Introduction to Hydra, the IFT-UAM/CSIC cluster

MANUEL TRASHORRAS, IFT/UAM-CSIC

SCHOOL OF COSMOLOGY TOOLS, MARCH 2017

Contents

- 1. What is HYDRA?
- 2. Hydra basics & specifications
- 3. Log in & change passwords in HYDRA
- 4. What is SLURM?
- 5. Using SLURM and submitting jobs
- 6. Example: Compiling and running CosmoMC

So, what is HYDRA? Not this...

So, what is HYDRA? But this.

The Hydra HPC cluster is made of 80 dual processors of 8 or 12 cores per node.

batch -> 34 nodes

time limit: 140 h

nodes hydra[1-34]

• **batch2** -> 18 nodes

time limit: 140 h

nodes hydra[35-52]

batch3 -> 18 nodes

time limit: 70 h nodes hydra[53-70]

The Hydra HPC cluster is made of 80 dual processors of 8 or 12 cores per node.

batch -> 8 cores/node

34 nodes with a dual processor Intel[®] Xeon[®] E5540 at 2,53 GHz, 24 GB DDR3 RAM & 120 GB Solid State Disk hard drive.

batch2 -> 12 cores/node

18 nodes with a dual processor Intel[®] Xeon[®] E5645 at 2.4 GHz, 24 GB DDR3 RAM & 120 GB Solid State Disk hard drive.

• **batch3** -> 12 cores/node

18 nodes with a dual processor Intel[®] Xeon[®] E5-2640 at 2.5 GHz, 64 GB DDR3 RAM 128 GB Solid State Disk hard drive.

System software and compilers:

- GNU compiler 5.2
- Intel compiler 16
- MKL software 16
- OpenMPI software 1.8.8

Default environment: GNU+ autotools + OpenMPI Software is accessible through a **module system**, that allows users to dynamically **modify the user's environment**, loading and unloading the different modules.

The following command are useful

- module avail -> shows the list of available modules
- module list -> shows the list of user's loaded modules
- module load MODULENAME -> loads a specific module
- module help -> shows help

LOADED MODULES

- In /opt/ohpc/pub/moduledeps/gnu: • openmpi/1.8.8 (L)
- In /opt/ohpc/pub/modulefiles:
- autotools (L) gnu/5.2.0 (L)
- ohpc (L)

prun/1.0 (L)

SOME UNLOADED MODULES

In /opt/ohpc/pub/moduledeps/gnu:

- getdist/0.2.7
- hdf5/1.8.15
- impi/5.1.1.109
- mpi4py/2.0.0
- numpy/1.9.2

- gsl/1.16 healpy/1.10.3 mkl/16.0.0.109 mvapich2/2.1
- In /opt/ohpc/pub/modulefiles: • intel/16.0.0.109

Your home directory is:

/home/USERNAME

To log in: ssh –X <u>USERNAME@hydra.ift.uam-csic.es</u>

Small jobs can be compiled & run in hydra0 interactively.

But for larger jobs, always use the submitting system, SLURM!

Your home directory is:

/home/USERNAME

To change passwords:

ssh -X USERNAME@hydra.ift.uam-csic.es

> passwd

> Type old password

> Type new password

Small jobs can be compiled & run in hydra0 interactively.

But for larger jobs, always use the submitting system, SLURM!

So, what is SLURM? Not this...

So, what is SLURM? But this.

Overview

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters. Slurm requires no kernel modifications for its operation and is relatively self-contained. As a cluster workload manager, Slurm has three key functions. First, it allocates exclusive and/or non-exclusive access to resources (compute nodes) to users for some duration of time so they can perform work. Second, it provides a framework for starting, executing, and monitoring work (normally a parallel job) on the set of allocated nodes. Finally, it arbitrates contention for resources by managing a queue of pending work. Optional plugins can be used for <u>accounting</u>, <u>advanced</u> reservation, gang scheduling (time sharing for parallel jobs), backfill scheduling, topology optimized resource selection, resource limits by user or bank account, and sophisticated multifactor job prioritization algorithms.

