CLASS, hi_class and Monte Python basics
[F'T School on Cosmology Tools

Miguel Zumalacarregui'-?

I'Nordic Institute for Theoretical Physics
2Berkeley Center for Cosmological Physics

March 10, 2017

Abstract

The present document summarizes the basics for the installation and execution of the CLASS,
hi_class and Monte Python codes. It is not meant as a comprehensive guide, but rather a basic guide
to get the codes up and running and a complement to the school exercises. Resources for further
learning, including the official websites, documentation and links to courses are also provided.

Contents
[I_Resources
2 Downloadl

[3__Using CLASS & hi_class|

3.1 ompile CLASS|
B.2 Input parameters|

Using Montepython|

4.1 Configuration file (.conf)|
4.2 Parameter file (.param)|
4.3 Runchain(s)| o
4.4 Analyze chains|

W W w W

[S1 TS BINGETNGTIN

1 Resources

Websites:

e CLASS: https://class-code.net
https://github.com/lesgourg/class_public

e hi_class: |https://hiclass-code.net
https://github.com/miguelzuma/hi_class_public

e Monte Python: |http://baudren.github.io/montepython.html
https://github.com/baudren/montepython_public

Documentation

e The codes themselves: nearly as many comment as code lines.

e CLASS: http: //lesgourg.github.io/class_public/class_public-2.5.0/doc/manual/html/index.html
e Montepython: |http://monte-python.readthedocs.io/en/latest/

Courses:

e CLASS & MP course by Audren, Lesgourgues and Tram (~ 13h)
https://lesgourg.github.io/class-tour-Tokyo.html

e CLASS lecture by Julien Lesgourgues (~ 4h)
https://lesgourg.github.io/class-tour/Narbonne.pdf

e Montepython’s brief presentation by S. Clesse (< 1h)
https://lesgourg.github.io/class-tour/16.06.02_Lisbon_intro.pdf

e CLASS video tutorial (~ 25")
https://www.youtube.com/watch?v=R22XhKUwzX4
(beta version, suggestions welcome!)

Troubleshooting: forums to 1) find answers and 2) ask questions (in that order)
e CLASS: |https://github.com/lesgourg/class_public/issues

e hi_class: |https://github.com/miguelzuma/hi_class_public/issues
https://groups.google.com/d/forum/hi_class

e Montepython: https://github.com/baudren/montepython_public/issues

Few git resources (version control):
e git online book: https://git-scm.com/book/en/Getting-Started-Git-Basics
e git - the simple guide: rogerdudler.github.io/git-guide/

e Interactive git in 15": https://try.github.io/

2 Download

In the terminal type

git clone https://github.com/lesgourg/class_public.git
git clone https://github.com/miguelzuma/hi_class_public.git
git clone https://github.com/baudren/montepython_public.git

This requires git but gives you access to all the previous versions (you should try git, your life won’t be
the same). If you don’t have git click ’Clone or download’, 'Download ZIP’ in the above address (and
seriously, you should try git).

https://class-code.net
https://github.com/lesgourg/class_public
https://hiclass-code.net
https://github.com/miguelzuma/hi_class_public
http://baudren.github.io/montepython.html
https://github.com/baudren/montepython_public
http://lesgourg.github.io/class_public/class_public-2.5.0/doc/manual/html/index.html
http://monte-python.readthedocs.io/en/latest/
https://lesgourg.github.io/class-tour-Tokyo.html
https://lesgourg.github.io/class-tour/Narbonne.pdf
https://lesgourg.github.io/class-tour/16.06.02_Lisbon_intro.pdf
https://www.youtube.com/watch?v=R22XhKUwzX4
https://github.com/lesgourg/class_public/issues
https://github.com/miguelzuma/hi_class_public/issues
https://groups.google.com/d/forum/hi_class
https://github.com/baudren/montepython_public/issues
https://git-scm.com/book/en/Getting-Started-Git-Basics
rogerdudler.github.io/git-guide/
https://try.github.io/

3 Using CLASS & hi _class
3.1 Compile CLASS

In a terminal go to the class_public or hi_class_public directory and enter
make

to compile the executable and classy, the python wrapper (this should install the python wrapper locally).
Enter make class to build only the executable. Remember to enter make clean before to recompile
the python wrapper or if you have modified a header file (extension .h). For details on classy see
https://github.com/lesgourg/class_public/wiki/Python-wrapper.

