Recombination Physics and Why it is Important for Cosmology and Early-Universe Physics

The University of Manchester

Jens Chluba

2nd IFT School on Cosmological Tools Madrid, Spain, March 13th - 17th, 2017

Everything you always wanted to know about recombination but never dared to ask

The University of Manchester

Jens Chluba

2nd IFT School on Cosmological Tools Madrid, Spain, March 13th - 17th, 2017

Cosmic Microwave Background Anisotropies

Planck all sky map

- CMB has a blackbody spectrum in every direction
- tiny variations of the CMB temperature $\Delta T/T \sim 10^{-5}$

Sketch of the Cosmic Ionization History

- at redshifts higher than ~10⁴ Universe → fully ionized
- z ≥ 10⁴ → free electron fraction N_e/N_H ~ 1.16 (Helium has 2 electrons and abundance ~ 8%)
- HeIII → HeII recombination at z~6000
- HeII → HeI recombination at z~2000
- HII → HI recombination at z~1000

CMB Sky → Cosmology

Cosmological Time in Years

What is the recombination problem about?

- coupled system describing the interaction of matter with the ambient CMB photon field
- atoms can be in different excitation states
 - ⇒ lots of levels to worry about
- recombination process changes
 Wien tail of CMB and this affects
 the recombination dynamics
 - ⇒ radiative transfer problem

Have to follow evolution of: $N_{\rm e}, T_{\rm e}, N_{\rm p}, N_i \text{ and } \Delta I_{\nu}$

Only problem in time!

non-thermal photons

Physical Conditions during Recombination

- Temperature $T_{\gamma} \sim 2.725 (1+z) \text{ K} \sim 3000 \text{ K}$
- Baryon number density $N_b \sim 2.5 \times 10^{-7} \text{cm}^{-3} (1+z)^3 \sim 330 \text{ cm}^{-3}$
- Photon number density $N_{\gamma} \sim 410 \text{ cm}^{-3} (1+z)^3 \sim 2 \times 10^9 N_{b}$ \Rightarrow photons in very distant Wien tail of blackbody spectrum can keep hydrogen ionized until $hv_{\alpha} \sim 40 \ kT_{\gamma} \Leftrightarrow T_{\gamma} \sim 0.26 \text{ eV}$
- Collisional processes negligible (completely different in stars!!!)
- Rates dominated by radiative processes
 (e.g. stimulated emission & stimulated recombination)
- Compton interaction couples electrons very tightly to photons until $z \sim 200 \Rightarrow T_{\gamma} \sim T_{\rm e} \sim T_{\rm m}$

3-level Hydrogen Atom and Continuum

Routes to the ground state?

- direct recombination to 1s
 - Emission of photon is followed by immediate re-absorption

No

- recombination to 2p followed by Lyman-α emission
 - medium optically thick to Ly- α phot.
 - many resonant scatterings
 - escape very hard (p~10-9 @ z~1100)

~ 43%

- recombination to 2s followed by 2s two-photon decay
 - 2s \rightarrow 1s ~108 times slower than Ly- α
 - 2s two-photon decay profile \rightarrow maximum at $v \sim$ 1/2 v_{α}
 - immediate escape

~ 57%

These first computations were completed in 1968!

Moscow

Vladimir Kurt (UV astronomer)

Yakov Zeldovich

Rashid Sunyaev

losif Shklovskii

Princeton

Jim Peebles

Multi-level Atom ⇔ Recfast-Code

Output of N_e/N_H

Hydrogen:

- up to 300 levels (shells)
- n ≥ 2 → full SE for *l*-sub-states

Helium:

- Hel 200-levels (z ~ 1400-1500)
- Hell 100-levels (z ~ 6000-6500)
- Helll 1 equation

Low Redshifts:

- H chemistry (only at low z)
- cooling of matter (Bremsstrahlung, collisional cooling, line cooling)

Seager, Sasselov & Scott, 1999, ApJL, 523, L1 Seager, Sasselov & Scott, 2000, ApJS, 128, 407

RECFAST reproduces the result of detailed recombination calculation using fudge-functions

 $\Delta N_{\rm e}$ / $N_{\rm e}$ ~ 1% - 3%

Getting the job done for Planck

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)

- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (atomic recoil, time-dependence, partial redistribution) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines
 (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering
 (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions
 (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons
 (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

 ΔN_e / N_e ~ 0.1 %

Solving the problem for the *Planck* Collaboration was a common effort!

