar{b}$	$\tilde{t} ightarrow b\ell$	$\lambda_{133}^{\prime},\lambda_{233}^{\prime}$		
JHEP 06 (2016) 067, see 10	$bar{b}sar{s}$	$ ilde{t} ightarrow ar{s}ar{b}$	$\lambda_{323}^{\prime\prime}$	see also 1210.4826 for 7 TeV analysis	
ATLAS-CONF-2016-022, see 11	$bar{b}sar{s}$	$ ilde{t} ightarrow ar{s}ar{b}$	$\lambda_{323}^{\prime\prime}$	same as above	
		leptoquark searches			_
Eur.Phys.J. C76 (2016) 1, 5, see 12	$eejj,\mu\mu jj$	$\tilde{q} ightarrow \ell j$	λ'_{ijk}		
(CERN-PH-EP-2015-179)	$ u_{ au}ar{ u}_{ au}bb, u_{ au}ar{ u}_{ au}tar{t}$	$\tilde{q} \rightarrow \nu b$			
		displaced vertices			
PRD 92 072004, see 13	$DV + \{e, \mu, jets, E_T^{miss}\}$	$\tilde{g} \to qq[\tilde{\chi}^0_1 \to \ell\ell'\nu]$	$\lambda_{121},\lambda_{122}$		
	Displaced $ee, e\mu$ or $\mu\mu$ pairs	$ ilde{q} o q[ilde{\chi}_1^0 o \ell/ u q q]$	$\lambda'_{113}, \lambda'_{123}, \lambda'_{213}, \lambda'_{223}, \lambda'_{211}$		
		Long lived particles and R -h	adrons		
PRD 88 112003, see 14					
JHEP 01 (2015) 068, see 15	long-lived charged particle				
ATLAS-CONF-2015-013, see 17	metastable charged particles			almost indep. of final state	
LHCb-PAPER-2015-002, see ??	long-lived charged particles			LHCb analysis!	
		Other scenarios			
CERN-PH-2016-143, see ??	resonant $W' \to \ell \nu$	$\tilde{\ell} \to \ell \tilde{\chi}^0 \text{ or } \to \tilde{\ell} \nu$	LQD, LLE		
		$\tilde{\nu} \to \ell \tilde{\chi}^{\pm}, \tilde{\chi}^{\pm} \to \text{invisible}$	LQD, LLE		
		Still to add			-
JHEP 12 (2012) 086, see ??	pair prod of $X \to 3j$	$g \rightarrow 3q$	UDD		

Compilation: Derks, HKD, Krauss, Opferkuch, Reinert

ATLAS RpV-Searches (our summary)