Source: https://slurm.schedmd.com/overview.html

To check the status of the cluster: sinfo

[[mtrashorras@hydra0 ~]\$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
batch2 up 5-20:00:00 18 down* hydra[35-52]
batch3* up 2-22:00:00 18 alloc hydra[53-70]
batch4 up 2-22:00:00 3 alloc hydra[71-73]
[mtrashorras@hydra0 ~]\$

To check the queues:

squeue

[[mtrashorras@hydra0 ~]\$ squeue

JOBID	PARTITION	NAME	USER	ST	TIME	NODES	NODELIST(REASON)
394499	batch4	-0.72,-1	michele	PD	0:00	1	(Resources)
394501	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394502	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394506	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394507	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394508	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394509	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394510	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394511	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
394512	batch4	-0.72,-1	michele	PD	0:00	1	(Priority)
390336	batch3	do-scan-	dkpatcha	R	2:02:22	8	hydra[63–70]
390337	batch3	rpv	dkpatcha	R	2:01:36	9	hydra[54-59,61,63,65]

To check the status of the cluster: sinfo

To check the queues:	squeue	
To submit a job:	sbatch JOBFILE	example: sbatch script.sh
To cancel a job:	scancel JOBID	example: scancel 123456
To check all your jobs:	squeue – u USERNAME	example: squeue –u mtrashorras
To cancel all your jobs:	scancel – u USERNAME	example: squeue –u mtrashorras
To check a specific job:	squeue – j JOBID	example: squeue –j 123456

EXAMPLES OF A COSMOMC JOB

cosmomc.sh

#!/bin/bash

#SBATCH -J JOBNAME	job name
#SBATCH -o ./stdout/job.%j.out	creates output files
#SBATCH -e ./stdout/job.%j.err	creates error files
#SBATCHnodes 1	total number of nodes
#SBATCHntasks 8	total number of cores
#SBATCH -time 140:00:00	max. running hours
#SBATCH -p batch	selects queue "batch"

(prun) YOUR CODE HERE

execute the code

cosmomc.sh

#!/bin/bash

#SBATCH -J JOBNAME #SBATCH -o ./stdout/job.%j.out creates output files #SBATCH -e ./stdout/job.%j.err creates error files #SBATCH -- nodes 2 #SBATCH -- ntasks 16 #SBATCH -time 140:00:00 #SBATCH -p **batch**

(prun) YOUR CODE HERE

job name total number of nodes total number of cores max. running hours selects queue "batch"

execute the code

DOWNLOADING COSMOMC

- 1. Go to <u>http://cosmologist.info/cosmomc/submit.html</u>
- 2. Fill in your data (name, surname and e-mail address), and submit.
- 3. Open the e-mail you have received, and click the link in it.
- 4. Download the latest version of CosmoMC: *cosmomc_Jul15_1.tar.gz*

DOWNLOADING THE PLANCK LIKELIHOOD

- 1. Go to <u>http://pla.esac.esa.int/pla/#cosmology</u> & click *SIGN IN* and *REGISTER*.
- 2. Create yourself an account. Fill in your name, surname, e-mail and submit.
- 3. Open the e-mail you have received, and copy the authentication code.
- 4. Open another mail you have received, and create yourself a password.
- 5. Sign in with your new account, and download: The likelihood code: COM_Likelihood_Code-v2.0_R2.00.tar.bz2 The data files: COM_Likelihood_Data-baseline_R2.00.tar.gz (contains high_l, low_l, lensing)

COMPILING COSMOMC & THE PLANCK LIKELIHOOD

* Example of working directory: /home/USERNAME/

- 1. Copy the Planck likelihood code, Planck likelihood data and CosmoMC to your path.
 - COM_Likelihood_Code-v2.0_R2.00.tar.bz2
 - COM_Likelihood_Data-baseline_R2.00.tar.gz
 - cosmomc_Jul15_1.tar.gz
- 2. Uncompress the Planck likelihood code, Planck likelihood data and CosmoMC.
 - 1. cd /home/USERNAME/
 - 2. tar -xvf COM_Likelihood_Code-v2.0_R2.00.tar.bz2 —> which creates a folder named plc-2.0
 - 3. tar-xvf COM_Likelihood_Data-baseline_R2.00.tar.gz ----> which creates a folder named plc_2.0
 - 4. tar -xvf cosmomc_Jul15_1.tar.gz —> which creates a folder named cosmomc

COMPILING COSMOMC & THE PLANCK LIKELIHOOD

* Compiling the Plank likelihood:

- 3. Add this to your .bashr file or execute before you compile/run CosmoMC
 - 1. source /opt/ohpc/pub/compiler/intel/compilers_and_libraries_2016.0.109/linux/mpi/intel64/bin/mpivars.sh
 - 2. source /opt/ohpc/pub/compiler/intel/compilers_and_libraries_2016.0.109/linux/bin/compilervars.sh intel64
- 4. Install the Planck likelihood
 - 1. cd /home/USERNAME/plc-2.0
 - ./waf configure --install_all_deps --lapack_mkl_version=10.3
 --lapack mkl=/opt/ohpc/pub/compiler/intel/compilers and libraries 2016.0.109/linux/mkl./waf install
- 5. Put a symbolic link to the Planck data in CosmoMC data:
 - 1. cd /
 - 2. In -s /home/USERNAME/plc_2.0 /home/USERNAME/cosmomc/data/clik

