Overview of different recombination codes

Jens Chluba

2nd IFT School on Cosmological Tools Madrid, Spain, March 13th - 17th, 2017

MANCHESTER 1824

The University of Manchester

Cosmological Time in Years

Getting the job done for Planck

SA GH

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman- α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)
- Non-equilibrium effects in the angular momentum sub-states (Rubiño-Martín, JC & Sunyaev, 2006, MNRAS; JC, Rubiño-Martín & Sunyaev, 2007, MNRAS; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010)
- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (*atomic recoil, time-dependence, partial redistribution*) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

HFI 100 GH

Cumulative Changes to the Ionization History

Cumulative Change in the CMB Power Spectra

Differences for current recombination codes

Recombination code overview

Code	Recfast	Recfast++	CosmoRec
Language	Fortran 77/90 & C	C++	C++
Requirements	_	_	GNU Scientific Lib (GSL)
Solves for	$X_{ m p},X_{ m Hel},T_{ m e}$	$X_{ m p}, X_{ m Hel}, T_{ m e}$	$X_{1s}, X_{ns}, X_{np}, X_{nd}, T_{e}$
ODE-Solver	explicit	implicit (Gears method)	implicit (Gears method)
PDE-Solver	_	-	semi-implicit (Crank-Nicolson)
Approach	derivative fudge	correction function	full physics
Simplicity	rather simple	simpler	pretty big code
Flexibility	limited	quite flexible	very flexible
Validity	around standard cosmology	around standard cosmology	wide range of cosmologies
Tools	_	ODE Solver	HI & He Atom, Solvers, Quadrature routines
Extras	-	DM annihilation, A _{2s1s}	DM annihilation, high-v distortion, A _{2s1s}
Runtime	0.01 sec	0.08 sec	1.5 - 2 sec (faster now)

Update for CosmoRec & Recfast++ soon to include effects of primordial magnetic fields, variation of fundamental constants & decaying particles

Recfast

Some Recfast facts

- Standalone Fortran and C versions
- C version not up to date (and buggy)
- Many personal versions in the community
- Part of CAMB and CLASS
- Recombination corrections included by fudging derivatives
- Today fudge function calibrated using CosmoRec
- Derivatives done analytically (cumbersome...)
- Download <u>http://www.astro.ubc.ca/people/scott/recfast.html</u>

Recfast Equations

$$\frac{dx_{\text{He II}}}{dz} = \{ [x_{\text{He II}} x_e n_{\text{II}} \alpha_{\text{He I}} - \beta_{\text{He I}} (f_{\text{He}} - x_{\text{He II}}) e^{-h\nu_{\text{He I}} 2^1 s^{/k} T_M}] \\
\times [1 + K_{\text{He I}} \Lambda_{\text{He II}} n_{\text{II}} (f_{\text{He}} - x_{\text{He II}}) e^{-h\nu_{\text{He I}} 2^1 s^{2^1 s^{/k} T_M}}] \} / \\
\{ H(z)(1 + z)[1 + K_{\text{He I}} (\Lambda_{\text{He I}} + \beta_{\text{He I}}) n_{\text{II}} \\
\times (f_{\text{He}} - x_{\text{He II}}) e^{-h\nu_{\text{IIe I}} 2^1 s^{2^1 s^{/k} T_M}}] \},$$
(2)

$$\frac{dT_M}{dz} = \frac{8\sigma_{\rm T}a_R T_R^4}{3H(z)(1+z)m_e c} \frac{x_e}{1+f_{\rm He}+x_e} (T_M - T_R) + \frac{2T_M}{(1+z)}$$

- Old expressions from Peebles 1969
- second shell quasistationary
 - recombination rates and escape probabilities fudged
 - spin-forbidden transition added to helium equation (Wong, Moss & Scott, 2009)

Seager et al, 1999

recfast.readme

The input interface was designed to look familiar to users of Seljak & Zaldarriaga's code CMBFAST. A convenient way to run the program is by using a file recfast.run of the form: output.file Omega_B, Omega_DM, Omega_vac H_0, T_0, Y_p meaning of parameters Hswitch Heswitch For example: junk.out 0.04 0.20 0.76 write into recfast.ini 70 2.725 0.25 1 6