Analysis	final state	process	RPV couplings	Notes	CM?
		explicit RPV searches			
ATLAS-CONF-2016-057, see 1	multi-jet $(N \text{ b-jets})$	$\tilde{g} \to qqq \text{ and } \tilde{g} \to qq\tilde{\chi}_1^0 \to 5q$	$\lambda^{\prime\prime}$	new 13 TeV data	
PRD 91 112016, see 2	\geq 6-jet or \geq 7-jet	${ ilde g} o q q q$	$\lambda_{112}'',\lambda_{113}'',\lambda_{123}'',\lambda_{312}'',\lambda_{331}'',\lambda_{332}''$		
	Total jet mass (large- R)	$\tilde{g} ightarrow qq [ilde{\chi}^0_1 ightarrow qq q]$	$\lambda_{ijk}^{\prime\prime}$		
PRL 115 031801, see 3	$e^{\pm}\mu^{\mp}, e^{\pm}\tau^{\mp}, \mu^{\pm}\tau^{\mp}$	$q\bar{q} ightarrow \tilde{\nu}_{ au} ightarrow \ell^{\pm} \ell^{\mp}$	$\lambda_{311}'\times\{\lambda_{132},\lambda_{133},\lambda_{232}\}$	only considered $\tilde{\nu}_{\tau}$ mediator	\checkmark
PRD 90 052001, see 4	$\geq 4\ell$ where $\geq \{0, 1, 2\}$ are τ 's	$\tilde{\chi}_1^{\pm} \to W[\tilde{\chi}_1^0 \to \ell \ell \nu]$	$\lambda_{121},\lambda_{122},\lambda_{133},\lambda_{233}$		
(ATLAS-CONF-2015-018)		$\tilde{\ell} \rightarrow \ell[\tilde{\chi}_1^0 \rightarrow \ell\ell \mu]$			
		$\tilde{\nu} ightarrow u[\tilde{\chi}_1^0 ightarrow \ell\ell u]$			
		$ ilde{g} o qq[ilde{\chi}^0_1 o \ell\ell u]$			
JHEP 06 (2014) 035, see 5	SS or $3\ell + \geq \{0, 1, 3\}$ b-jets	$ ilde{g} ightarrow t[ilde{t} ightarrow bs]$	$\lambda_{323}'' = 1$		
(ATLAS-CONF-2015-018)		$ ilde{q} o qq[ilde{\chi}^0_1 o \ell\ell u]$	λ_{ijk}	includes $ au$'s in ℓ	
		$[\tilde{\chi}_1^{\pm} \to \ell b b] [\tilde{\chi}_1^{\pm} \to \ell W]$	κ_i		\checkmark
		$[\tilde{t} \to t(\tilde{\chi}_1^{\pm} \to \nu W)]\dots$	κ_i		
		$\dots [t \to t(\tilde{\chi}_1^0 \to \nu bb)]$			
JHEP 04 (2015) 116, see 6	isolated ℓ + jets	$\tilde{g} \to qq[\tilde{\chi}^0_1 \to \ell/\nu qq]$	λ_{ijk}	includes $ au$'s in ℓ	
(ATLAS-CONF-2015-018)		$\tilde{q} \to q[\tilde{\chi}^0_1 \to \ell/\nu qq]$	λ_{ijk}	includes τ 's in ℓ	
JHEP 09 (2014) 176, see 7	2-6 jets	$ ilde{g} o qq[ilde{\chi}^0_1 o \ell/ u qq]$	λ'_{ijk} with $j \neq 3$	MET > 160 GeV!	
(ATLAS_CONF-2015-018)		$\tilde{q} \to q[\tilde{\chi}_1^0 \to \ell/\nu qq]$		optimised for RPC	
JHEP 10 (2013) 130, see 8	7-10 jets	$\tilde{g} \to qq[\tilde{\chi}_1^0 \to \nu qq]$	λ'_{ijk} with $j \neq 3$		
(ATLAS-CONF-2015-018)					
ATLAS-CONF-2015-015, see 9	$e^{\pm}e^{\mp}b\bar{b}, e^{\pm}\mu^{\mp}b\bar{b}, \mu^{\pm}\mu^{\mp}b\bar{b}$	$\tilde{t} \to b\ell$	$\lambda'_{133},\lambda'_{233}$		
JHEP 06 (2016) 067, see 10	$bar{b}sar{s}$	$\tilde{t} \to \bar{s}\bar{b}$	$\lambda_{323}^{\prime\prime}$	see also 1210.4826 for 7 TeV analysis	
ATLAS-CONF-2016-022, see 11	$bar{b}sar{s}$	$\tilde{t} ightarrow ar{s}ar{b}$	$\lambda_{323}^{\prime\prime}$	same as above	
		leptoquark searches		-	
Eur.Phys.J. C76 (2016) 1, 5, see 12	$eejj,\mu\mu jj$	$\tilde{q} \to \ell j$	λ'_{ijk}		
(CERN-PH-EP-2015-179)	$ u_{ au} ar{ u}_{ au} b ar{b}, u_{ au} ar{ u}_{ au} t ar{t}$	$\tilde{q} \rightarrow \nu b$			
		displaced vertices			
PRD 92 072004, see 13	$DV + \{e, \mu, jets, E_T^{miss}\}$	$\tilde{g} \to qq[\tilde{\chi}^0_1 \to \ell\ell'\nu]$	$\lambda_{121},\lambda_{122}$		
	Displaced $ee, e\mu$ or $\mu\mu$ pairs	$\tilde{q} \to q[\tilde{\chi}_1^0 \to \ell/\nu qq]$	$\lambda'_{113}, \lambda'_{123}, \lambda'_{213}, \lambda'_{223}, \lambda'_{211}$		
		Long lived particles and R -h	adrons		
PRD 88 112003, see 14					
JHEP 01 (2015) 068, see 15	long-lived charged particle				
ATLAS-CONF-2015-013, see 17	metastable charged particles			almost indep. of final state	
LHCb-PAPER-2015-002, see ??	long-lived charged particles			LHCb analysis!	
		Other scenarios			
CERN-PH-2016-143, see ??	resonant $W' \to \ell \nu$	$\ell \to \ell \tilde{\chi}^0 \text{ or } \to \tilde{\ell} \nu$	LQD, LLE		
		$\tilde{\nu} \to \ell \tilde{\chi}^{\pm}, \tilde{\chi}^{\pm} \to \text{invisible}$	LQD, LLE		
		Still to add			
JHEP 12 (2012) 086, see ??	pair prod of $X \to 3j$	$g \rightarrow 3q$	UDD		