Atomic Physics Challenges

Hydrogen Atom & Hydrogenic Helium

- Rather simple and basically analytic (e.g., Karzas & Latter, 1961)
- Even 2γ rates can be computed precisely (e.g., Goeppert-Mayer, 1931)
- Collision rates less robust, but effect small (new rates became available!)
- Biggest computational challenge is the number of levels (~ n²)

Neutral Helium

- Lower levels non-hydrogenic (perturbative approach needed)
- Spectrum complicated and data (was) rather sparse (e.g., Drake & Morton, 2007)

Grotrian diagram for neutral helium

Atomic Physics Challenges

Hydrogen Atom & Hydrogenic Helium

- Rather simple and basically analytic (e.g., Karzas & Latter, 1961)
- Even 2γ rates can be computed precisely (e.g., Goeppert-Mayer, 1931)
- Collision rates less robust, but effect small (new rates became available!)
- Biggest computational challenge is the number of levels (~ n²)

Neutral Helium

- Lower levels non-hydrogenic (perturbative approach needed)
- Spectrum complicated and data (was) rather sparse (e.g., Drake & Morton, 2007)
- Collision rates pretty rough (important for distortions...)
- Computational challenge because of levels not as demanding to get free electron fraction right (not true for spectrum...)

Stimulated 2s → 1s decay

Transition rate in vacuum

 $\rightarrow A_{2s1s} \sim 8.22 \text{ sec}^{-1}$

CMB ambient photons field

- \rightarrow A_{2s1s} increased by ~1%-2%
- \rightarrow HI recombination faster by $\Delta N_{\rm e}/N_{\rm e} \sim 1.3\%$

2s-1s emission profile

Feedback of Ly- α on the 1s \rightarrow 2s transition

- Some Ly-α photon are reabsorbed in the 1s-2s channel
- delays recombination
- net effect on 2s-1s channel
 ΔN_e/N_e ~ 0.6% around z~1100
- 2s-1s self-feedback $\Delta N_e/N_e \sim -0.08\%$ around $z\sim 1100$ (JC & Thomas, 2010)

Feedback of Ly- α on the 1s \rightarrow 2s transition

- Some Ly-α photon are reabsorbed in the 1s-2s channel
- delays recombination
- net effect on 2s-1s channel
 ΔN_e/N_e ~ 0.6% around z~1100
- 2s-1s self-feedback $\Delta N_e/N_e \sim -0.08\%$ around z~1100 (JC & Thomas, 2010)

Basis for Recfast computation (Seager et al. 2000)

$$N_{nl} = \frac{2l+1}{n^2} N_{\text{tot},n}$$

- l -dependence of populations neglected
- Levels in a given shell assumed to be in Statistical Equilibrium (SE)
- Complexity of problem scales like ~ n_{max}

Processes for the upper levels

recombination & photoionization

- $n \text{ small } \rightarrow l \text{-dependence not drastic}$
- high shells → more likely to *l*<<*n*
- large $n \rightarrow induced$ recombination

many radiative dipole transitions

- Lyman-series optically thick
- $\Delta l = \pm 1$ restriction (electron cascade)
- large *n* & small $\Delta n \rightarrow induced$ emission

• *l*-changing collisions

- help to establish full SE within the shell
- only effective for n > 25-30
- *n*-changing collisions
- Collisional photoionization
- Three-body-recombination

