Dark Matter:

Implications of a Saxion Condensate

Lawrence Hall
University of California, Berkeley

(I)

Where are We?

After 43 Years of BSM Theory

No Experimental BSM Discovery

Without data, no aspect of BSM is healthy

We don't know what is going on; Everything is open for discussion

Where are we with SUSY?

We have discovered a highly perturbative Higgs: $\lambda=0.13$

$$
m_{h}=125 \mathrm{GeV}
$$

SUSY is very much alive
But:
Higgs mass needs boost of $40 \%: \quad \tilde{m} \gg v ?$

Where are we with SUSY?

We have discovered a highly perturbative Higgs: $\lambda=0.13$

$$
\begin{gathered}
m_{h}=125 \mathrm{GeV} \\
\text { SUSY is very much alive }
\end{gathered}
$$

But:
Higgs mass needs boost of 40% : $\tilde{m} \gg v$?
EWSB is fine-tuned: Anthropics?

Where are we with SUSY?

We have discovered a highly perturbative Higgs: $\lambda=0.13$

$$
m_{h}=125 \mathrm{GeV}
$$

SUSY is very much alive
But:
Higgs mass needs boost of 40% : $\tilde{m} \gg v$?
EWSB is fine-tuned: Anthropics?

$m_{h}=125 \mathrm{GeV}$ \& Gauge unification Keeps me motivated

Higgs Mass: Some Favorite Possibilities

NMSSM

Hall, Ruderman, Pinner
arXiv:1112.2703

$$
\tilde{m} \sim(1-3) \mathrm{TeV}
$$

Higgs Mass: Some Favorite Possibilities

Hall, Ruderman, Pinner arXiv:1112.2703

$$
\tilde{m} \sim(1-3) \mathrm{TeV}
$$

SUSY Twin Higgs

$$
\tilde{m} \sim(1-5) \mathrm{TeV}
$$

$$
m_{\phi}^{2}=\left(m_{Z}^{2} \cos ^{2} 2 \beta+4 \delta \lambda_{u} v^{2} \sin ^{4} \beta\right)\left(2-\frac{2 v^{2}}{f^{2}}\right)
$$

Higgs Mass: My Favorite Possibilities

"Mini-Split" or "Spread SUSY"

Hall, Nomura, Shirai arXiv:1210.2395

$$
\tilde{m} \sim\left(10^{2}-10^{4}\right) \mathrm{TeV}
$$

Higgs Mass: My Favorite Possibilities

"Mini-Split" or "Spread SUSY"

Hall, Nomura, Shirai arXiv:1210.2395

$$
\tilde{m} \sim\left(10^{2}-10^{4}\right) \mathrm{TeV}
$$

"Intermediate Scale" SUSY

Higgs Mass: My Favorite Possibilities

"Mini-Split" or "Spread SUSY"

Hall, Nomura, Shirai arXiv:1210.2395

$$
\tilde{m} \sim\left(10^{2}-10^{4}\right) \mathrm{TeV}
$$

"Intermediate Scale" SUSY

Without naturalness

$$
\begin{aligned}
& m_{h}=125 \mathrm{GeV} \text { \& Gauge unification } \\
& \text { insufficient to determine } \tilde{m}
\end{aligned}
$$

An Anthropic Weak Scale?

Atomic Boundaries

$m_{u, d}$ both scan

An Anthropic Weak Scale?

Atomic Boundaries

He-4 BBN Boundary

Hall, Pinner, Ruderman arXiv:1409.0551

An Anthropic Weak Scale?

Atomic Boundaries

He-4 BBN Boundary

asymmetries, not V
Hall, Pinner, Ruderman arXiv:1409.0551

My View

Without data, no aspect of BSM is healthy

We don't know what is going on; Everything is open for discussion

(II)

Dark Matter in (SUSY + PQ)

Raymond Co, Francesco D'Eramo, Lawrence Hall 1603.04439, 1610.xxxxx

Two Favorite DM Candidates

Avion (a)

$$
\overline{f_{a}} \sim 10^{12} \mathrm{GeV} \quad \theta_{m i s} \sim 1
$$

$$
f_{a} \sim 10^{16-18} \mathrm{GeV} \quad \theta_{m i s} \ll 1 \quad \text { "anthropic window" }
$$