Summary of CMS SUSY Results* in SMS framework

ICHEP 2014

Probe *up to* the quoted mass limit

303-13-000 L=19.3/10

SUS-13-006 L=19.5 /fb

$\tilde{I} \rightarrow I \tilde{\chi}^0$	SUS-13-006 L=19.5 /fb		
$\widetilde{g} \rightarrow q l l \nu \lambda_{122}$	SUS-12-027 L=9.2 /fb		
$\tilde{g} \rightarrow q l l \nu \lambda$	SUS-12-027 L=9.2 /fb		
$\tilde{g} \rightarrow q l l \nu \lambda_{233}$	SUS-12-027 L=9.2 /fb		
$\tilde{g} \rightarrow qbt\mu \lambda'_{231}$	SUS-12-027 L=9.2 /fb		
$\tilde{g} \rightarrow qbt \mu \lambda'$	SUS-12-027 L=9.2 /fb		
$\tilde{g} \rightarrow qqb \lambda''$	EXO-12-049 L=19.5 /fb		
$\widetilde{g} \rightarrow qqq \lambda''$	EXO-12-049 L=19.5 /fb		
$\tilde{g} \rightarrow \text{tbs } \lambda''_{323}$	SUS-13-013 L=19.5 /fb		
$\widetilde{g} \rightarrow qqqq \lambda$ "	SUS-12-027 L=9.2 /fb		
$\widetilde{q} \rightarrow q l l v \lambda_{122}$	SUS-12-027 L=9.2 /fb		
$\widetilde{q} \rightarrow q l l v \lambda_{123}$	SUS-12-027 L=9.2 /fb		
$\tilde{q} \rightarrow q l l \nu \lambda_{233}$	SUS-12-027 L=9.2 /fb		
α̃ → qbtμ λ' 231	SUS-12-027 L=9.2 /fb		
$\widetilde{q} \rightarrow qbt \mu \lambda'_{233}$	SUS-12-027 L=9.2 /fb		
$q \rightarrow qqqq \lambda''$	SUS-12-027 L=9.2 /fb		
$ \widetilde{t}_{R} \rightarrow \mu e \nu t \lambda $ $ 122 $	SUS-13-003 L=19.5 9.2 /fb		
$ \widetilde{t}_{R} \rightarrow \mu \tau \nu t \lambda $ $ \chi^{R} \qquad 123 $	SUS-12-027 L=9.2 /fb		
$t \rightarrow \mu \tau \nu t \lambda$ R 233	SUS-13-003 L=19.5 9.2 /fb		
$\widetilde{t}_{R} \rightarrow tbt \mu \lambda'_{233}$	SUS-13-003 L=19.5 /fb		
() 200	400	600
*Observed limit	ts, theory uncertaintie	es not include	d
Only a selectio	n of available mass li	mits	