Execute code like./recfast < recfast.ini</pre>

recfast.for

```
С
       Modification for H correction (Hswitch):
        write(*,*) 'Modification for H recombination:'
        write(*,*)'0) no change from old Recfast'
    write(*,*)'1) include correction'
        write(*,*)'Enter the choice of modification for H (0-1):'
    read(*,*)Hswitch
С
   Fudge factor to approximate the low z out of equilibrium effect
    if (Hswitch .eq. 0) then
      fu=1.14d0
    else
      fu=1.125d0
    end if
С
   Modification for HeI recombination (Heswitch):
    write(*,*)'Modification for HeI recombination:'
    write(*,*)'0) no change from old Recfast'
    write(*,*)'1) full expression for escape probability for singlet'
    write(*,*)' 1P-1S transition'
    write(*,*)'2) also including effect of continum opacity of H on HeI'
    write(*,*)' singlet (based in fitting formula suggested by'
    write(*,*)' Kholupenko, Ivanchik & Varshalovich, 2007)'
    write(*,*)'3) only including recombination through the triplets'
    write(*,*)'4) including 3 and the effect of the continum '
    write(*,*)' (although this is probably negligible)'
    write(*,*)'5) including only 1, 2 and 3'
    write(*,*)'6) including all of 1 to 4'
    write(*,*)'Enter the choice of modification for HeI (0-6):'
    read(*,*)Heswitch
```

Example of how things can go wrong with *Recfast*...

JC et al., 2015, arXiv:1503.04827

Recfast++

Some Recfast++ facts

- Standalone C++ version
- Also part of cosmology object in CosmoRec (activated by runmode)
- High flexibility with non-standard cases implemented
- Uses correction function approach to represent the full calculation (introduced in Rubino-Martin et al, 2009)
- Correction function can be updated very easily
- Derivatives done numerically (super easy!!)
- Download www.Chluba.de/CosmoRec

$$X_{\rm e}^{\rm CR} \approx X_{\rm e}^{\rm RF} \left(1 + \frac{\Delta X_{\rm e}}{X_{\rm e}} \right)$$

Computed for reference cosmology

Initialization for Recfast++ uses same file as CosmoRec

// the above parameters are (default values are given as examples) //=== 2800 == number of redshift points (for the range z= 50-3000 nz=500 is in principle sufficient) 3806 == starting redshift; above z=3400 the Recfast++ Solution should be used. This is automatically done in batch mode. 0 == ending redshift; below z=50 the Recfast++ system is solved with rescale dXe/dt 0.24 == Yp 2.725 == T0 0.2678 == Omega_m 0.0444 == Omega_b 0.7322 == Omega L (if <=0 it will be computed from the other variables)</p> 0.0 == Omega k 0.71 == h100 3.046 == N nu 1.14 == Recfast++ fudge factor (usually leave unchanged) 3 == number of hydrogen shells for ODE problem (currently: 3, 4, 5 or 10; lite only 3) 520 == nS for effective HI rates (nS=10, 20, 50, 120, 128, 200, 300, 400 and 500; lite only 500) If the number of hydrogen shells is !=3, only effective rates for nS=500 are available. 1.0e-24 == dark matter annihilation efficiency in eV/sec (see Chluba 2009). Values <= 12^-23 eV/sec are recommended. For larger values the CosmoRec calculation breaks down. In Recfast-mode also larger values are possible. 8.2206 == A2s1s decay rate for hydrogen. If ==0 internal default is used. == number of helium shells (currently: 2, 3, 5 or 10; lite only 2 & 3) 3 == HI absorption during HeI-recombination 0 (0: off; 1: on; 2: on with Diffusion fudge; 3: radiative transfer code) 0 == spin forbidden transitions for HeI-recombination (0: off; 1: on) == Feedback in Helium levels (positive: no HI abs between the lines 0 negative: with HI abs between the lines) 1 == run PDE part (1) or not (0). In the latter case only ODE system will be solved. If this flag is set to 0 only the initial calculation without transfer corrections will be performed 2 == correction to 2s-1s channel; 0: no corr; 1: stim. 2s-1s; 2: full correction; 3 == nS for corrections because of two-photon decays. If set to <3 then only the diffusion correction is included. 2 == nS for corrections because of Raman-scattering If set to <2 then the 1+1 Raman rates are not corrected. ./outputs/ == path for output == addition to name of files at the very end .dat

./runfiles/parameters.dat

parameters for both Recfast++ & CosmoRec

main CosmoRec parameters

Execute Recfast++ like

./CosmoRec REC runfiles/parameters.dat

(equivalent to old recfast)

./CosmoRec RECcf runfiles/parameters.dat (recfast + correction function)

New Cosmological Recombination Code: CosmoRec

- Uses an effective multi-level approach (Haimoud & Hirata, 2010)
- Very accurate and fast (for 'default' setting ~1 sec per model!)
- solves the detailed radiative transfer problem for Ly-n
- no fudging (Recfast) or multi-dimensional interpolation (RICO)
- different runmodes/accuracies implemented
- easily extendable (effect of dark matter annihilation already included)
- was already tested in a wide range of cosmologies
- runs smoothly with CAMB/CosmoMC (Shaw & JC, 2011)
- CosmoRec is available at: www.Chluba.de/CosmoRec

Extended Effective Multi-level Atom

CosmoRec & HyRec

- need to treat angular momentum sub-levels separately
- Complexity of problem scales like ~ n^2_{max}
- Full problem pretty demanding (500 shells ≈ 130000 equations!)