Two Favorite DM Candidates

Avion (a)

$$
f_{a} \sim 10^{12} \mathrm{GeV} \quad \theta_{m i s} \sim 1
$$

$$
f_{a} \sim 10^{16-18} \mathrm{GeV} \quad \theta_{m i s} \ll 1 \quad \text { "anthropic window" }
$$

- Freeze-Out

Excluded; but there are others

Abundance

Late Decays

TeV-scale SUSY: Gravitino Problem

- Abundance:

$$
\frac{\tilde{g} \frac{g_{2}}{\beta^{g}} \tilde{G}_{3 / 2}}{\text { UV } \tilde{G}_{3 / 2}}
$$

$$
T_{R I}<10^{9} \mathrm{GeV}\left(\frac{m_{3 / 2}}{\mathrm{TeV}}\right)
$$

severe for
Low Scale Mediation

TeV-scale SUSY: Gravitino Problem

- Abundance:

$$
\mathrm{UV} \tilde{G}_{3 / 2}
$$

$$
T_{R I}<10^{9} \mathrm{GeV}\left(\frac{m_{3 / 2}}{\mathrm{TeV}}\right)
$$

severe for
Low Scale Mediation

Decays

$$
\tau_{3 / 2} \sim 10^{6} \mathrm{~S}\left(\frac{\mathrm{TeV}}{m_{3 / 2}}\right)^{3}
$$

$$
\tau_{L O S P} \sim 10^{4} \mathrm{~S}\left(\frac{\mathrm{TeV}}{m_{L O S P}}\right)^{5}\left(\frac{m_{3 / 2}}{100 \mathrm{GeV}}\right)^{2}
$$

severe for
High Scale Mediation

Dark Matter in (SUSY + PQ)

- Everything changes!!

$$
V_{P Q}=\frac{N_{D W}}{\sqrt{2}} f_{a}
$$

Dark Matter in (SUSY + PQ)

- Everything changes!!

$$
V_{P Q}=\frac{N_{D W}}{\sqrt{2}} f_{a}
$$

- \quad saxion (s) and axino (\tilde{a})

Dark Matter in (SUSY + PQ)

- Everything changes!!

$$
V_{P Q}=\frac{N_{D W}}{\sqrt{2}} f_{a}
$$

- \quad saxion (s) and axino (\tilde{a})
- DFSZ Axino Freeze-In

Axino - Gravitino Problem

High Scale Mediation

$$
m_{3 / 2}<m_{\tilde{a}} \lesssim 1 \mathrm{TeV}
$$

Axino - Gravitino Problem

High Scale Mediation Low Scale Mediation

The Saxion Condensate

Forms during inflation

$$
\sigma_{i} \sim V_{P Q}, M_{*}
$$

The Saxion Condensate

Forms during inflation

$$
\sigma_{i} \sim V_{P Q}, M_{*}
$$

Condensate decays late to Higgs bosons

$$
(s \nrightarrow \tilde{h} \tilde{h})
$$

The Saxion Condensate

Forms during inflation

$$
\sigma_{i} \sim V_{P Q}, M_{*}
$$

Condensate decays late to Higgs bosons

$$
\frac{\mu^{2}}{V_{P Q}}
$$

$$
(s \nrightarrow \tilde{h} \tilde{h})
$$

Everything changes!!

Warnings

- Saxion Condensate is Not New!

Hashimoto, Izawa, Yamaguchi, Yanagida hep-ph/9803263
Kawasaki, Nakayama arXiv:0802.2487

Baer, Lessa, Sreethawong arXiv:1110.2491

Under-appreciated; Complex; Much still to do

Warnings

- Saxion Condensate is Not New!

Hashimoto, Izawa, Yamaguchi, Yanagida hep-ph/9803263
Kawasaki, Nakayama arXiv:0802.2487

Baer, Lessa, Sreethawong arXiv:1110.2491

Under-appreciated; Complex; Much still to do

Suppressed Parameters!

$$
\begin{aligned}
& \mu, M_{i}, m_{s} \sim \mathcal{O}(\mathrm{TeV}) \\
& N_{D W} \sim \mathcal{O}(10) \\
& q_{\mu} \sim \mathcal{O}(1)
\end{aligned}
$$