RPV

CMS KpV-Searches									
Analysis	final state	process	RPV couplings	Notes	CM?				
	1	explicit RPV searches							
CMS-SUS-16-013, see ??	many jets, b-tags, 0-1 leptons	Gluino pair prod., $\tilde{g} \to tbs$	$\lambda_{323}^{\prime\prime}$						
CMS-EXO-13-001, see 2	8- and 10-jet events	\tilde{g} pair prod., $\tilde{g} \to q\tilde{q} \to qq\tilde{H} \to 5q$	$\lambda_{212,213}^{\prime\prime}$						
CMS-SUS-14-003, see 1	0-4 leptons + jets		$\lambda_{331\ 332}'', \lambda_{12i,233}, \lambda_{131\ 233\ 331\ 333}''$						
CMS-SUS-13-013, see 3	$\ell^{\pm}\ell^{\pm}$ and jets	\tilde{g} pair prod., $\tilde{g} \to tbs$	$\lambda_{323}^{\prime\prime}$		\checkmark				
CMS-SUS-13-010, see 4	4ℓ , isolated	$ \begin{array}{c} \tilde{q}/\tilde{g} \; (\tilde{g} \to \tilde{q}q) \text{pair prod.} \\ \tilde{q} \to q[\tilde{\chi}_1^0 \to \ell\ell\nu] \end{array} $	$\lambda_{121}, \lambda_{122}$		 ✓ 				
CMS-SUS-13-005, see 5	2μ , (2+N) j	resonant 2 nd gen. slepton prod. e.g. $\tilde{\mu} \to \mu[\tilde{\chi}_1^0 \to \mu u \bar{d}]$ e.g. $\tilde{\nu}_{\mu} \to \mu \tilde{\chi}_1^{\pm} \to () \to \mu \mu 4j$	λ'_{211}	Limits on λ'_{211} as $f(m_0, M_{1/2})$ and $f(m_{\tilde{\mu}}, m_{\tilde{\chi}_1^0})$					
CMS-SUS-13-003, see 6	(3+N) ℓ , N b-tags	$ \tilde{t}_{R} \text{ pair prod.; } \tilde{t}_{R} \to t \tilde{\chi}_{1}^{0} (= \tilde{B}) \\ \tilde{\chi}_{1}^{0} \to \mu t \bar{b} / \nu_{\mu} b \bar{b} (\lambda'_{233}); \\ \to \nu_{i} \ell_{j} \ell_{k} / \ell_{i} \nu_{j} \ell_{k} (\lambda_{ijk}) $	$st \lambda_{233}^{\prime} \ \lambda_{122}, \lambda_{233}$						
CMS-SUS-12-027, see 7	(3+N) $\ell_{\rm iso,max.1\tau}$, N b	light stop pair prod. \tilde{q}/\tilde{g} pair prod.; $\tilde{\chi}_1^0$ LSPCMSSM with non-zero λ_{122}	$\lambda_{122}, \lambda_{123}, \lambda_{233} \\ \lambda_{122}, \lambda_{123}, \lambda_{233}, \lambda'_{231}, \lambda'_{233}, \lambda''_{112} \\ \lambda_{122} \\ \lambda_{122}$						
CMS-EXO-14-013, see 8	$\ell_i^+\ell_i^-$, (5+N) jets, low $\not\!\!E_T$	\tilde{t} pair prod., $\tilde{t}_1 \to b[\tilde{\chi}_1^{\pm} \to \ell j j]$	$\lambda'_{2ij},\lambda'_{1ij}$						
CMS-EXO-14-008, see 9	$2t2 \tau$	$\tilde{b} ightarrow t au$	λ'_{333}						
CMS-EXO-13-002, see 10	$e\mu$ pairs	resonant $\tilde{\nu}_{\tau}$ prod.	$\lambda_{132},\lambda_{311}'$	NWA: Limits on					
\sim		assume $d\bar{d} \to \tilde{\nu}_{\tau} \to e\mu$		$\sigma \times B \propto \frac{2\lambda_{311}^{\prime 2}\lambda_{132}^{\prime 2}}{3\lambda_{311}^{\prime 2} + 2\lambda_{132}^{2}}$ Limits from $\mu - e$ conv.					