Basis for Recfast computation (Seager et al. 2000)

 $N_{nl} = \frac{2l+1}{n^2} N_{\text{tot},n}$

- l -dependence of populations neglected
- Levels in a given shell assumed to be in Statistical Equilibrium (SE)
- Complexity of problem scales like ~ n_{max}

Basis for Recfast computation (Seager et al. 2000)

$$N_{nl} = \frac{2l+1}{n^2} N_{\text{tot},n}$$

- *l*-dependence of populations neglected
- Levels in a given shell assumed to be in Statistical Equilibrium (SE)
- Complexity of problem scales like ~ n_{max}

Basis for Recfast computation (Seager et al. 2000)

 $N_{nl} = \frac{2l+1}{n^2} N_{\text{tot},n}$

- l -dependence of populations neglected
- Levels in a given shell assumed to be in Statistical Equilibrium (SE)
- Complexity of problem scales like ~ n_{max}

Refined computation

(JC, Rubino-Martin & Sunyaev, 2007)

- need to treat angular momentum sub-levels separately!
- include collision to understand how close things are to SE
- Complexity of problem scales like ~ n²_{max}
- But problem very sparse
 (Grin & Hirata, 2010; JC, Vasil & Dursi, 2010)

Sparsity of the problem and effect of ordering

20 shell Hydrogen + 5 shell Helium model

Shell-by-Shell ordering

 $1s, 2s, 2p, 3s, 3p, 3d, \dots$

Angular momentum ordering

 $1s, 2s, 3s, \ldots, ns, 2s, 3p, \ldots, np, 3d, 4d, \ldots$

Grin & Hirata, 2010 JC, Vasil & Dursi, MNRAS, 2010

Two-photon transitions from the upper levels and the Lyman-α escape problem

Sobolev approximation

(developed in late 50's to model moving envelopes of stars)

- To solve the coupled system of rate-equations
 - \rightarrow need to know mean intensity across the Ly- α (& Ly-n) resonance at different times
 - → solution by introducing the *escape probability*
 - → Escape == photons stop interacting with Ly-α resonance == photons stop supporting the 2p-level == photons reach the very distant red wing
- Main assumptions of Sobolev approximation
 - populations of level + radiation field quasi-stationary
 - every 'scattering' leads to complete redistribution
 - emission & absorption profiles have the same shape

Doppler width

$$\frac{\Delta \nu_{\rm D}}{\nu} = \sqrt{\frac{2kT}{m_{\rm H}c^2}} \simeq {\rm few} \times 10^{-5}$$

Sobolev approximation

(developed in late 50's to model moving envelopes of stars)

- To solve the coupled system of rate-equations
 - \rightarrow need to know mean intensity across the Ly- α (& Ly-n) resonance at different times
 - → solution by introducing the *escape probability*
 - → Escape == photons stop interacting with Ly-α resonance == photons stop supporting the 2p-level == photons reach the very distant red wing
- Main assumptions of Sobolev approximation
 - populations of level + radiation field quasi-stationary
 - every 'scattering' leads to complete redistribution
 - emission & absorption profiles have the same shape
- Sobolev escape probability & optical depth

$$P_{\rm S} = \frac{1 - {\rm e}^{-\tau_{\rm S}}}{\tau_{\rm S}} \simeq 10^{-8}$$

$$\tau_{\rm S} = \frac{c \,\sigma_{\rm r} N_{\rm 1s}}{H} \, \frac{\Delta \nu_{\rm D}}{\nu} = \frac{g_{\rm 2p}}{g_{\rm 1s}} \, \frac{A_{\rm 21} \lambda_{\rm 21}^3}{8\pi H} \, N_{\rm 1s}$$

Problems with Sobolev approximation:

Complete redistribution ⇔ partial redistribution

Sobolev-approximation:

- Important variation of the photon distribution at ~1.5 times the ionization energy!
- For 1% accuracy one has to integrate up to ~10⁷
 Doppler width!
- Complete redistribution bad approximation and very unlikely (p~10⁻⁴-10⁻³)

No redistribution case:

- Much closer to the correct solution (partial redistribution)
- Avoids some of the unphysical aspect

Problems with Sobolev approximation:

Time dependence of radiation field

- Evolution close to line center is indeed quasi-stationary
- non-stationarity important in the wings
 - ⇒ *information* takes time to travel from line center to the wings
- For support of 2p level even spectrum up to |x_D| ~ 10⁴ is important
 - ⇒ time dependence has to be included

Problems with Sobolev approximation:

Difference between emission and absorption profile

Standard textbook: Normalized Ly-
$$\alpha$$
 profile $\int \phi(\nu) \, d\nu \, d\Omega = 1$

$$\frac{1}{c} \frac{dN_{\nu}}{dt} \Big|_{Ly-\alpha} = A_{21}\phi(\nu) \left[N_{2p}(1+n_{\nu}) - \frac{g_{2p}}{g_{1s}} N_{1s} n_{\nu} \right]$$

photon occupation numb

$$\Leftrightarrow \frac{1}{c} \frac{dN_{\nu}}{dt} \Big|_{L_{V}-\alpha} = A_{21} \frac{g_{2p}}{g_{1s}} N_{1s} \phi(\nu) (1 + n_{\nu}) \left[\frac{g_{1s} N_{2p}}{g_{2p} N_{1s}} - \frac{n_{\nu}}{1 + n_{\nu}} \right]$$

In equilibrium:
$$\frac{n_{\nu}}{1+n_{\nu}}=\mathrm{e}^{-\frac{h\nu}{kT\gamma}}$$
 and $\frac{g_{1\mathrm{s}}N_{2\mathrm{p}}}{g_{2\mathrm{p}}N_{1\mathrm{s}}}=\mathrm{e}^{-\frac{h\nu_{21}}{kT_{\mathrm{m}}}} \implies T_{\gamma}\equiv T_{\mathrm{m}}$ and $\nu\equiv\nu_{21}$

Only fulfilled at line center!

Detailed balance not guaranteed in the line wings!

Effective 1γ expression

$$\Rightarrow \frac{1}{c} \frac{dN_{\nu}}{dt} \bigg|_{Ly-\alpha} = A_{21} \frac{g_{2p}}{g_{1s}} N_{1s} \phi(\nu) (1+n_{\nu}) \left[\frac{g_{1s} N_{2p}}{g_{2p} N_{1s}} - e^{\frac{h(\nu-\nu_{21})}{kT_{\gamma}}} \frac{n_{\nu}}{1+n_{\nu}} \right]$$

Naturally comes out of 2γ treatment (JC & Sunyaev 2009)

Asymmetry of emission and absorption profile

Problems with Sobolev approximation:

Difference between emission and absorption profile

Illustration from Switzer & Hirata 2007 (meant for Helium)

 Real absorption & emission requires a second photon!

Two-photon emission profile

Seaton cascade (1+1 photon)

No collisions \rightarrow two photons (mainly H- α and Ly- α) are emitted!

Maria-Göppert-Mayer (1931): description of two-photon emission as single process in Quantum Mechanics

- → Deviations of the *two-photon line profile* from the Lorentzian in the damping wings
- → Changes in the optically thin (below ~500-5000 Doppler width) parts of the line spectra

3s and 3d two-photon decay spectrum

Direct Escape in optically thin regions:

- HI -recombination is a bit slower due to 2γ-transitions from s-states
- HI -recombination is a bit faster due to 2γ-transitions from d-states

 Ly_{α}

2s-1s Raman scattering

- Enhances blues side of Ly-α line
- associated feedback delays recombination around z~900

- Computation similar to two-photon decay profiles
- collisions weak ⇒ process needs to be modeled as single quantum act

