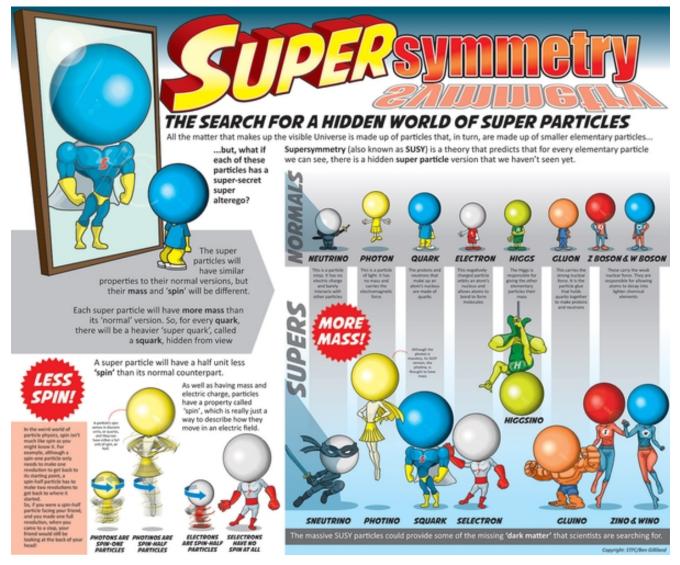




University of Sussex

# SUSY searches in ATLAS


#### I.Vivarelli

University of Sussex "Is SUSY alive and well?" Madrid - 28<sup>th</sup>-30<sup>th</sup> September 2016

## Is SUSY alive and well?

# University of Sussex

University of Sussex



credits: STFC/Ben Gilliland

## Is SUSY alive and well?



University of Sussex



credits: STFC/Ben Gilliland

Madrid - "Is SUSY alive and well?" - 28th September 2016

## Is SUSY alive and well?



University of Sussex



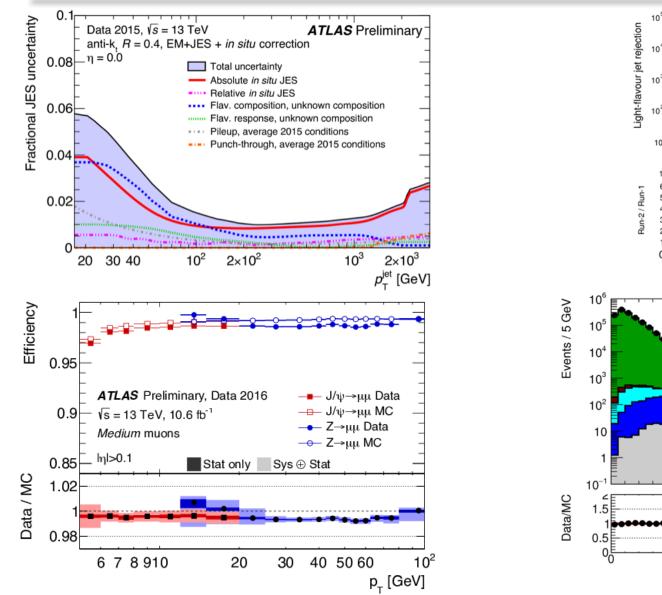
credits: STFC/Ben Gilliland

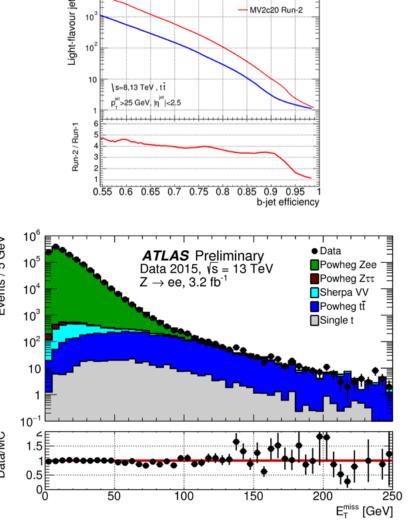
Madrid - "Is SUSY alive and well?" - 28th September 2016





University of Sussex


Total recorded integrated luminosity to date: 27.5 fb<sup>-1</sup> Outstanding LHC performance Integrated Luminosity [fb<sup>-1</sup>/day] **ATLAS Online Luminosity** 0.7 √s = 13 TeV LHC Delivered 0.6 ATLAS Recorded and outstanding ATLAS data taking 0.5 0.4 0.3 44m 0.2 0.1 17/04 17/05 18/08 17/06 18/07 18/09 Day in 2016 Delivered Luminosity [pb<sup>-1</sup>/0.1] 140 ATLAS Online, √s=13 TeV Ldt=22.4 fb 120 2015: <µ> = 13.7 100 2016: <u> = 23.2 25m Total: <u> = 21.4 80 60 **Tile calorimeters** 40 LAr hadronic end-cap and forward calorimeters Pixel detector 20 **Toroid magnets** LAr electromagnetic calorimeters 0<sup>L</sup> Transition radiation tracker Solenoid magnet Muon chambers 20 30 35 40 5 10 15 25 45 50 Semiconductor tracker Mean Number of Interactions per Crossing


Madrid - "Is SUSY alive and well?" - 28<sup>th</sup> September 2016



## ATLAS performance

University of Sussex





ATLAS Simulation Preliminary

- MV1c Run-1

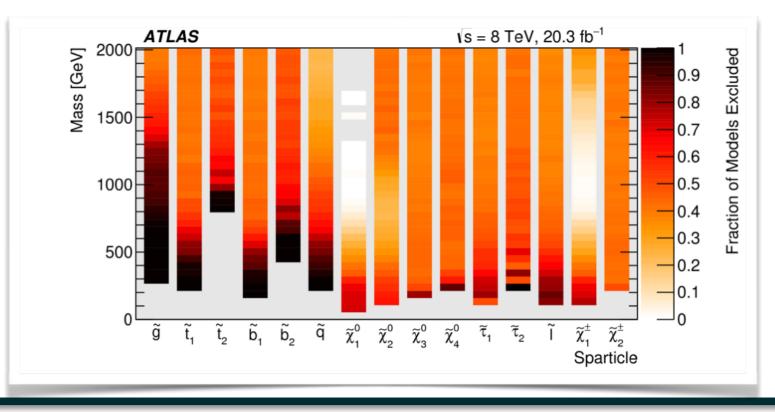
Madrid - "Is SUSY alive and well?" - 28th September 2016