CMS-EXO-12-052, see 11	$\geq 4j$ (2 jet pairs)	\tilde{t} pair prod., $\tilde{t} \to qq$	$\lambda_{312}^{\prime\prime},\lambda_{323}^{\prime\prime}$	model BG analytically with 4-param. funct.	(×)				
CMS-EXO-12-049, see 12	$\geq 6j$	\tilde{g} pair prod., $\tilde{g} \to 3j$	$\lambda_{112}'', \lambda_{113}'', \lambda_{223}''$	all comb. of signal triplets model BG analytically	(×)				
		leptoquark searches	r						
CMS-EXO-12-041, see 13	$\ell_i \ell_i j j + 4b, i = 1, 2$	\tilde{t} pair prod.; $\tilde{t} \to b[\tilde{H}^{\pm} \to \ell_i q b]$	$\lambda'_{132},\lambda'_{232}$						
CMS-EXO-12-032, see 14	$ \ell \tau_{\text{hadr.}}, (2+N) \ j(1+X \ b\text{-tags}) \\ \ell \tau_{\text{hadr.}}, (5+N) \ j(1+X \ b\text{-tags}) $	$\begin{bmatrix} \tilde{t} \text{ pair prod.}, \tilde{t} \to b\tau\\ \tilde{t} \to b[\tilde{\chi}_1^{\pm} * \to \tau q\bar{q}] \end{bmatrix}$	$\begin{matrix} \lambda'_{333} \\ \lambda'_{3ii} \end{matrix}$						
CMS-EXO-11-030, see 15	$2b 2 u_{ au}/2b 2 ilde{\chi}_1^0$	maybe applic. f. LQD, $\tilde{b} \to b\nu$?	maybe λ'_{333}	not too sensitive for RPV					
		displaced vertices	000	1					
CMS-EXO-12-037, see 16	displaced <i>ee</i> or $\mu\mu$ pairs	\tilde{q} pair prod., $\tilde{q} \to q[\tilde{\chi}_1^0 \to \nu \ell^+ \ell^-]$	$\lambda_{i22},\lambda_{i11}$		(\checkmark)				
CMS-EXO-12-038, see 17	displaced dijet pairs	\tilde{q} pair prod., $\tilde{q} \to q[\tilde{\chi}_1^0 \to \mu j j]$	λ'_{211}		(\checkmark)				
CMS-B2G-12-024, see 18	displaced e and μ	\tilde{t} pair prod., $\tilde{t} \to b\ell$	λ'_{i33}	No requirements					
	from separate vertices	assumes $\lambda_{133} = \lambda_{233} = \lambda_{333}$	also applic. to λ'_{ijk}	on jets, MET	(\checkmark)				
CMS-SUS-14-020, see 19	2 displaced vertices, emerging jets	$\tilde{\chi}_1^0 \text{ or } \tilde{g} \text{ to jets}$	λ''						
and mai	ny more leptoquark searches which o	lon't add new signatures as far as I'm	aware. E.g. CMS-EXO-12-002 ($b\tau$, limits on λ'_{333})					
OMC EVO 11 020 01	00::10:: 0	more, overlooked so far							
$\frac{\text{OMD-EAO-11-028}}{\text{CMS SUS 14 001}}, \text{ see 21}$	$\frac{\ell\ell j j / \ell \nu j j, \ell = \mu, e}{i j (h \text{ tags}) \text{ multijet}(t \text{ tags})}$	3rd con squark pair prod	applie to $\lambda' f = m + \lambda 0$	solery LQ search					
$\frac{\text{CMS-EXO-12-043}}{\text{CMS-EXO-12-043}} \approx 20$		Jiu gen squark pan prou.	applie to X i. $m_{\tilde{\chi}_1^0} \rightarrow 0$	LQ search Not relevant!	+				
$1 \rightarrow 1 \rightarrow$		1	1		1				

