Beyond the Realm of the MSSM

John March-Russell Oxford University

- Savas Dimopoulos, Kiel Howe, JMR; Maximally Natural Supersymmetry, arXiv:1404.7554
- ◆ Isabel Garcia Garcia, JMR; Rare Flavor Processes in Maximally Natural Supersymmetry, arXiv:1409.5669
- Savas Dimopoulos, Kiel Howe, JMR, James Scoville; Auto-Concealment of SUSY in Extra Dimensions, arXiv:1411.0805
- ◆ Isabel Garcia Garcia, Kiel Howe, JMR; Natural Scherk-Schwarz Theories of the Weak Scale, arXiv:1510.07045
- Junwu Huang, JMR; Unified Maximally Natural Supersymmetry, arXiv:1607.08622

All MSSM-variants are unnatural?

eg

- Natural SUSY (1st/2nd generation sfermions heavy)
- R-Parity breaking: B violation (hide via hadrons)

Gluino bounds already imply ~1% tuning

Hide and Seek (compressed "just-so" spectra and decays) Many `coincidences' needed so still tuned

So must we give up search for fully natural theory??

Supersymmetric Theory Space

Supersymmetric Theory Space

- (1) Scherk-Schwarz SUSY (non-local in 5D breaking using R-symmetry twist)
- (2) Natural Spectrum + EWSB
- (3) LHC pheno (very brief)
- (4) Auto-concealment of SUSY

Important previous work:

```
Antoniadis, Dimopoulos, Pomarol, Quiros - 1998
Delgado, Pomarol, Quiros - 1998
Delgado, Quiros - 2001
Barbieri, Hall, Nomura - 2000, 2001
Hall, Marandella, Nomura et al. - 2002
Barbieri, Marandella, Papucci - 2002, 2003
```

The Basic Setup

fundamental scale: $M_5 \equiv M_* \sim 30 - 100 \text{ TeV}$ $(\pi M_* R \sim 30 \text{ by perturbativity})$

Impose a non-trivial periodicity condition along the extra dimension for 5D fields (a *twist* along the extra dimension):

Scherk-Schwarz parameter symmetry of 5D theory $\Phi(x^{\mu},y+2\pi R)=e^{i2\pi\alpha T}\Phi(x^{\mu},y)$

T: generator of $SU(2)_R$ symmetry

 \Rightarrow the twist shifts the masses of the different components of a 5D supermultiplet

For example, for a vector supermultiplet:

- compactification on S^1/\mathbb{Z}_2 :

For example, for a vector supermultiplet:

- Scherk-Schwarz SUSY breaking:

and for maximal twist ($\alpha = 1/2$)

An accidental $U(1)_R$ symmetry is recovered in the limit of maximal twist

Maximal SSSB Twist

⇒ Scherk-Schwarz with maximal twist is a special point in terms of symmetries

Forbidden by the *R*-symmetry:

- Higgsino and Majorana gaugino masses
- A-terms

Maximal SSSB Twist

Tree-level Scherk-Schwarz Spectrum

Exceptional Softness of Scherk-Schwarz

Radius Stabilization & CC

Crucial extra ingredient - $\langle F_X \rangle \neq 0$ - necessary to give zero CC after radius stabilisation

$$V_{vac} \simeq -\left(\frac{1}{\pi R}\right)^4 + |F_X|^2$$

Leads to new sources of soft masses via higher-dim ops (this F-term triggered by SSSB so still no log enhancements)

$$\Delta m_{\tilde{f}_3}^2 \sim \frac{F_X^2}{M_*^2} \sim \left(\frac{1}{20} \times \frac{1}{R}\right)^2$$

(comparable to 1-100P)

- At tree level, the Higgs mass squared vanishes
- At loop level

 $\delta m_{H_u}^2 \Big|_{\rm EW} \approx \frac{7\zeta(3)}{16\pi^4 R^2} \frac{3}{4} g_2^2 \sim \left(\frac{1}{20R}\right)^2$