# Summer 2016 - a quick overview



University of Sussex

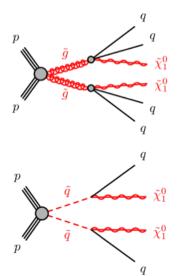
|   |                                  | 0/0040 | 10 | 447  |                     | Links                    |                              |
|---|----------------------------------|--------|----|------|---------------------|--------------------------|------------------------------|
|   | 2L+jets+MET (Z/edge)             | 9/2016 | 13 | 14.7 | ATLAS-CONF-2016-098 | LINK                     |                              |
|   | EWK 2/3L                         | 9/2016 | 13 | 14.8 | ATLAS-CONF-2016-096 | <u>Link</u>              |                              |
|   | EWK di-tau                       | 9/2016 | 13 | 14.8 | ATLAS-CONF-2016-093 | <u>Link</u> <sub>₫</sub> | <ul> <li>RPC SUSY</li> </ul> |
|   | 0L 8-10 jets (RPC gluinos)       | 9/2016 | 13 | 18.2 | ATLAS-CONF-2016-095 | <u>Link</u> <sub>₫</sub> |                              |
| 0 | RPV 1L+jets                      | 9/2016 | 13 | 14.8 | ATLAS-CONF-2016-094 | <u>Link</u> <sub>₫</sub> |                              |
|   | 0L 2-6 jets (squark/gluinos)     | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-078 | <u>Link</u> <sub>₫</sub> | • RPV SUSY                   |
|   | 1L 2-6 jets (squark/gluinos)     | 8/2016 | 13 | 14.8 | ATLAS-CONF-2016-054 | <u>Link</u> <sub>☞</sub> |                              |
|   | SS/3L + jets (squarks/gluinos)   | 8/2016 | 13 | 13.2 | ATLAS-CONF-2016-037 | <u>Link</u>              | EW production                |
|   | 0/1L + 3b jets (squarks/gluinos) | 8/2016 | 13 | 14.8 | ATLAS-CONF-2016-052 | <u>Link</u>              |                              |
|   | photon + jets                    | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-066 | <u>Link</u>              | atrong production            |
|   | stop 0L                          | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-077 | <u>Link</u>              | strong production            |
|   | stop 1L                          | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-050 | <u>Link</u> <sub>₫</sub> |                              |
|   | stop 2L                          | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-076 | <u>Link</u> <sub>₫</sub> | 2rd apparation               |
|   | stop2 (3L)                       | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-038 | <u>Link</u> <sub>₫</sub> | 3 <sup>rd</sup> generation   |
|   | stop stau                        | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-048 | Link <sub>₫</sub>        |                              |
| 0 | 4 lepton (RPV EWK)               | 8/2016 | 13 | 13.3 | ATLAS-CONF-2016-075 | <u>Link</u> <sub>₫</sub> | Dark Matter                  |
| 0 | multijet (RPV)                   | 8/2016 | 13 | 14.8 | ATLAS-CONF-2016-057 | Link <sub>₫</sub>        | Dark Waller                  |
| 0 | Stop to bs (RPV)                 | 8/2016 | 13 | 15.6 | ATLAS-CONF-2016-084 | Link                     |                              |


• Nice overviews:

0

- Michele Weber (ATLAS) SEARCH 2016 link
- Wolfgang Adam (CMS + ATLAS) ICHEP 2016 <u>link</u>
- Christian Ohm (ATLAS) CERN seminar link




- Hopefully no need to remind to this audience...:
  - We use simplified models to optimise our analyses and (often) to interpret the result
  - The translation to actual models **not always straightforward.** "Absolute" exclusion (when they exist) limits **are weaker.**
  - Take our limits cum grano salis

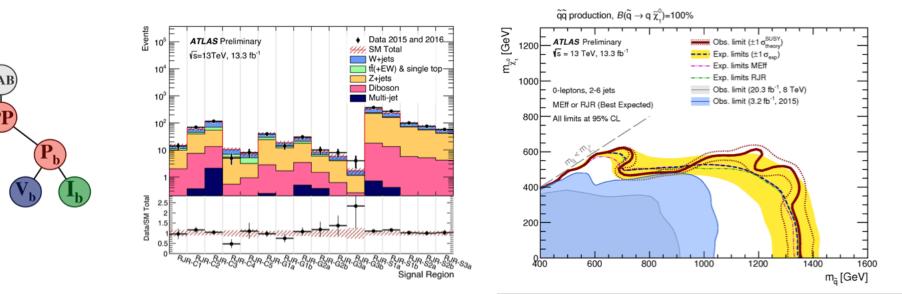


## Highlights (RPC strong production)








)Lab State

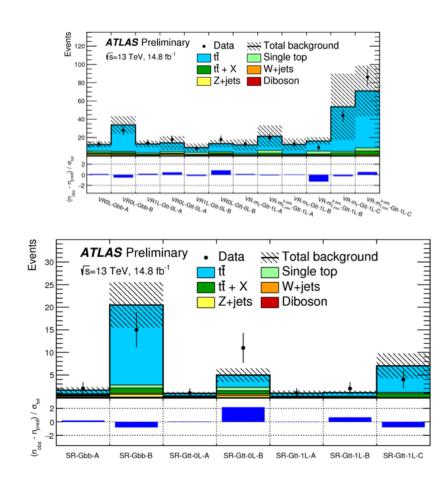
Decay States

Visible States

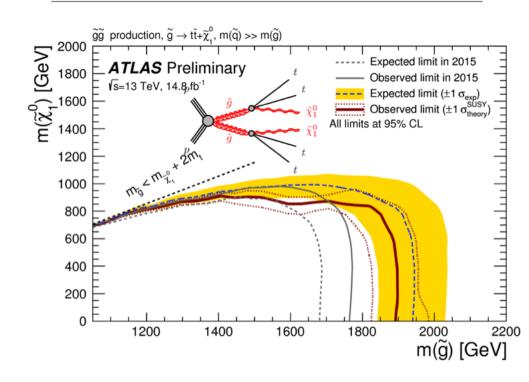
Invisible States

- 0L + jets +  $E_T^{miss}$ : traditionally **the flagship** of the ATLAS SUSY
- Innovative approach using R-Jigsaw techniques in parallel with more traditional M<sub>eff</sub>-based
  - R-jigsaw: Reconstruction of the **full event, including longitudinal part**, under certain assumptions, allows defining variables in **any reference frame**
- Dominant W and ttbar production normalised in **dedicated 1L regions** kinematically close to signal region. Z normalisation from a **single photon sample**



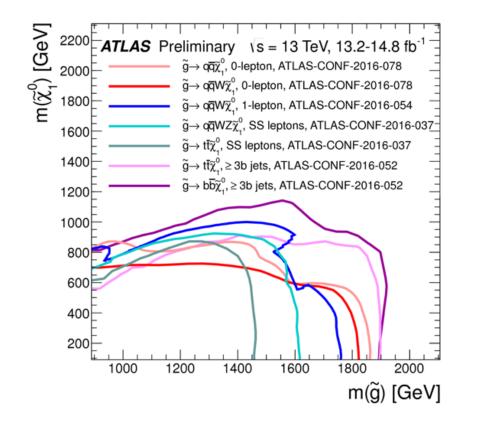

#### **US** University of Sussex

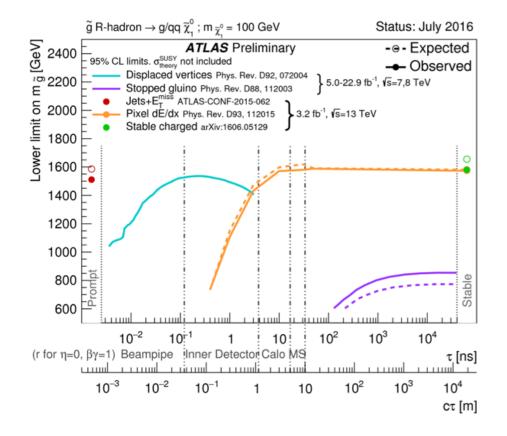
# Highlights (RPC strong production)