Compilation: Derks, HKD, Krauss, Opferkuch, Reinert

		Final State Topology		Co	overage and Luminos	sity
	$\ell = e , \mu (\tau\text{-tagged})$	jets (b-tagged)	E_T^{miss}	$\sqrt{s} = 7 \mathrm{TeV}$	$8{ m TeV}$	$13{ m TeV}$
	-	$\geq 6 / 7$ jets (0-2b)	-	$4.6{\rm fb}^{-1}$	$20.3{\rm fb}^{-1}$	$14.8{\rm fb}^{-1}$
	ℓ -veto	≥ 7 jets (0-2b)	Yes	$4.7{\rm fb}^{-1}$	$20.3{\rm fb}^{-1}$	$18.2{\rm fb}^{-1}$
	-	≥ 2 jets (2b)	-	$4.6{\rm fb}^{-1}$	$17.4{\rm fb}^{-1}$	$15.4{\rm fb}^{-1}$
	$2\ell~(\mathrm{SS})$	≥ 5 jets ($\geq 3b$) / ≥ 3 jets ($\geq 1b$)	Yes	$4.6{\rm fb}^{-1}$	$20.3{ m fb}^{-1}$	$13.3{ m fb}^{-1}$
	3ℓ	≥ 5 jets ($\geq 3b$) / ≥ 4 jets	Yes	$4.6{\rm fb}^{-1}$	$20.3\mathrm{fb}^{-1}$	$13.3{\rm fb}^{-1}$
AS	$4\ell~(0-2 au)$	-	Yes	$4.7{\rm fb}^{-1}$	$20.3{\rm fb}^{-1}$	$13.3{\rm fb}^{-1}$
IL	2ℓ (OS)	2 jets (2b)	-	-	$20.3{\rm fb}^{-1}$	-
A	1ℓ	≥ 8 jets (0 or $3b$)	-	-	-	$14.8{\rm fb}^{-1}$
	$e\mu, e\tau, \mu\tau \; (\mathrm{OS})$	_	-	-	$20.3{ m fb}^{-1}$	$3.2{ m fb}^{-1}$
	$2e \;/\; 2\mu$	≥ 2 jets	-	$1.03{\rm fb}^{-1}$	$20.3{ m fb}^{-1}$	$3.2{ m fb}^{-1}$
	-	2 jets (2b) / \geq 3 jets (2b)	Yes	$4.7{\rm fb}^{-1}$	$20.3\mathrm{fb}^{-1}$	$3.2{ m fb}^{-1}$
	1ℓ	≥ 4 jets ($\geq 1b$)	Yes	-	$20.3{\rm fb}^{-1}$	$3.2{\rm fb}^{-1}$
	_	≥ 4 jets ($\geq 0b$) 2-jet pairs	-	$5.0{ m fb}^{-1}$	$19.4{\rm fb}^{-1}$	-
	-	≥ 6 jets $(0 / \geq 2b)$ 3-jet pairs	-	$5.0{\rm fb}^{-1}$	$19.4{\rm fb}^{-1}$	-
	-	8 jets $(0, \geq 1b) / 10$ jets $(0, \geq 1b)$	-	-	$19.6{\rm fb}^{-1}$	$2.7{ m fb}^{-1}$
	1ℓ	6 jets $(\geq 3b)$	-	-	$19.5{\rm fb}^{-1}$	$2.7{ m fb}^{-1}$
	2ℓ	$\geq 4 \text{ jets } (\geq 2b)$	-	-	$19.5{\rm fb}^{-1}$	-
70	$4\ell \ (SFOS)$	-	-	$4.7{\rm fb}^{-1}$	$19.5{\rm fb}^{-1}$	-
M	$e\mu$	-	-	-	$19.7{\rm fb}^{-1}$	-
\bigcirc	3ℓ (0-1 τ) / 4ℓ (0-1 τ)	0-1 jets (all b's)	-	$2.1{\rm fb}^{-1}$	$19.5{\rm fb}^{-1}$	-
	$\geq 2\ell$ (SS)	≥ 2 jets ($\geq 0b$)	-/Yes	$4.98{\rm fb}^{-1}$	$19.5{\rm fb}^{-1}$	-
	$2e \ / \ 2\mu \ ({ m OS})$	≥ 5 jets ($\geq 1b$)	Yes	-	$19.7{\rm fb}^{-1}$	-
	$\mu au ~({ m SS})/\ell au$	≥ 2 jets / ≥ 3 jets	- / Yes	-	$19.7{\rm fb}^{-1}$	-
	2ℓ (SS) / 1ℓ	2 jets	- / Yes	$5.0{\rm fb}^{-1}$	$19.7{\rm fb}^{-1}$	$2.6{ m fb}^{-1}$
	ℓau	≥ 2 jets ($\geq 1b$) / ≥ 5 jets ($\geq 1b$)	-	-	$19.7{\rm fb}^{-1}$	$12.9\mathrm{fb}^{-1}$
	ℓ-veto	2 jets $(2b)$	Yes	$4.7{ m fb}^{-1}$	-	-

Summary $\tilde{\chi}_1^0$ LSP in RpV-CMSSM

- LLE: covered (including τ cases)
- UDD: covered (including $N_t = 0, 1, N_b = 0, 1$)
- LQD: some small gaps
 - \tilde{g} , \tilde{q} cascade via $\tilde{\chi}_1^0$ to explicit τ (could reinterpret e, μ searches with leptonicly decaying τ)
 - \tilde{g} , \tilde{q} cascade followed by LSP decay:

$$\tilde{\chi}_1^0 \rightarrow e^- + t + j$$

<u>Non- $\tilde{\chi}_1^0$ -LSP Searches</u>

• LSP unstable, thus any s-particle can be LSP

LSP
$$\in \{\tilde{\chi}_1^0, \, \tilde{\chi}_1^+, \, \tilde{\nu}_L, \, \tilde{\ell}_{L,R}^\pm, \, \tilde{\tau}_1^\pm, \, \tilde{q}_{L,R}, \, \tilde{t}_1, \, \tilde{g}\}$$