Barbieri, Marandella, Papucci, '02,'03;

Dimopoulos, Howe, JMR; '14

Garcia Garcia, Howe, JMR; '15

EWSB & Max Natural SUSY

For light scalar modes & EWSB higher-dimension operators involving X also make important contribution

$$\Delta \mathcal{K}_{m_H^2} = \delta(y) \frac{c_H}{M_5^3} X^{\dagger} X H_u^{\dagger} H_u$$
$$\Delta \mathcal{K}_{m_{\tilde{t}}^2} = \delta(y) X^{\dagger} X \left(\frac{c_Q}{M_5^2} Q_3^{\dagger} Q_3 + \frac{c_U}{M_5^2} U_3^{c\dagger} U_3^c \right)$$

leading HDOs in our range of parameters

cf down-like Yukawas (more later): $\delta(y)(H_u(y)^{\dagger}X^{\dagger})\left(\frac{\tilde{y_b}}{M_5^{5/2}}Q_3D_3^c+...
ight).$

ONLY $\langle H_u \rangle \neq 0$. Down-like quark and lepton masses from Kahler couplings to H_u^{\dagger}

$$\delta(y)(H_u(y)^{\dagger}X^{\dagger})\left(\frac{\tilde{y_b}}{M_5^{5/2}}Q_3D_3^c + ...\right)$$

NO $\tan \beta$, B_{μ} , μ

(Hd is an inert spectator)

Single-Higgs-doublet SUSY is realised in these models

R. Davies. JMR. M. McCullough. arXiv1103.1647

Physical Higgs is automatically SM-like up to loop-level effects!

125 GeV Higgs?

In the minimal version of the model, to get the correct Higgs mass one needs $\gtrsim 4$ TeV stops ($1/R \sim 40$ TeV)

 \Rightarrow 1 % tuning!

(model automatically realises $\tan \beta \rightarrow \infty$ limit of MSSM higgs mass without flavour problems)

• EWSB happens with *low tuning* for $r/R \sim 4 - 10$ TeV and it is OK with all constraints

 Achieving a 125 GeV Higgs with heavy stops implies ~ 1% tuning

but this is still much better than in the MSSM !

$$\delta m_{H_u}^2 \sim -\frac{3|y_t|^2}{4\pi^2} (m_{\tilde{t}}^2 + \frac{1}{2}|A_t|^2) \log\left(\frac{X}{\tilde{m}}\right)$$

125 GeV Higgs?

Is it possible to extend MNSUSY to achieve the correct Higgs mass at a low value of I/R so maintaining low tuning...?

Dimopoulos, Howe, JMR; arXiv:1404.7554 Garcia Garcia, Howe, JMR; arXiv:1510.07045

- Extra gauge group that generates a non-decoupling *D*-term for the Higgs quartic
- Simplest choice: *U*(1)' in the bulk with breaking scale comparable to the scale of SUSY breaking
- Experimental constraints require the new U(1)' to be broken at scale $m_{Z'}\gtrsim 3~{
 m TeV}$

Tuning: U(1)' Variation

"Maximal" ~ saturates one-loop tuning $\Delta m_h^2 \sim - {3 y_t^2 \over 4 \pi^2} M^2$

Junwu Huang, JMR; Unified Maximally Natural Supersymmetry, arXiv:1607.08622

Can get an extended version of 5d $SU(3)_{EW}$ unification (with tree-level s²=1/4)

$$SU(3)_{c} \times SU(3)_{EW} \times U(1)' \qquad (Q, u^{c}, d^{c})$$

$$SU(3)_{c} \times SU(3)_{EW} \qquad (\mathcal{L}, \mathcal{H}_{u}, \mathcal{H}_{d}) \qquad SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}$$

$$Scale \text{ preferred by}$$

$$SU(3)_{EW} \text{ unification}$$

$$(1/R=4.4 \text{ Tev}) \text{ agrees}$$
with 1/R of MNSUSY
at low tuning!