Evolution of the HI Lyman-series distortion

Effect of Raman scattering and 2γ decays

Getting the job done for Planck

Hydrogen recombination

- Two-photon decays from higher levels (Dubrovich & Grachev, 2005, Astr. Lett., 31, 359; Wong & Scott, 2007; JC & Sunyaev, 2007; Hirata, 2008; JC & Sunyaev 2009)
- Induced 2s two-photon decay for hydrogen (JC & Sunyaev, 2006, A&A, 446, 39; Hirata 2008)
- Feedback of the Lyman-α distortion on the 1s-2s two-photon absorption rate (Kholupenko & Ivanchik, 2006, Astr. Lett.; Fendt et al. 2008; Hirata 2008)

- Feedback of Lyman-series photons (Ly[n] → Ly[n-1])
 (JC & Sunyaev, 2007, A&A; Kholupenko et al. 2010; Haimoud, Grin & Hirata, 2010)
- Lyman-α escape problem (atomic recoil, time-dependence, partial redistribution) (Dubrovich & Grachev, 2008; JC & Sunyaev, 2008; Forbes & Hirata, 2009; JC & Sunyaev, 2009)
- Collisions and Quadrupole lines
 (JC, Rubiño-Martín & Sunyaev, 2007; Grin & Hirata, 2009; JC, Vasil & Dursi, 2010; JC, Fung & Switzer, 2011)
- Raman scattering
 (Hirata 2008; JC & Thomas , 2010; Haimoud & Hirata, 2010)

Helium recombination

- Similar list of processes as for hydrogen (Switzer & Hirata, 2007a&b; Hirata & Switzer, 2007)
- Spin forbidden 2p-1s triplet-singlet transitions
 (Dubrovich & Grachev, 2005, Astr. Lett.; Wong & Scott, 2007; Switzer & Hirata, 2007; Kholupenko, Ivanchik&Varshalovich, 2007)
- Hydrogen continuum opacity during He I recombination (Switzer & Hirata, 2007; Kholupenko, Ivanchik & Varshalovich, 2007; Rubiño-Martín, JC & Sunyaev, 2007; JC, Fung & Switzer, 2011)
- Detailed feedback of helium photons
 (Switzer & Hirata, 2007a; JC & Sunyaev, 2009, MNRAS; JC, Fung & Switzer, 2011)

 ΔN_e / N_e ~ 0.1 %

Main corrections during Hel Recombination

Evolution of the Hel high frequency distortion

Overall effect of detailed Hel radiative transfer

Cumulative Changes to the Ionization History

Cumulative Change in the CMB Power Spectra

Importance of recombination for *Planck*

Biases as they would have been for Planck

- Biases a little less significant with real *Planck* data
- absolute biases very similar
- In particular n_s
 would be biased
 significantly

Planck Collaboration, XIII 2015

Importance of recombination for inflation constraints

Planck Collaboration, 2015, paper XX

Analysis uses refined recombination model (CosmoRec/HyRec)

Differences for current recombination codes

- Different codes agree very well!
- largest biases

 $\Delta n_{\rm s} \approx 0.15\sigma$ (CosmoRec \Leftrightarrow RECFAST)

 $\Delta n_{\rm s} \approx 0.03\sigma$ (CosmoRec \Leftrightarrow HyRec)

Nothing to worry about at this point!

Planck Collaboration, XIII 2015

CMB constraints on N_{eff} and Y_{p}

- Consistent with SBBN and standard value for N_{eff}
- Future CMB constraints (Stage-IV CMB) on Yp will reach 1% level

Importance of recombination for measuring helium

Planck measurement of the HI 2s-1s two-photon rate

- HI 2s-1s two-photon rate crucial for recombination dynamics
- Value is not well measured in lab (best constraint ~ 43% error; Krueger & Oed 1975)
- Planck data can be used to directly constrain its value