ATLAS-CONF-2016-052

#### Multi-b analysis: define 0- (Gbb and Gtt) and 1- (Gtt) lepton regions with many b-jets

• tt normalised and validated in dedicated regions



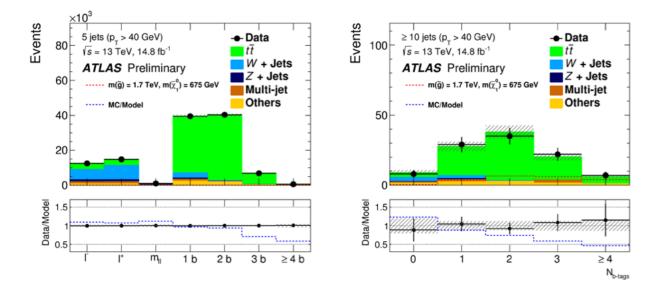


| Criteria common to all Gtt 0-lepton regions: ${p_{\rm T}}^{\rm jet} > 30$ GeV, $N_{b\text{-jets}} \geq 3$ |                                      |          |          |          |          |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------|----------|----------|----------|----------|--|--|--|--|
| Variable Signal region Control region VR1L VR0L                                                           |                                      |          |          |          |          |  |  |  |  |
|                                                                                                           | $N^{ m Signal\ Lepton}$              | = 0      | = 1      | = 1      | = 0      |  |  |  |  |
| Criteria common<br>to all regions of the                                                                  | $\Delta \phi_{\min}^{4j}$            | > 0.4    | -        | -        | > 0.4    |  |  |  |  |
| same type                                                                                                 | $m_{\mathrm{T,min}}^{b\text{-jets}}$ | > 80     | -        | > 80     | > 80     |  |  |  |  |
|                                                                                                           | $m_{\mathrm{T}}$                     | -        | < 150    | < 150    | -        |  |  |  |  |
|                                                                                                           | $N^{\rm jet}$                        | $\geq 8$ | $\geq 7$ | $\geq 7$ | $\geq 6$ |  |  |  |  |
| Region A                                                                                                  | $E_{\mathrm{T}}^{\mathrm{miss}}$     | > 400    | > 250    | > 200    | > 300    |  |  |  |  |
| (Large mass splitting)                                                                                    | $m_{\rm eff}^{\rm incl}$             | > 2000   | > 1750   | > 1750   | > 1300   |  |  |  |  |
|                                                                                                           | $M_J^{\Sigma}$                       | > 200    | > 200    | > 200    | < 200    |  |  |  |  |

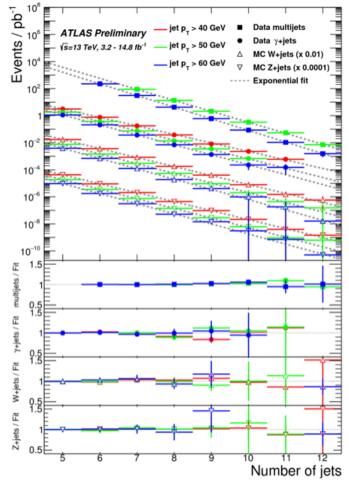


#### Gluino exclusion summary





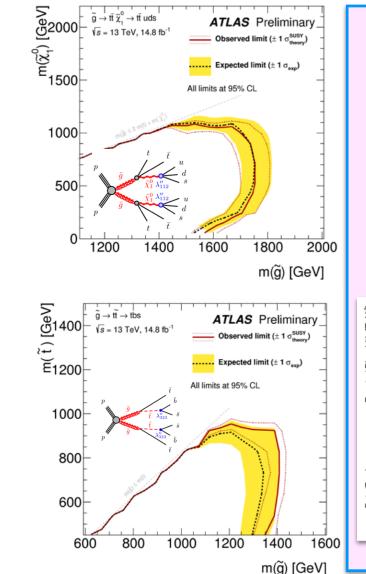



# Highlights (RPV strong production)

ATLAS-CONF-2016-094

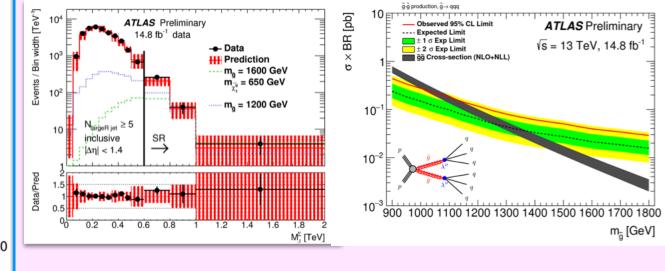
- 1L multi-jet a new, and versatile, analysis
- Bin the phase space in jet and b-jet multiplicity:
  - (nearly) fully data-driven background estimate
    - W+jets assumes scaling in jets multiplicity
    - ttbar assumes nearly constant probability that an additional jet is b-tagged
- No excess above predictions






# Highlights (RPV strong production)




University of Sussex



#### **0L multi-jet RPV analysis**

• Use fat jets with R = 1.0

- ATLAS-CONF-2016-057
- Data driven background estimation uses the jet mass template method to predict the distribution of the sum of jet masses
- jet mass template extracted in a **low jet multiplicity** control region



Madrid - "Is SUSY alive and well?" - 28th September 2016

# Highlights (3<sup>rd</sup> generation)

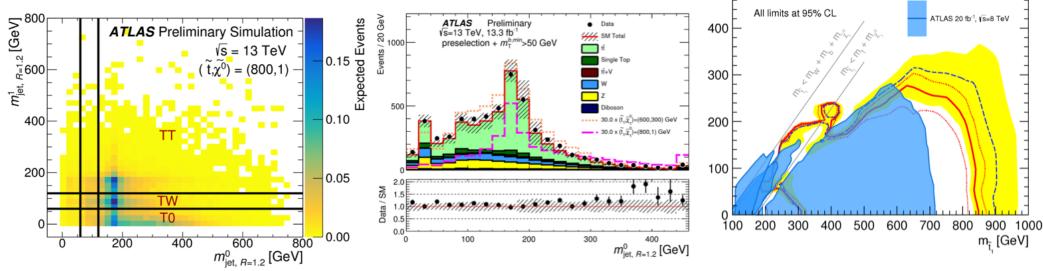


Observed limit (±1  $\sigma_{theorem}^{SUSY}$ 

Expected limit (±1  $\sigma_{exp}$ )