Junwu Huang, JMR; Unified Maximally Natural Supersymmetry, arXiv:1607.08622

Can get an extended version of $5d SU(3)_{EW}$ unification (with tree-level s²=1/4)

$$\underbrace{SU(3)_{\mathsf{C}} \times SU(3)_{\mathsf{EW}} \times U(1)'}_{SU(3)_{\mathsf{C}} \times SU(3)_{\mathsf{EW}}} \underbrace{(\mathcal{L}, \mathcal{H}_{u}, \mathcal{H}_{d})}_{SU(3)_{\mathsf{C}} \times SU(2)_{\mathsf{L}} \times U(1)_{\mathsf{Y}}}$$

$$\frac{4\pi}{g^2(\mu)} = \frac{1}{\alpha_{M_Z}} - \frac{b_{\rm SM}}{2\pi} \log[\frac{\mu}{M_Z}] - \frac{b_{\rm Squark}}{2\pi} \log[\frac{\mu}{M_{\rm Squark}}]$$
$$- \frac{b_{\rm HeavyHiggs}}{2\pi} \log[\frac{\mu}{M_{\rm HeavyHiggs}}] - \frac{b_{\lambda^{\chi}}}{2\pi} \log[\frac{\mu}{M_{\lambda^{\chi}}}] - \frac{b_{\rm S}}{2\pi} \log[\frac{\mu}{M_S}]$$
$$- \frac{b_{\rm even}}{2\pi} (\log[\mu/M_R] + 1 + \log[\pi] - 0.02) - \frac{b_{\rm odd}}{2\pi} \log[2] + \cdots$$

Group	$b_{ m SM}$	$b_{ m Squark}$	$b_{ m HeavyHiggs}$	$b_{\lambda X}$	b_S	b_{even}	$b_{\rm odd}$
$SU(3)_{ m C}$	-7	2	0	0	0	5	-2
$SU(2)_{ m L}$	-19/6	3/2	1/6	2/3	0	4/3	-5/6
$U(1)_{\mathrm{Y}}$	41/18	11/18	1/18	2	2/9	-10/3	23/6

After log differential running get $s^2 = 0.2315$ to 1% uncertainty!

If you want can further unify $SU(3)_{EW}$ with $SU(3)_c$ and U(1)' into SU(6) theory in 6d

for complicated details see

Junwu Huang, JMR; Unified Maximally Natural Supersymmetry, arXiv:1607.08622

(3) LHC Pheno: 3rd Generation Sfermion Signatures

$\tilde{\nu}_3$ LSP: New Signatures of Naturalness?

LSP Candidates

Natural candidates for

(collider-stable) LSP:

3) \tilde{f}_3

Brane-localized

meta-stable

charged sfermion

(CHAMP:

out-of-time decays

dE/dx, ...)

Qualitatively new behaviour!

> **4)** \tilde{G}_{bulk} n-dimensional Gravitational BULK states

(bulk decay kinematics displaced vertices, · ·)

2) $\tilde{\nu}_3$

Brane-localized left handed sneutrino

I) ψ_X Brane-localized

goldstino of X SUSY breaking

(4) Auto-Concealment of SUSY

"Decaying to the Bulk"

Auto-Concealment of SUSY

 $L \sim 1/MeV - 1/MeV$

Auto-Concealment of SUSY visible sparticles Bulk sparticles (Extends to M_*) $\Gamma_n \sim \frac{M^3}{M_{\rm pl}^2}$

Auto-Concealment of SUSY

Auto-Concealment of SUSY

typically reduces stop limits by 200-300 Gev

Conclusions

MNSUSY Summary: Reasons for Naturalness

- No tree-level tuning (no mu-term!)
- SSSB is super-soft as it is a non-local (in 5d) breaking of SUSY: No logs; higgs soft mass not enhanced; gluino sucks problem solved
- Natural SUSY spectrum easy to obtain via localization of the 3rd family on 4D brane (also vital for successful EWSB)