COMPILING COSMOMC & THE PLANCK LIKELIHOOD

* Compiling CosmoMC:

- 6. Modify the CosmoMC Makefile
 - 3. cd /home/USERNAME/cosmomc/source/
 - 4. vi Makefile replace in line 7: MPIF90C ?= mpif90 -> MPIF90C ?= mpif90 -f90=ifort
- 7. Compile CosmoMC
 - 3. make clean
 - 4. make
- 8. Run a toy chain (leave it running for a minute, this is not a parallel run). Done! 😎
 - 3. cd ..
 - 4. vitest.ini replace in line 37: action = 0 (test) ---> action = 4 (full MCMC)
 - 5. ./cosmomctest.ini

COMPILING COSMOMC & THE PLANCK LIKELIHOOD

[[mtrashorras@hydra0 cosmomc]\$./cosmomc test.ini Number of MPI processes: 1 file root:test Random seeds: 12464, 24560 rand_inst: 1 Doing non-linear Pk: F Doing CMB lensing: T Doing non-linear lensing: T TT lmax = 2500EE lmax = 2500ET lmax = 2500BB lmax = 2500PP lmax = 2500 $lmax_computed_cl = 2500$ Computing tensors: F max_eta_k 14000.00 = transfer kmax 5.000000 = adding parameters for: smica_g30_ftl_full_pp adding parameters for: BKPlanck_detset_comb_dust 2 blocks Fast divided into Block breaks at: 8 9 parameters (6 slow (0 semi-slow), 3 fast (0 semi-fast)) skipped unused params: acib217 xi asz143 aps100 aps143 aps143217 aps217 aksz kgal100 kgal143 kgal143217 kgal217 cal0 cal2 starting Monte-Carlo Chain:0 drag accpt: 0.6000000 fast/slow 18,00000 47 slow: Chain:0 drag accpt: 0.6122449 fast/slow 18.00000 slow: 94 ^Cforrtl: error (69): process interrupted (SIGINT)

Example: Sending a CosmoMC job

EXAMPLES OF A COSMOMC JOB

cosmomc.sh

#!/bin/bash

#SBATCH -J cosmomc_test	job name
#SBATCH -o ./stdout/job.%j.out	creates output files
#SBATCH -e ./stdout/job.%j.err	creates error files
#SBATCHnodes 1	total number of nodes
#SBATCHntasks 8	total number of cores
#SBATCH -time 140:00:00	max. running hours
#SBATCH -p batch	selects queue "batch"

./cosmomc test.ini

execute the code

cosmomc.sh

#!/bin/bash

#SBATCH -J cosmomc test #SBATCH -o ./stdout/job.%j.out creates output files #SBATCH -e ./stdout/job.%j.err creates error files #SBATCH -- nodes 2 #SBATCH -- ntasks 16 #SBATCH -time 140:00:00 #SBATCH -p batch

./cosmomc test.ini

job name total number of nodes total number of cores max. running hours selects queue "batch"

execute the code

Example: Sending a CosmoMC job

EXAMPLE OF A PARALELL JOB

cosmomc.sh

#!/bin/bash

#SBATCH -J cosmomc_test	job name			
#SBATCH -o ./stdout/job.%j.out	creates output files			
#SBATCH -e ./stdout/job.%j.err	creates error files			
#SBATCHnodes 1	total number of nodes			
#SBATCHntasks 8	total number of cores			
#SBATCH -time 140:00:00	max. running hours			
#SBATCH -p batch	selects queue "batch"			
export \$OMP_NUM_THREADS=8				

prun-n 1 ./cosmomc test.ini

execute the code

cosmomc.sh

#!/bin/bash

#SBATCH -J cosmomc test #SBATCH -o ./stdout/job.%j.out creates output files #SBATCH -e ./stdout/job.%j.err creates error files #SBATCH -- nodes 2 #SBATCH -- ntasks 16 #SBATCH -time 140:00:00 #SBATCH -p batch

job name total number of nodes total number of cores max. running hours selects queue "batch"

export \$OMP_NUM_THREADS=16

prun2 ./cosmomc test.ini

execute the code

Example: CosmoMC output

Output files: test_1.txt, test_2.txt, ..., test.inputparams, test.ranges, test.paramnames, test.likelihoods.