A Saxion Matter Dominated Era

A Saxion Matter Dominated Era

A Saxion Matter Dominated Era

$$
T_{R} \simeq 10 \mathrm{MeV} q_{\mu}\left(\frac{10.75}{g_{*}\left(T_{R}\right)}\right)^{\frac{1}{4}}\left(\frac{\mathcal{D}}{4}\right)^{\frac{1}{2}}\left(\frac{\mu}{1 \mathrm{TeV}}\right)^{\frac{3}{2}}\left(\frac{\mu}{m_{s}}\right)^{\frac{1}{2}}\left(\frac{10^{15} \mathrm{GeV}}{V_{P Q}}\right)
$$

Gravitino Problem Solved

$Y_{3 / 2}^{U V}=6.11 \times 10^{-12} \frac{T_{R I}}{10^{10} \mathrm{GeV}} \sum_{i} \gamma_{i}\left(T_{R I}\right)\left(1+\frac{m_{i}^{2}}{3 m_{3 / 2}^{2}}\right)$
No Dilution

Large Dilution
$D \propto \sigma_{i}^{2} V_{P Q}$

$$
Y_{3 / 2} \propto \frac{1}{m_{3 / 2}^{2}}
$$

Gravitino Problem Solved

$$
Y_{3 / 2}^{U V}=6.11 \times 10^{-12} \frac{T_{R I}}{10^{10} \mathrm{GeV}} \sum_{i} \gamma_{i}\left(T_{R I}\right)\left(1+\frac{m_{i}^{2}}{3 m_{3 / 2}^{2}}\right)
$$

Large Dilution

Earlier work: Kawasaki, Nakayama arXiv:0802.2487

Axino Freeze-In Problem Solved

High Scale Mediation

Gravitino/Axino DM

Expect saxion condensate opens up high $T_{R I}$

High Scale Mediation

Gravitino DM from UV scattering

High Scale Mediation

Gravitino DM from UV scattering

High Scale Mediation

Gravitino DM from UV scattering

\star A warm sub-dominant component

Displaced Vertices at Colliders

High Scale Mediation
Axino DM from Freeze-In
Neutralino LOSP

$$
\tilde{\chi} \rightarrow \tilde{a}+(h / Z)
$$

Displaced Vertices at Colliders

High Scale Mediation

Axino DM from Freeze-In

$$
\tilde{\chi} \rightarrow \tilde{a}+(h / Z)
$$

Neutralino LOSP

More generally: Co, D’Eramo, Hall, Pappadopulo arXiv:1506.07532

Low Scale Mediation

No Dilution

Low Scale Mediation

No Dilution

Conventional displaced vertex signal

$$
\operatorname{LOSP} \rightarrow \tilde{G}_{3 / 2}
$$

requires $m_{3 / 2} \leq \mathrm{MeV}$
What is the cosmology?

Low Scale Mediation

No Dilution

Conventional displaced vertex signal

$$
\operatorname{LOSP} \rightarrow \tilde{G}_{3 / 2}
$$

requires $m_{3 / 2} \leq \mathrm{MeV}$
What is the cosmology?

UV $\tilde{G}_{3 / 2}$ thermalize
Dilution gives: \ldots IR \tilde{a} negligible $V_{P Q} \sim 10^{14} \mathrm{GeV}$

$$
T_{R I} \leq 10^{14} \mathrm{GeV}
$$

$$
\because \operatorname{LOSP} \rightarrow \tilde{G}_{3 / 2}
$$

Low Scale Mediation

Larger Saxion Condensate

\longrightarrow Lower $V_{P Q}$

Lower $V_{P Q} \longrightarrow$ LOSP $\rightarrow \tilde{a}$

Low Scale Mediation

Larger Saxion Condensate
\longrightarrow Lower $V_{P Q}$

Lower $V_{P Q} \longrightarrow$ LOSP $\rightarrow \tilde{a}$
\star UV $\tilde{G}_{3 / 2}$ thermalize

$$
\Omega h^{2}\left(\sigma_{i}, V_{P Q}, m_{3 / 2}\right)
$$

Low Scale Mediation

Larger Saxion Condensate
\longrightarrow Lower $V_{P Q}$

Lower $V_{P Q} \longrightarrow$ LOSP $\rightarrow \tilde{a}$ \star UV $\tilde{G}_{3 / 2}$ thermalize

$$
\Omega h^{2}\left(\sigma_{i}, V_{P Q}, m_{3 / 2}\right)
$$

Higgsino-like LOSP lifetime

Even smaller lifetimes for lower $T_{R I}$ where $\tilde{G}_{3 / 2}$ not thermalized