#### ATLAS-CONF-2016-077

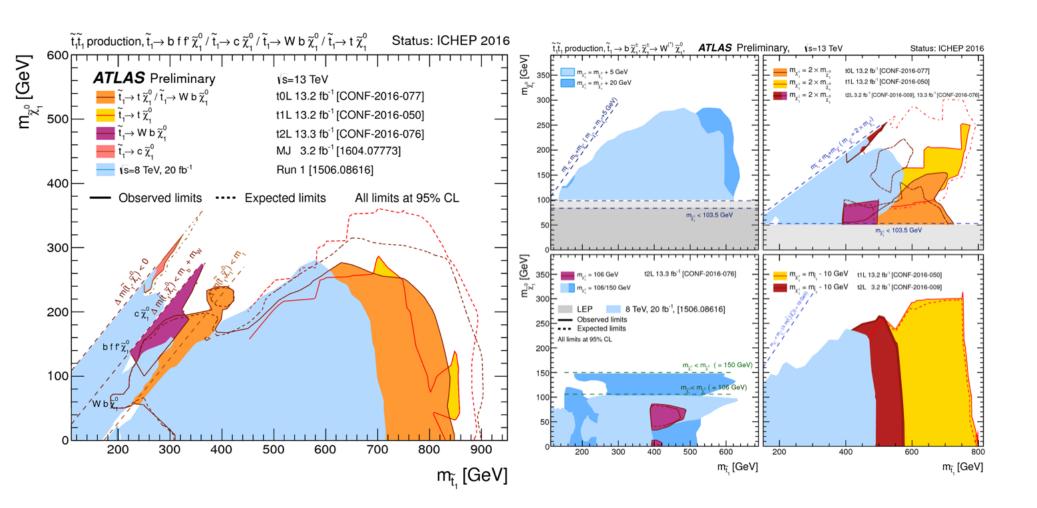
Stop pair production,  $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / bW \tilde{\chi}_1^0$ 


ATLAS Preliminary SRA+SRB+SRD

√s=13 TeV, 13.3 fb<sup>-1</sup>

600 *ATLAS* Prelin *ATLAS* Prelin *SRA+SRB+SRI SRA+SRB+SRI* 

#### • 0L stop:

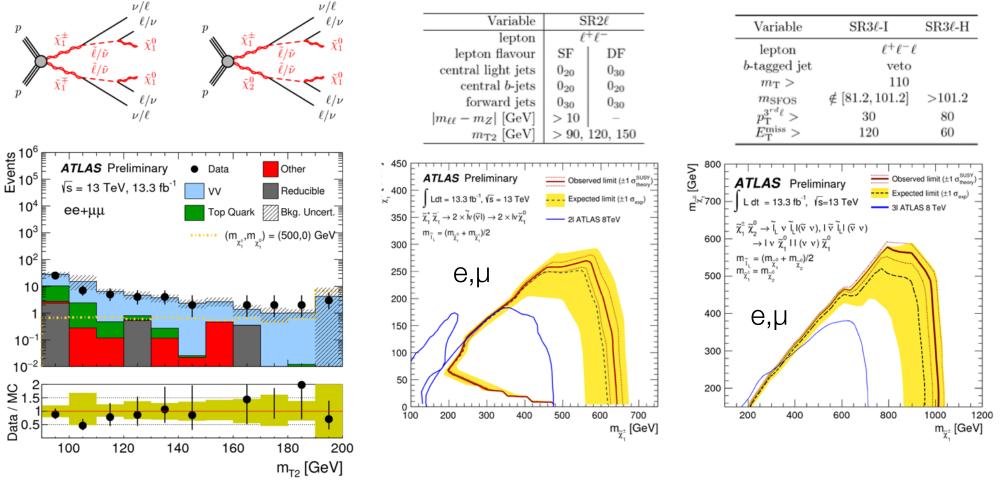

- · 4 sets of signal regions for stop pair production (plus one for DM and one for strong production)
- · Categorisation largely based on reclustered jet masses
- Dedicated signal regions for diagonal region based on recoil against ISR jet



Madrid - "Is SUSY alive and well?" - 28th September 2016



## Summary plots stop




## EW SUSY in run 2

**U**niversity of Sussex

ATLAS-CONF-2016-096

• We started producing results on **electroweak production** (winolike cross-sections, decay via sleptons - including staus)



Madrid - "Is SUSY alive and well?" - 28th September 2016

80

60

40

100 120

# EW SUSY in run 2

Dedicated analysis exploiting two hadronic taus in the final state for C1C1 and C1N2 • production and decay via staus Used for nominal

SM Total

Z+jets

Multi-jets

Top Quark

---- (m\_, m\_) = (400, 0) GeV

140

160

180 m<sub>T2</sub> [GeV]

W+jets Diboson

ATLAS Preliminary - Data

13 TeV, 14.8 fb<sup>-1</sup>

- Main background processes: diboson and multijet ٠
- The latter derived with a data-driven ABCD method ٠

Events / 30 GeV

 $10^{5}$ 

10

 $10^{3}$ 

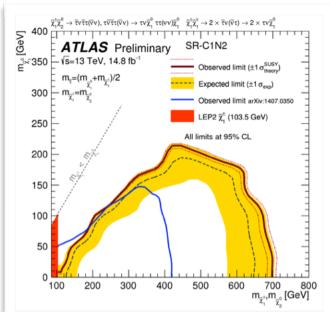
102

10

10

Data/SM

 $\nu_{\tau}/\tau$ 

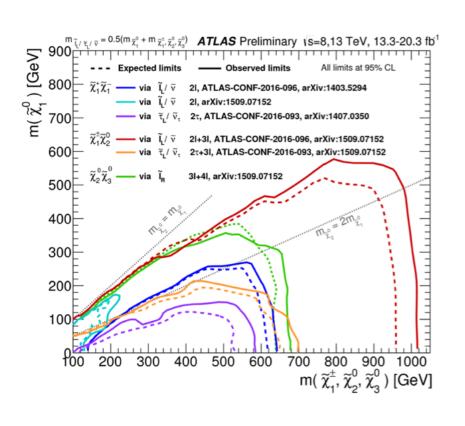

 $\tau / \nu_{\tau}$ 

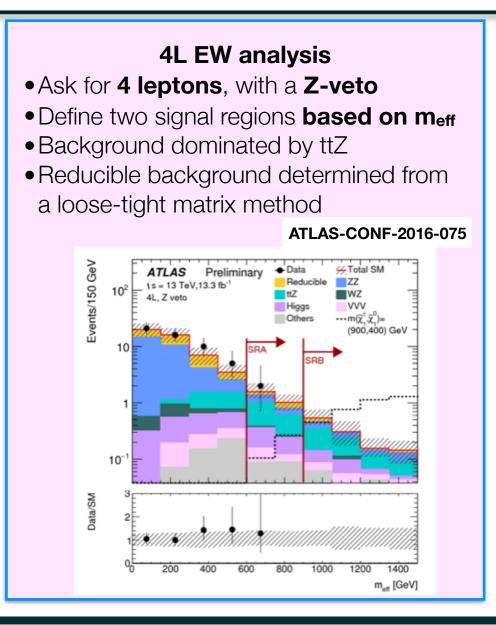
SR-C1C1 SR-C1N2 light lepton veto at least two medium taus at least one opposite sign tau pair *b*-jet veto Z-veto  $E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$  $m_{\rm T2} > 70 {\rm ~GeV}$ 