- Special cases searched for: direct RpV decays
 - Leptoquark searches: $\tilde{q} \rightarrow (\ell q', \nu q'')$
 - Stop pair production: $\tilde{t} \rightarrow (bs, b\ell)$
 - Sbottom pair production: $\tilde{b} \rightarrow t \tau$
 - Resonant sneutrino production: $d\bar{d} \rightarrow \tilde{\nu} \rightarrow \begin{cases} e\mu \\ e\tau \\ \mu\tau \end{cases}$ (beyond single coupling hypothesis)

General Signatures

Consider LSPs in RpV-CMSSM

LSPs in the RpV CMSSM

- Parameters: M_0 , $M_{1/2}$, A_0 , $\tan \beta$, $\operatorname{sgn}(\mu)$, $\Lambda_{\operatorname{RpV}}$ f ingle RpV coupling at M_X
- Use SPheno RGEs, including RpV to find possible LSPs
- For $\Lambda_{\mathrm{RpV}} = 0$ get $\tilde{\chi}_1^0$ and $\tilde{\tau}$ LSP

LSPs in the RpV CMSSM

\mathbf{LSP}	RpV Operators	
$ ilde{ au}_R$	$\Lambda \ll 1$ (RpC-like);	
	$L_i L_j \overline{E}_3$, (enlarged regions)	(Using SPheno RGEs,
$ ilde{ au}_L$	$L_3 Q_j \bar{D}_k$	including RpV)
$ ilde{\mu}_R$	$L_1 L_3 \bar{E}_2, \ L_1 L_2 \bar{E}_2, \ L_2 L_3 \bar{E}_2$	
\tilde{e}_R	$L_2 L_3 \bar{E}_1, \ L_1 L_2 \bar{E}_1, \ L_2 L_3 \bar{E}_1$	
$\tilde{ u}_e$	$L_1 Q_j \bar{D}_k, \ (j,k) \neq (1,1)$	
$\widetilde{ u}_{\mu}$	$L_2 Q_j \bar{D}_k$	
$\widetilde{ u}_{ au}$	Х	
$ ilde{t}_R$	$\bar{U}_3 \bar{D}_i \bar{D}_j$	
$ ilde{b}_R$	$\bar{U}_1\bar{D}_2\bar{D}_3, \bar{U}_2\bar{D}_1\bar{D}_3, \bar{U}_2\bar{D}_2\bar{D}_3,$	

• Update of HD, S. Grab; PLB 679, '09, including Higgs constraint

LQD: $\lambda'_{233} = 0.11$ with $\tan\beta = 10.0$ and $A_0 = -1500.0$ GeV

LSPs in the RpV CMSSM

\mathbf{LSP}	RpV Operators	
$ ilde{ au}_R$	$\Lambda \ll 1$ (RpC-like);	
	$L_i L_j \bar{E}_3$, (enlarged regions)	
$ ilde{ au}_L$	$L_3 Q_j \bar{D}_k$	all not
$ ilde{\mu}_R$	$L_1 L_3 \bar{E}_2, \ L_1 L_2 \bar{E}_2, \ L_2 L_3 \bar{E}_2$	explicitly
\tilde{e}_R	$L_2 L_3 \bar{E}_1, \ L_1 L_2 \bar{E}_1, \ L_2 L_3 \bar{E}_1$	searched
$\tilde{ u}_e$	$L_1 Q_j \bar{D}_k, \ (j,k) \neq (1,1)$	for
$\widetilde{ u}_{\mu}$	$L_2 Q_j \bar{D}_k$	
$\tilde{\nu}_{ au}$	Х	
${ ilde t}_R$	$\bar{U}_3 \bar{D}_i \bar{D}_j$	} experimentally
$ ilde{b}_R$	$\bar{U}_1\bar{D}_2\bar{D}_3, \bar{U}_2\bar{D}_1\bar{D}_3, \bar{U}_2\bar{D}_2\bar{D}_3,$	J covered