LSP Neutralino Dark Matter

Two production mechanisms:

- $\quad \tilde{a}$ Freeze-In and Decay to LSP

- LSP Freeze-Out

LSP Neutralino Dark Matter

Two production mechanisms:

- $\quad \tilde{a}$ Freeze-In and Decay to LSP

- LSP Freeze-Out

```
+ Saxion Dilution
```


Misalignment Axion DM at Large $V_{P Q}$

- Axion field oscillates during saxion MD era
- Large dilution from saxions

Misalignment Axion DM at Large $V_{P Q}$

- Axion field oscillates during saxion MD era
- Large dilution from saxions
- Allows $f_{a} \sim 10^{15} \mathrm{GeV}$

Misalignment Axion DM at Large $V_{P Q}$

- Axion field oscillates during saxion MD era
- Large dilution from saxions
- Allows $f_{a} \sim 10^{15} \mathrm{GeV}$
- $\frac{V_{P Q}}{f_{a}} \sim N_{D W} \sim 10-100$

Raymond Co, Francesco D'Eramo, LH 1603.04439

Misalignment Axion DM at Large $V_{P Q}$

- Axion field oscillates during saxion MD era
- Large dilution from saxions
- Allows $f_{a} \sim 10^{15} \mathrm{GeV}$
- $\frac{V_{P Q}}{f_{a}} \sim N_{D W} \sim 10-100$

"SaxiGUTs"

Raymond Co, Francesco D'Eramo, LH 1603.04439

Earlier work: Hashimoto, Izawa, Yamaguchi, Yanagida hep-ph/9803263

Dark Radiation from $s \rightarrow a a$

typically $\mathcal{O}(1)$

Dark Radiation from $s \rightarrow a a$

$$
\boldsymbol{K}=\sum_{i} v_{i}^{2} \exp \left[q_{i}\left(\frac{\boldsymbol{A}+\boldsymbol{A}^{\dagger}}{V_{P Q}}\right)\right]=\boldsymbol{A}^{\dagger} \boldsymbol{A}+\frac{1}{2} \sum_{\boldsymbol{\boldsymbol { \lambda }}}^{i} \frac{q_{i}^{3} v_{i}^{2}}{V_{P Q}^{3}} \boldsymbol{A}^{\dagger} \boldsymbol{A}\left(\boldsymbol{A}+\boldsymbol{A}^{\dagger}\right)+\ldots
$$

$$
\kappa=\sum_{i} \frac{q_{i}^{3} v_{i}^{2}}{V_{P Q}^{2}}
$$

typically $\mathcal{O}(1)$

Dark Radiation from $s \rightarrow a a$

$$
\boldsymbol{K}=\sum_{i} v_{i}^{2} \exp \left[q_{i}\left(\frac{\boldsymbol{A}+\boldsymbol{A}^{\dagger}}{V_{P Q}}\right)\right]=\boldsymbol{A}^{\dagger} \boldsymbol{A}+\frac{1}{2} \sum_{\boldsymbol{\pi}} \frac{q_{i}^{3} v_{i}^{2}}{V_{P Q}^{3}} \boldsymbol{A}^{\dagger} \boldsymbol{A}\left(\boldsymbol{A}+\boldsymbol{A}^{\dagger}\right)+\ldots
$$

$$
\kappa=\sum_{i} \frac{q_{i}^{3} v_{i}^{2}}{V_{P Q}^{2}}
$$

typically $\mathcal{O}(1)$

Conclusions

- SUSY + PQ $\quad T_{R I}>V_{P Q} \quad$ Domain Wall Problem

$$
T_{R I}<V_{P Q} \quad \text { Saxion Condensate }
$$

- DFSZ $\quad s \rightarrow h h$
- New Plausible Schemes for LSP / Axion Dark Matter

Conclusions

- SUSY + PQ $\quad T_{R I}>V_{P Q} \quad$ Domain Wall Problem

$$
T_{R I}<V_{P Q} \quad \text { Saxion Condensate }
$$

- DFSZ $s \rightarrow h h$
- New Plausible Schemes for LSP / Axion Dark Matter

Higgs Mass: My Favorite Possibilities

High Scale SUSY + PQ

D'Eramo, Hall, Pappadopulo arXiv:1502.06963

$$
\tilde{m}>10^{10} \mathrm{GeV}
$$