 $\nu_{\tau}/\tau$ 

 $\tau/\nu_{a}$ 

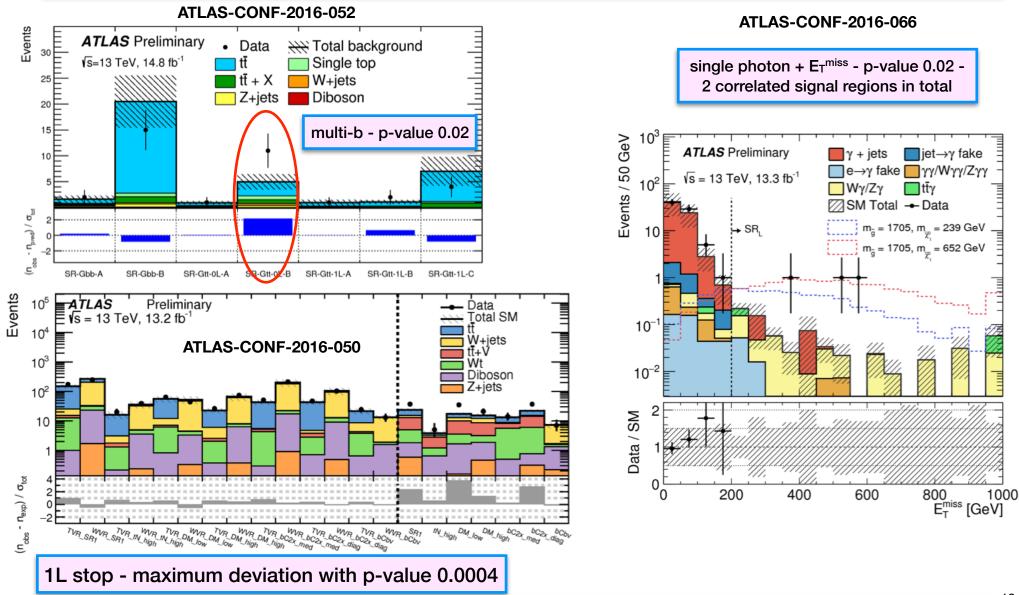
ABCD method (m12, ET miss) [GeV] lsed for validation and systematics T = C/BMulti-jet SR-D CR-A (70, 150) T = C/BMulti-iet Multi-jet VR-E VR-F (40, 40) Multi-jet Multi-jet CR-C CR-B (10, 40) 2 medium OS taus tau-id and charge 2 loose SS taus




ATLAS-CONF-2016-093

# Summary EW production



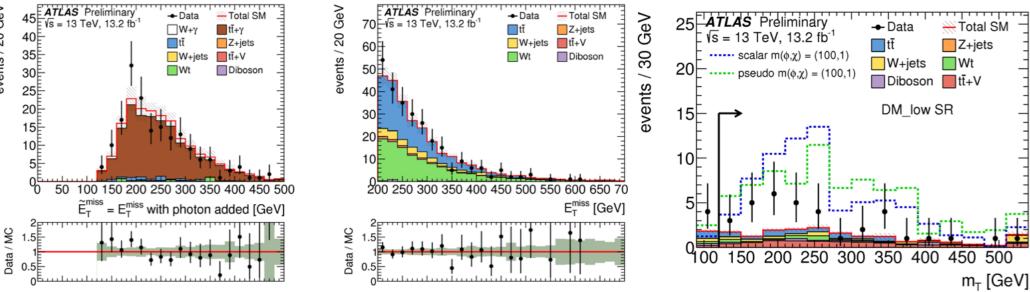





#### Excesses

University of Sussex

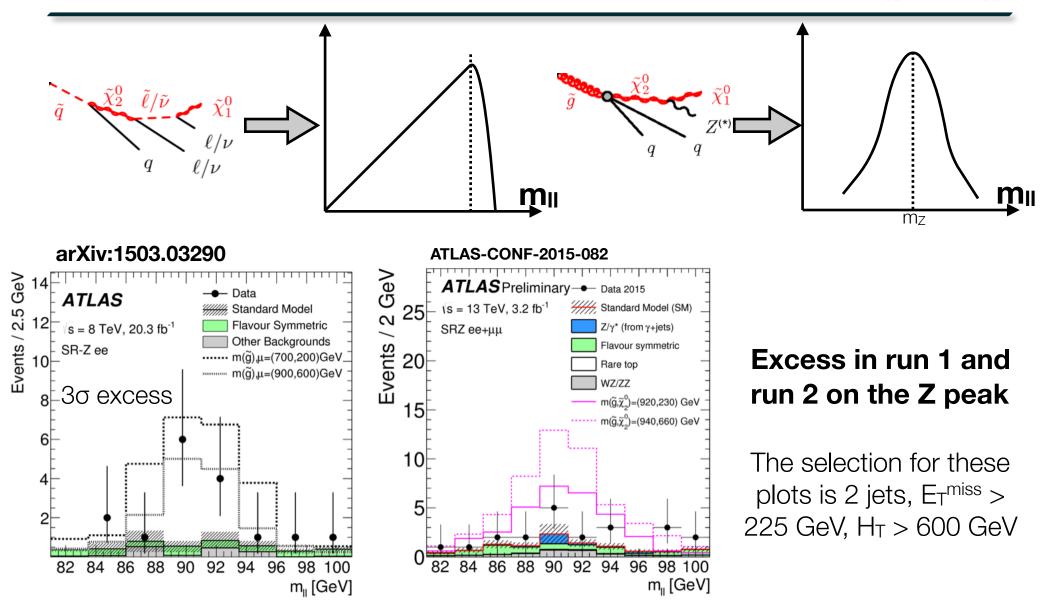



Madrid - "Is SUSY alive and well?" - 28th September 2016

#### Madrid - "Is SUSY alive and well?" - 28th September 2016

#### More details

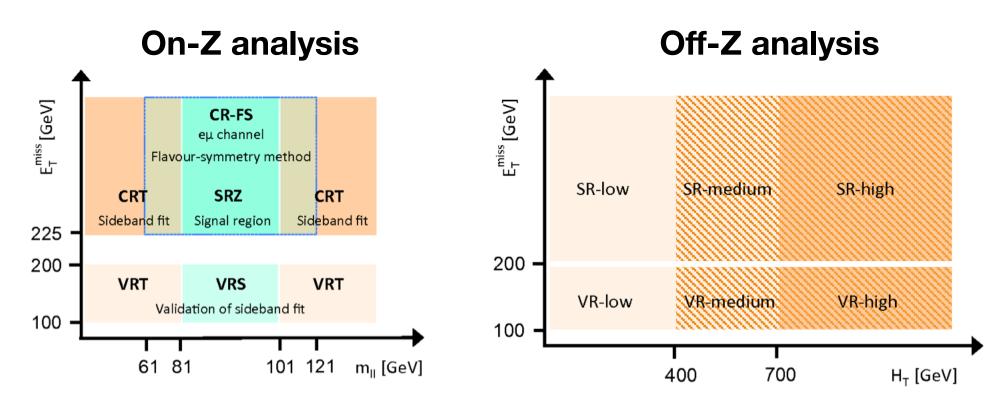
| Variable                                                                                   | DM_low                |
|--------------------------------------------------------------------------------------------|-----------------------|
| $\geq 4$ jets with $p_{\rm T} > [{\rm GeV}]$                                               | $(60 \ 60 \ 40 \ 25)$ |
| $E_{\rm T}^{\rm miss}$ [GeV]                                                               | > 300                 |
| $H_{ m T,sig}^{ m miss}$                                                                   | > 14                  |
| $m_{\mathrm{T}}$ [GeV]                                                                     | > 120                 |
| $am_{\mathrm{T2}}$ [GeV]                                                                   | > 140                 |
| $\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i)) \ (i \in \{1-4\})$ | > 1.4                 |
| $\Delta \phi(ar{p}_{	ext{T}}^{	ext{miss}},\ell)$                                           | > 0.8                 |
| $\Delta R(b_1,b_2)$                                                                        | _                     |
| Number of $b$ -tags                                                                        | $\geq 1$              |