Planck measurement of the HI 2s-1s two-photon rate

- HI 2s-1s two-photon rate crucial for recombination dynamics
- Value is not well measured in lab (best constraint ~ 43% error; Krueger & Oed 1975)
- Planck data can be used to directly constrain its value

Planck measurement of the HI 2s-1s two-photon rate

- HI 2s-1s two-photon rate crucial for recombination dynamics
- Value is not well measured in lab (best constraint ~ 43% error; Krueger & Oed 1975)
- Planck data can be used to directly constrain its value

$$A_{2s\to 1s}^{\text{theory}} = 8.2206 \,\text{s}^{-1}(\text{Labzowsky et al. } 2005)$$

$$A_{2s\rightarrow 1s} = 7.71 \pm 0.99 \,\mathrm{s}^{-1}$$

($Planck \,\mathrm{TT} + \mathrm{lowP} + \mathrm{BAO}$)

$$A_{2s\rightarrow 1s} = 7.75 \pm 0.61 \,\mathrm{s}^{-1}$$
 ~ 8% errorl
($Planck \,\mathrm{TT,TE,EE+lowP+BAO}$)

- Planck measurement in excellent agreement with theoretical value
- Planck only values very similar
- CosmoRec and Recfast agree...

Cosmological Recombination Radiation

Simple estimates for hydrogen recombination

Hydrogen recombination:

- per recombined hydrogen atom an energy of ~ 13.6 eV in form of photons is released
- at z ~ 1100 $\rightarrow \Delta \epsilon / \epsilon$ ~ 13.6 eV $N_{\rm b}$ / $(N_{\rm y} 2.7 {\rm k} T_{\rm r})$ ~ 10⁻⁹ -10⁻⁸
- \rightarrow recombination occurs at redshifts $z < 10^4$
- → At that time the *thermalization* process doesn't work anymore!
- There should be some *small* spectral distortion due to additional Ly-α and 2s-1s photons!

 (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1)
- In 1975 *Viktor Dubrovich* emphasized the possibility to observe the recombinational lines from n > 3 and $\Delta n << n!$

Cosmological Time in Years

New detailed and fast computation!

CosmoSpec: fast and accurate computation of the CRR

- Like in old days of CMB anisotropies!
- detailed forecasts and feasibility studies
- non-standard physics (variation of α, energy injection etc.)

CosmoSpec will be available here:

www.Chluba.de/CosmoSpec

What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_b h^2$)
- \rightarrow the CMB *monopole* temperature T_0
- → the pre-stellar abundance of helium Y_p
- → If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!

What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_b h^2$)
- \rightarrow the CMB *monopole* temperature T_0
- → the pre-stellar abundance of helium Y_p
- → If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!
- → In principle allows us to directly check our understanding of the standard recombination physics

The importance of HI continuum absorption

Dark matter annihilations / decays

- Additional photons at all frequencies
- Broadening of spectral features
- Shifts in the positions

JC, 2009, arXiv:0910.3663

What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:

- \rightarrow the specific *entropy* of our universe (related to $\Omega_b h^2$)
- \rightarrow the CMB *monopole* temperature T_0
- → the pre-stellar abundance of helium Y_p
- → If recombination occurs as we think it does, then the lines can be predicted with very high accuracy!
- → In principle allows us to directly check our understanding of the standard recombination physics

If something unexpected or non-standard happened:

- → non-standard thermal histories should leave some measurable traces
- → direct way to measure/reconstruct the recombination history!
- → possibility to distinguish pre- and post-recombination y-type distortions
- > sensitive to energy release during recombination
- > variation of fundamental constants

Conclusions

- The standard recombination problem has been solved to a level that is sufficient for the analysis of current and future CMB data (<0.1% precision!)
- Many people helped with this problem!
- Without the improvements over the original version of Recfast cosmological parameters derived from Planck would be biased significantly
- In particular the discussion of inflation models would be affected
- Cosmological recombination radiation allows us to directly constrain the recombination history

Cosmological Time in Years