Benchmarks

\mathbf{LSP}	RpV Operators
$ ilde{ au}_R$	$\Lambda \ll 1$ (RpC-like);
	$L_i L_j \bar{E}_3$, (enlarged regions)
$ ilde{ au}_L$	$L_3 Q_j \bar{D}_k$
$ ilde{\mu}_R$	$L_1 L_3 \bar{E}_2, \ L_1 L_2 \bar{E}_2, \ L_2 L_3 \bar{E}_2$
\tilde{e}_R	$L_2 L_3 \bar{E}_1, \ L_1 L_2 \bar{E}_1, \ L_2 L_3 \bar{E}_1$
$\tilde{ u}_e$	$L_1 Q_j \bar{D}_k, \ (j,k) \neq (1,1)$
$ ilde{ u}_{\mu}$	$L_2 Q_j \bar{D}_k$
$\tilde{\nu}_{ au}$	X
$ ilde{t}_R$	$U_3 \bar{D}_i \bar{D}_j$
$ ilde{b}_R$	$\bar{U}_1 \bar{D}_2 \bar{D}_3, \bar{U}_2 \bar{D}_1 \bar{D}_3, \bar{U}_2 \bar{D}_2 \bar{D}_3,$

preliminary benchmarks for the various LSPs and couplings

- Determine full spectrum with many possible signatures
- Check if at least one signature for each benchmark is covered by existing searches

Idea of Program for Recasting

• Determine all RpV exclusive final state signatures for a given LSP scenario benchmark: prod. \otimes cascades²

• Compute: $\sigma_{\text{prod}} \times (\text{Br})^n$ for each of these signatures

• Retain those with an observable rate

 List experimental final state signature ``vectors'' for all exclusive RpV LHC searches

Compare the two

<u>Comments</u>

- In RpV important to distinguish squark flavor: $\tilde{q}_{L,R} \in \{\tilde{u}, \, \tilde{d}, \, \tilde{c}, \, \tilde{s}, \, \tilde{t}, \, \tilde{b}\}$
- As specific RpV coupling, e.g.: $L_2Q_3\overline{D}_1$ distinguishes

• VERY large number of processes

• Require: $\sigma_{\rm prod} \cdot \mathcal{L} > 0.03$

Details of Program (cont.)

• Again impose a cut to keep numerics manageable

 $\begin{array}{c} & \cdots \\ & &$

 \tilde{g}

 $Br < \frac{1\%}{N_{\text{decays}}} Br_{\text{max}}(\text{all } \tilde{g} \text{ decays})$ and also $Br_{\text{tot}} = \prod Br_{\text{i}}$

Classify all Exclusive RpV Searches

• Create vectors for experimental analyses as well

 $(N_{\text{jets}}, N_{\text{b-jets}}, N_{\ell}, SS, N_{\tau}, E_T^{\text{miss}}, Z - \text{veto, resonances})$

Compare the two to see if final state has been looked for

Example

- **BP8:** $\lambda'_{132}|_{M_{\text{GUT}}} = 0.1$ LSP = $\tilde{\nu}_e, m = 441 \text{ GeV}$ NLSP = $\tilde{e}_L, m = 450 \text{ GeV}$ NNLSP = $\tilde{\chi}_1^0, m = 470 \text{ GeV}$
- Signature: 6 jets with 2 b; MET; 2 (j b)-resonances
- **Cascade:** $p \ p \to \tilde{q}\tilde{q};$ $\sigma_{\text{prod.}} \times (\text{Br})^n = 0.4 \text{ fb}$ $\tilde{q} \to q \ \tilde{\chi}_1^0$ $\tilde{\chi}_1^0 \to \nu_e \tilde{\nu}_e \to \nu_e(\bar{s}b)$
- Atlas search: PRD 91 (2015) 112016

- RpV signatures can be very different
- Standard Neutralino LSP in RpV-CMSSM is searched for at LHC
- Other LSPs in RpV-CMSSM Many extensions not yet covered
- Our new mapping tool indicates that most of them can be recast into existing analyses

Bonn Particle Physics Show

- 2hr show, journey through history of particle physics, with 25 live experiments
- Available on the arXiv arXiv:1607.07478