6.00000E+0	0 4.020593E+0	2 2.237905E-0	2 1.210001E-0	1.040673E+0	0 7.961286E-02	2 3.095802E+0	00 9.689967E-01
1.000905E+00	5.072992E+01	9.992040E-01	3.612232E+00	2.627977E+02	3.357852E+01	3.989548E+01	1.090350E+02
6.971365E+00	1.173381E+01	9.813909E+00	1.323354E+01	7.928245E+01	9.996154E-01	9.943139E-01	6.693115E+01
6.785014E-01	3.214986E-01	1.440243E-01	6.451439E-04	9.639711E-02	8.366901E-01	4.744104E-01	6.300274E-01
1.022705E+00	2.510974E+00	1.011810E+01	2.210495E+00	1.885119E+00	1.228440E+03	5.695538E+03	2.539407E+03
8.190871E+02	2.324751E+02	9.689967E-01	2.453968E-01	2.467233E-01	2.589648E+00	1.380795E+01	1.089994E+03
1.441675E+02	1.040856E+00	1.385086E+01	1.060047E+03	1.468169E+02	1.411623E-01	1.606773E-01	3.426328E+03
1.045747E-02	8.088600E-01	4.470520E-01	7.099794E-02	9.281875E+01	1.395937E+03	6.785478E-01	4.889963E-01
6.199804E-01	2.472889E+01	2.928717E+01	1.041134E+02	1.359998E+01	7.821099E+02	8.408603E+00	7.957099E+02
1.000000E+0	0 4.051888E+0	2 2.200543E-0	2 1.235358E-0	1.040069E+0	0 3.637712E-02	2 3.013929E+0	00 9.567040E-01
9.996694E-01	7.415064E+01	4.920187E-01	6.157384E+00	3.232672E+02	4.418528E+01	3.463432E+01	7.945601E+01
4.202721E+00	7.431789E+00	8.378352E+00	1.865833E+01	7.722513E+01	9.991016E-01	9.974961E-01	6.555908E+01
6.598728E-01	3.401272E-01	1.461864E-01	6.451439E-04	9.583848E-02	8.081931E-01	4.713416E-01	6.171993E-01
9.981566E-01	2.463189E+00	5.836487E+00	2.036726E+00	1.893808E+00	1.241035E+03	5.693506E+03	2.535620E+03
8.129329E+02	2.288998E+02	9.567040E-01	2.452225E-01	2.465484E-01	2.660936E+00	1.387338E+01	1.090697E+03
1.438041E+02	1.040291E+00	1.382344E+01	1.059322E+03	1.465729E+02	1.411301E-01	1.610327E-01	3.478011E+03
1.061516E-02	7.984244E-01	4.418493E-01	7.007005E-02	9.217150E+01	1.415249E+03	6.831381E-01	4.765368E-01
5.946455E-01	3.156666E+01	3.240660E+01	1.049658E+02	1.475256E+01	7.915088E+02	4.116185E+00	8.062613E+02
2.000000E+0	0 4.044760E+0	2 2.203441E-0	2 1.232865E-0	1.040149E+0	0 3.785501E-02	2 3.016565E+0	0 9.570835E-01
9.995595E-01	6.833702E+01	2.042141E-01	3.994217E+00	2.974958E+02	4.308280E+01	2.989378E+01	7.986067E+01
6.277358E+00	6.776987E+00	5.013407E+00	1.235607E+01	8.406485E+01	9.985088E-01	9.978253E-01	6.569092E+01
6.617473E-01	3.382527E-01	1.459661E-01	6.451439E-04	9.588646E-02	8.085777E-01	4.702647E-01	6.166406E-01
9.976291E-01	2.462885E+00	6.001282E+00	2.042103E+00	1.893203E+00	1.241000E+03	5.698219E+03	2.535974E+03
8.131848E+02	2.290240E+02	9.570835E-01	2.452360E-01	2.465620E-01	2.655284E+00	1.386735E+01	1.090635E+03
1.438455E+02	1.040362E+00	1.382649E+01	1.059399E+03	1.466031E+02	1.411182E-01	1.610109E-01	3.472744E+03
1.059909E-02	7.994588E-01	4.423720E-01	7.016101E-02	9.223104E+01	1.413391E+03	6.826819E-01	4.763609E-01
5.953431E-01	3.274119E+01	3.422671E+01	1.049225E+02	1.475358E+01	7.857678E+02	8.430629E+00	8.005213E+02

Useful links

SLURM Guide:	https://slurm.schedmd.com/quickstart.html
Modules Guide:	http://modules.sourceforge.net/
Run jobs interactively:	www.ift.uam-csic.es/hydra/quickstart_uHydra_interactive.pdf
Run jobs in paralell:	www.ift.uam-csic.es/hydra/quickstart_uHydra_batch.pdf
CosmoCoffee wiki:	http://cosmocoffee.info/
CosmoMC Readme:	http://cosmologist.info/cosmomc/readme.html
Planck Readme:	http://cosmologist.info/cosmomc/readme_planck.html
Python Readme:	<u>http://cosmologist.info/cosmomc/readme_python.html</u>
GetDist GUI Readme :	http://cosmologist.info/cosmomc/readme_gui.html