⇒ effective multi-level approach (Ali-Haimoud & Hirata, 2010)

This allowed fast computation of the recombination problem!

CosmoRec specific parameters

./runfiles/parameters.dat

3 500	<pre>== number of hydrogen shells for ODE problem (currently: 3, 4, 5 or 10; lite only 3) == nS for effective HI rates (nS=10, 20, 50, 100, 128, 200, 300, 400 and 500; lite only 500 If the number of hydrogen shells is 1=2, only offective rates for nS=500 are evailable.</pre>
1.0e-24	<pre>== dark matter annihilation efficiency in eV/sec (see Chluba 2009). Values <= 10^-23 eV/sec are recommended. For larger values the CosmoRec</pre>
8.2206	calculation breaks down. In Recfast-mode also larger values are possible. == A2s1s decay rate for hydrogen. If ==0 internal default is used.
3	== number of helium shells (currently: 2, 3, 5 or 10; lite only 2 & 3)
0	== HI absorption during HeI-recombination
	(0: off; 1: on; 2: on with Diffusion fudge; 3: radiative transfer code)
0	== spin forbidden transitions for Hel-recombination (0: off; 1: on)
0	== Feedback in Helium levels (positive: no HI abs between the lines
	negative: with HI abs between the lines)
1	== run PDE part (1) or not (0). In the latter case only ODE system will be solved.
	If this flag is set to 0 only the initial calculation without transfer corrections will be performed
2	== correction to 2s-1s channel; 0: no corr; 1: stim. 2s-1s; 2: full correction;
3	== nS for corrections because of two-photon decays.
	If set to <3 then only the diffusion correction is included.
2	== nS for corrections because of Raman-scattering
_	If set to <2 then the 1+1 Raman rates are not corrected.
./outputs	/ == path for output
.dat	== addition to name of files at the very end

Execute CosmoRec like

```
./CosmoRec runfiles/parameters.dat
```

Annihilation and extra energy release

Extra Sources of Ionizations or Excitations

- ,Hypothetical' source of extra photons parametrized by ϵ_{α} & ϵ_{i}
- Extra excitations ⇒ delay of Recombination
- Extra ionizations ⇒ affect 'freeze out' tail
- This affects the Thomson visibility function
- From WMAP $\Rightarrow \epsilon_{\alpha} < 0.39 \& \epsilon_{i} < 0.058$ at 95% confidence level (Galli et al. 2008)
- Extra ionizations & excitations should also lead to additional photons in the recombination radiation!!!
- This in principle should allow us to check for such sources at z~1000

Peebles, Seager & Hu, ApJ, 2000

Dark Matter Annihilation: Effect on Ionization History and the Recombination Spectrum

10 shell Hydrogen & 10 shell Helium atom bound-bound III recombination spectrum reference model $f_{a} \epsilon_{a} = 2 \pm 10^{-22}$ 2 x 10⁻²² $f_{\rm d} \varepsilon_{\rm u} = 5 \pm 10^{\circ}$ pre-recombinational signal from interaction k with Lie I l ave lime Hz from ε -- 600 E 10 101001000 v[GHz]

- 'Delay of recombination'
- Affects Thomson visibility function
- Possibility of Sommerfeld-enhancement
- Clumpiness of matter at z<100

- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

Decaying particle during & after recombination

- Modify recombination history
- this changes Thomson visibility function and thus the CMB temperature and polarization power spectra
- \Rightarrow CMB anisotropies allow

probing particles with lifetimes ≥ 10¹² sec

CMB spectral distortions provide complementary probe! (more tomorrow)

Some useful commands

Making and cleaning

- > make
- > make clean
- > make tidy

Execute CosmoRec like

./CosmoRec runfiles/parameters.dat (full computation)

Execute Recfast++ like

- ./CosmoRec REC runfiles/parameters.dat (equivalent to old recfast)
- ./CosmoRec RECcf runfiles/parameters.dat (recfast + correction function)