- main background **ttZ with Z \rightarrow vv** normalised in a tty control region.
- top pair production normalised in a CR at low m<sub>T</sub>
- Excesses in other signal regions, significantly overlapping with DM\_low





**U**niversity of Sussex


ATLAS-CONF-2016-098

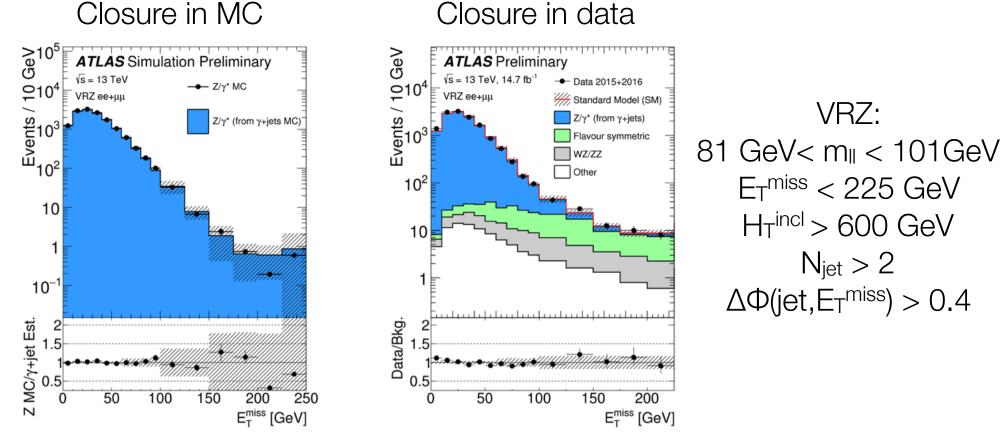




University of Sussex

• Analysis extended to include full  $m_{II}$  spectrum in different regions of  $H_T$  and  $E_T^{miss}$ 



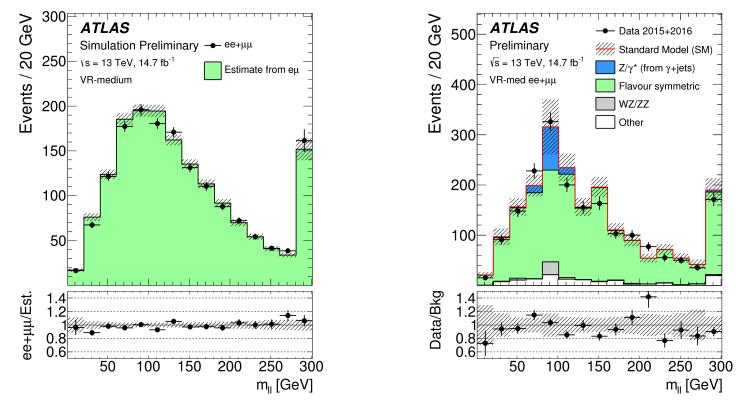

Madrid - "Is SUSY alive and well?" - 28th September 2016

115 University of Sussex

VRZ:

 $N_{jet} > 2$ 

- Analysis extended to include full  $m_{II}$  spectrum in different regions of  $H_T$  and  $E_T^{miss}$
- **Z** + jets  $E_T^{miss}$  template taken from a  $\gamma$ +jets control region.




#### Closure in data

Madrid - "Is SUSY alive and well?" - 28th September 2016



- Analysis extended to include full  $m_{II}$  spectrum in different regions of  $H_T$  and  $E_T^{miss}$
- **Z** + jets  $E_T^{miss}$  template taken from a  $\gamma$ +jets control region.
- Flavour symmetric background (mostly top pair production) determined from eµ control region



- Analysis extended to include full  $m_{II}$  spectrum in different regions of  $H_T$  and  $E_T^{miss}$
- **Z** + jets  $E_T^{miss}$  template taken from a  $\gamma$ +jets control region.
- Flavour symmetric background (mostly top pair production) determined from eµ control region

| • [ | Diboson | background | taken | from | MC and | validated | with data |
|-----|---------|------------|-------|------|--------|-----------|-----------|
|-----|---------|------------|-------|------|--------|-----------|-----------|

|                                                                | VR-S         | VR-WZ        | VR-ZZ           | VR-3L         |
|----------------------------------------------------------------|--------------|--------------|-----------------|---------------|
| Observed events                                                | 236          | 698          | 132             | 32            |
| Total expected background events                               | $224 \pm 41$ | $613 \pm 66$ | $139 \pm 25$    | $35 \pm 10$   |
| Flavour-symmetric $(t\bar{t}, Wt, WW, Z \rightarrow \tau\tau)$ | 99 ± 8       | -            | -               | -             |
| WZ/ZZ events                                                   | $27 \pm 13$  | $573 \pm 66$ | $139 \pm 25$    | $25 \pm 10$   |
| Rare top events                                                | $11 \pm 3$   | $14 \pm 3$   | $0.44 \pm 0.11$ | $9.1 \pm 2.3$ |
| $Z/\gamma^*$ + jets events                                     | $84 \pm 37$  | -            | -               | -             |
| Fake lepton events                                             | $4 \pm 4$    | $26 \pm 6$   | -               | $0.6 \pm 0.3$ |
|                                                                | VR           | R-low        | VR-medium       | VR-high       |
| Observed events                                                | 1            | 6253         | 1917            | 314           |
| Total expected background events                               | 16500 ±      | = 700        | $1990 \pm 150$  | $340 \pm 60$  |
| Data-driven flavour symmetry events                            | 14700 ±      | = 600        | $1690 \pm 120$  | $250 \pm 50$  |
| WZ/ZZ events                                                   | 250          | ± 80         | $40 \pm 19$     | 9±6           |
| Data-driven $Z/\gamma^*$ + jets ( $\gamma$ + jets) events      | 1100 ±       | = 400        | $130 \pm 70$    | $50 \pm 29$   |
| Rare top events                                                | $87 \pm 23$  |              | $27 \pm 7$      | $6.5 \pm 1.8$ |
| Data-driven fake lepton events                                 | 270 ±        | - 100        | $98 \pm 35$     | $20 \pm 11$   |

m<sub>"</sub>[GeV]

Observed events

GeV

Events / 2

**30** 

25

20

15

10

Total expected background events

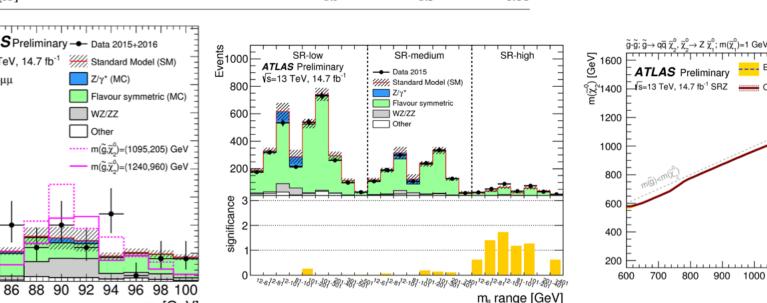
No significant excess found Result interpreted in gluino and squark pair production,

