MontePython exercise

Running of the Planck Mass

The IFT School in Cosmology Tools March 2017

The problem

The Friedmann equations, within the ACDM paradigm are:

$$H^2=\rho\,,\qquad H'=-\frac{3}{2}a\,(\rho+p)$$

They can be modified assuming that the Planck mass M_* can vary. The effective Planck Mass run rate is defined as (Huang 2016):

$$lpha_M(a) \equiv rac{d\ln\left(M_*^2
ight)}{d\ln a} \qquad \qquad lpha_M(a) = lpha_{M0} rac{\Omega_{
m DE}(a)}{\Omega_{
m DE,0}}$$

The problem

Under this modification, the background equations become:

$$H^{2} = \rho, \qquad H' = -\frac{3}{2}a(\rho + p) \qquad \longrightarrow \qquad H^{2} = \frac{\rho}{M_{*}^{2}}, \qquad H' = -\frac{3}{2}a\frac{\rho + p}{M_{*}^{2}}$$

And the stress and Poisson equations:

$$\Phi = (1 + \alpha_M) \Psi$$
 $\qquad \qquad rac{k^2}{a^2} \Phi = -rac{
ho_m (1 + \alpha_M)}{2M_*^2} \delta_m$

This is the so-called α_{M} CDM model

We recover the ACDM when setting $\alpha_{\rm M}$ = 0 and M_* = 1

Methodology and results

We have modified the **hi_class** code to implement the α_{M} CDM equations. We obtain the relative difference with Λ CDM angular diameter distance and M_{*} as a function of z

Thanks