Expected limit (±1 σ<sub>exp</sub>)

Observed limit (±1 output

1000 1100 1200 1300 1400

700


900

with decay to  $\chi_2^0$  followed by decay through Z or sleptons

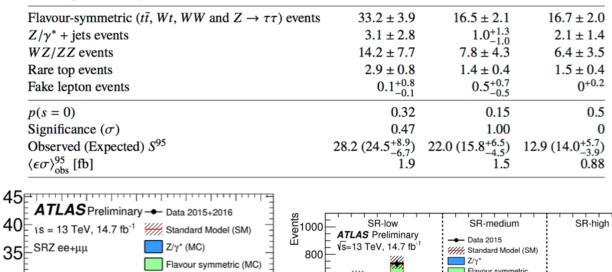
SRZ µµ

 $26.8 \pm 4.4$ 

25



SRZ


 $53.5 \pm 9.3$ 

60

SRZ ee

 $27.1 \pm 5.1$ 

35



#### 115 University of Sussex



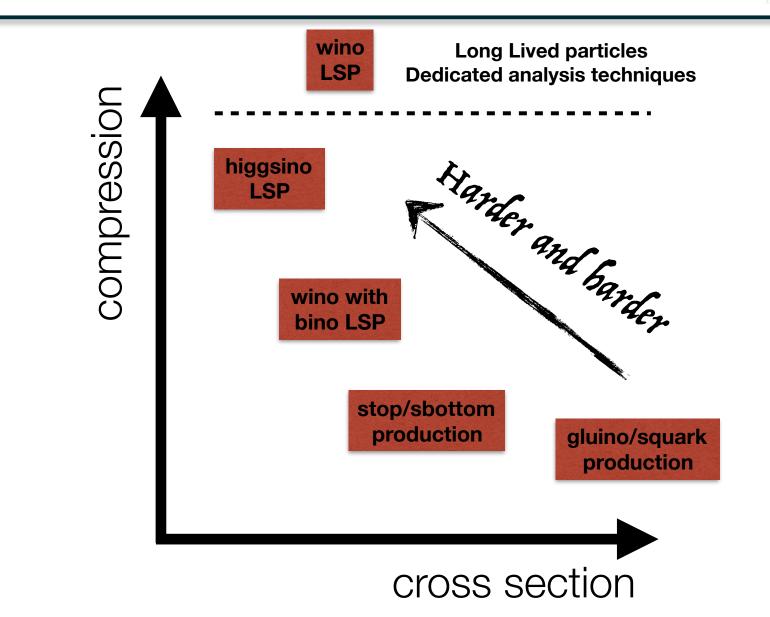
1500

m(g) [GeV]

1600



## Summary

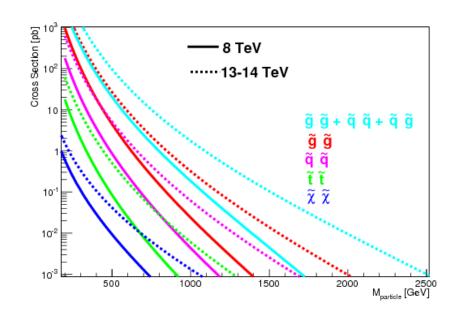



- A **nice harvest of results** during summer. No superhero found.
  - Largest excess in an analysis looking for stop pair production in 1-lepton final states (3.3σ)
- In general, striking agreement with the Standard Model predictions
- The time for large increases of **CM energy and/or integrated luminosity** is nearly over...
- Will we leave our superheroes undiscovered?










## SUSY production and decay



University of Sussex

#### SUSY production

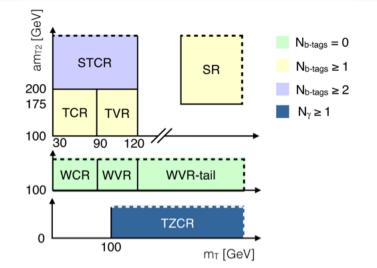


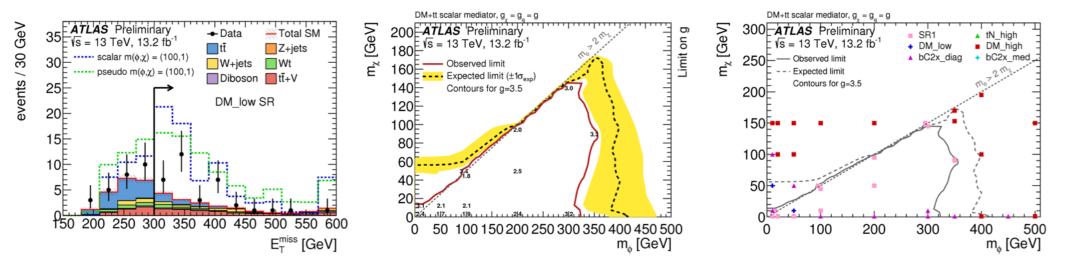
Structure of SUSY group (strong, 3<sup>rd</sup> generation, EW) follows from differences in cross section and topology for these processes ... and decay

- Generic **R-parity conserving** (RPC) SUSY predicts **large E<sub>T</sub><sup>miss</sup>** 
  - R-parity violating SUSY predicts large object multiplicity

Gluino and squark production leads to jets plus stuff

stop/sbottom production leads to
 b-jets plus stuff

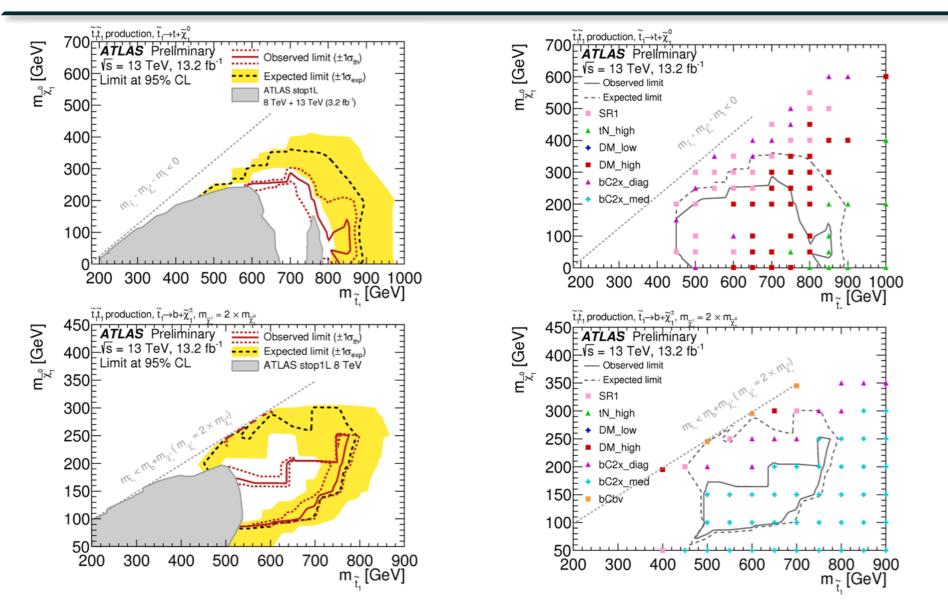

EW production leads to stuff


stuff is W, Z, h, γ, e,  $\mu$ ,  $\tau$ 



#### stop 1L - more details

| Signal region                              | SR1                  | tN_high             | bC2x_diag            | bC2x_med            | bCbv                | DM_low               | DM_high             |
|--------------------------------------------|----------------------|---------------------|----------------------|---------------------|---------------------|----------------------|---------------------|
| Observed                                   | 37                   | 5                   | 37                   | 14                  | 7                   | 35                   | 21                  |
| Total background                           | $24 \pm 3$           | $3.8\pm0.8$         | $22 \pm 3$           | $13 \pm 2$          | $7.4 \pm 1.8$       | $17 \pm 2$           | $15 \pm 2$          |
| $t\bar{t}$                                 | $8.4 \pm 1.9$        | $0.60\pm0.27$       | $6.5 \pm 1.5$        | $4.3 \pm 1.0$       | $0.26 \pm 0.18$     | $4.2 \pm 1.3$        | $3.3\pm0.8$         |
| W+jets                                     | $2.5 \pm 1.1$        | $0.15\pm0.38$       | $1.2 \pm 0.5$        | $0.63 \pm 0.29$     | $5.4 \pm 1.8$       | $3.1 \pm 1.5$        | $3.4 \pm 1.4$       |
| Single top                                 | $3.1 \pm 1.5$        | $0.57\pm0.44$       | $5.3 \pm 1.8$        | $5.1 \pm 1.6$       | $0.24 \pm 0.23$     | $1.9 \pm 0.9$        | $1.3 \pm 0.8$       |
| $t\bar{t} + V$                             | $7.9 \pm 1.6$        | $1.6\pm0.4$         | $8.3 \pm 1.7$        | $2.7 \pm 0.7$       | $0.12\pm0.03$       | $6.4 \pm 1.4$        | $5.5 \pm 1.1$       |
| Diboson                                    | $1.2 \pm 0.4$        | $0.61\pm0.26$       | $0.45 \pm 0.17$      | $0.42 \pm 0.20$     | $1.1 \pm 0.4$       | $1.5 \pm 0.6$        | $1.4 \pm 0.5$       |
| Z+jets                                     | $0.59 \pm 0.54$      | $0.03\pm0.03$       | $0.32\pm0.29$        | $0.08\pm0.08$       | $0.22\pm0.20$       | $0.16 \pm 0.14$      | $0.47 \pm 0.44$     |
| $t\bar{t}$ NF                              | $1.03\pm0.07$        | $1.06\pm0.15$       | $0.89\pm0.10$        | $0.95\pm0.12$       | $0.73 \pm 0.22$     | $0.90 \pm 0.17$      | $1.01 \pm 0.13$     |
| W+jets NF                                  | $0.76 \pm 0.08$      | $0.78\pm0.08$       | $0.87 \pm 0.07$      | $0.85 \pm 0.06$     | $0.97 \pm 0.12$     | $0.94 \pm 0.13$      | $0.91 \pm 0.07$     |
| Single top NF                              | $1.07 \pm 0.30$      | $1.30\pm0.45$       | $1.26 \pm 0.31$      | $0.97 \pm 0.28$     | -                   | $1.36 \pm 0.36$      | $1.02 \pm 0.32$     |
| $t\bar{t} + W/Z$ NF                        | $1.43 \pm 0.21$      | $1.39\pm0.22$       | $1.40 \pm 0.21$      | $1.30\pm0.23$       | -                   | $1.47\pm0.22$        | $1.42 \pm 0.21$     |
| $p_0 (\sigma)$                             | 0.012 (2.2)          | 0.26(0.6)           | 0.004 (2.6)          | 0.40(0.3)           | 0.50(0)             | 0.0004 (3.3)         | 0.09(1.3)           |
| $N_{\rm non-SM}^{\rm limit}$ exp. (95% CL) | $12.9^{+5.5}_{-3.8}$ | $5.5^{+2.8}_{-1.1}$ | $12.4^{+5.4}_{-3.7}$ | $9.0^{+4.2}_{-2.7}$ | $7.3^{+3.5}_{-2.2}$ | $11.5^{+5.0}_{-3.4}$ | $9.9^{+4.6}_{-2.9}$ |
| $N_{\rm non-SM}^{\rm limit}$ obs. (95% CL) | 26.0                 | 7.2                 | 27.5                 | 9.9                 | 7.2                 | 28.3                 | 15.6                |





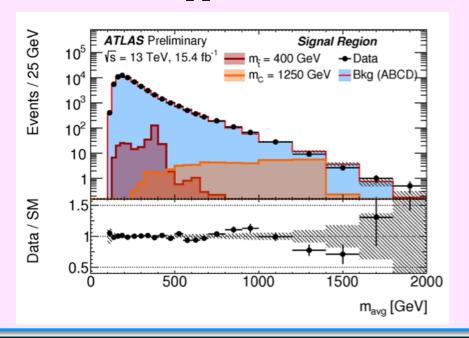



### stop 1L - more details

University of Sussex

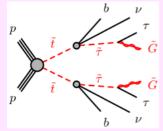


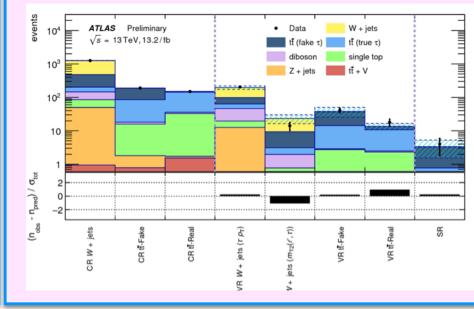
Madrid - "Is SUSY alive and well?" - 28th September 2016


## Other stop results



**University of Sussex** 


#### **RPV** stop


- Look for stop decay into a pair of light quarks
- Reconstruct two **di-jet resonances** of roughly the same mass
- Background: **multijet production**, estimated from data with a **data-driven ABCD method**
- stop masses up to ~ 500 GeV are excluded (assuming  $t \to qq$  with BR = 1)



#### stop to stau

- Require one lepton, hadronic tau, one b-jet, EMT's
- Selection based on m<sub>T2</sub>(I,τ)
- Main backgorund from semileptonic top pair production with a fake tau
- Stop up to 850 GeV excluded (assuming all BR = 1)







# On-shell Z: comparing 3.2 Vs 14.7 fb<sup>-1</sup>

| Bacground    | 3.2 fb <sup>-1</sup> (ATLAS-<br>CONF-2015-082) | 3.2 fb <sup>-1</sup> scaled to 14.7 fb <sup>-1</sup> | 14.7 fb <sup>-1</sup> (ATLAS-<br>CONF-2016-098) |
|--------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
| Flavour-symm | 5.1(2.0)                                       | 23.4 (9.2)                                           | 33.2 (3.9)                                      |
| Z/gam + jets | 1.9 (0.8)                                      | 8.7 (3.7)                                            | 3.1 (2.8)                                       |
| WZ/ZZ        | 2.9 (0.8)                                      | 13.3 (3.7)                                           | 14.2 (7.7)                                      |
| total        | 10.3 (2.3)                                     | 47.3 (10.5)                                          | 53.5 (9.3)                                      |