3.2 Input parameters

The code can be run on the terminal or through classy, the Python wrapper. The following parameters
give a Planck ACDM model

Terminal: write your_parameter_file.ini Python: write a dictionary

h = 0.6774 params = {

omega_b = 0.02230 "h": 0.6774,

Omega_cdm = 0.2603 "omega_b": 0.02230,

Omega_fld = 0 "Omega_cdm": 0.2603,

Omega_smg = O #GR in hi_class "Omega_£1d" : O,
background_verbose = 1 #info "Omega_smg" : O, #GR in hi_class
output = tCl,mPk #what to compute "background_verbose" : 1, #info
write background =y "output" : "tCl,mPk" #observables
root = output/your_model_ #future files }

e For modified gravity in hi_class you need to set Omega_Lambda = 0 (no CC) and Omega_smg = -1
(determine DE density automatically) and specify a gravity_model_smg, expansion_model_smg.

e The parameter file can be as short as you need, with unspecified parameters set to default values.
e Only lines with an equal sign (=) will be interpreted. Hashtag (#) comments a line.

e Unused or misspelled parameters will be written to an unused_parameters file (using the option
write parameters = y). Setting write warnings = y makes CLASS complain in those cases.

e The root directory has to exist.

A\ All the model and output parameters are described in explanatory.ini (this is the first place to
look for information). The hi_class parameters are described in hi_class.ini. Keep those files
for reference.

3.3 Run CLASS
To run the code on terminal or classy:

Terminal: Python:

From the to the base directory run from classy import Class

cosmos = Class() #create universe
cosmos.set (params) #feed params to cosmos
./class your_parameter_file.ini cosmos. compute () #duh. ..
#play with the output
cosmo.struct_cleanup() #free memory

(plus an optional .pre precision file) cosmo. empty () #start over

Your output will be ready in the root address.

See Exercise 1 in the CLASS sheet to familiarize yourself with the output options available to CLASS.

https://github.com/lesgourg/class_public/wiki/Python-wrapper

4 Using Montepython

Python is an interpreted language: you don’t need to compile MP, but you need to configure it.

Montepython has two execution modes (see below). For help type in the MP directory

python montepython/MontePython.py run --help
python montepython/MontePython.py info --help

A very useful example of a complete work session with Montepython is explained in

http://monte-python.readthedocs.io/en/latest/example.html

4.1 Configuration file (.conf)

You need a .conf file to inform MP of the CLASS/hi_class (mandatory) and Planck likelihood (op-
tional). Read the default.conf.template file for details and instructions. Unless other file is specified
MP will read from default.conf (but you need to create this first). This is important if you use different
CLASS versions (eg. class_public and hi_class_public).

4.2 Parameter file (.param)

Montepython runs with a .param file that specifies the model to be analyzed, data to use and other
specifications. This can be kept rather minimal (with unspecified parameters set to defaults).

#what expermiennts to include in tha analysis
data.experiments=[’bao_boss’,’bao_boss_aniso’]

parameters: data.parameters[class name] = [mean, min, max, l-sigma, scale, role]
#cosmological paramters to vary (role = ’cosmo’ and 1-sigma not 0)
data.parameters[’omega_cdm’] = [0.1120, None,None, 0.0016, 1, ’cosmo’]
data.parameters[’h’] = [0.703, None,None, 0.0065, 1, ’cosmo’]

#fixed cosmologial arguments (also if you fix sigma=0)
data.cosmo_arguments[’omega_b’] = 0.0222

#Nuisance parameters if your likelihood needs them

#derived parameters (role = ’derived’)

data.parameters[’z_reio’] = [0, None, None, 0,1, ’derived’]
data.parameters[’Omega_Lambda’] = [0, None, None, 0,1, ’derived’]
#Montepython execution options

data.N=10

data.write_step=5

e Please read base.param for further details. Other .param files can be useful too.

Do not comment in the same line: data.parameters[’...’]= [...] #mycomment here will not be read!

e Fach experiment is a directory in 1s montepython/likelihoods. More details in each subfolder.

A\ Parameter vectors: For parameters that enter class as a vector (like m_ncdm if N_cdm > 1 or
parameters_smg,expansion_smg in hi_class) you need the following format:

[0.05, O, None, 0., 1, ’cosmo’]
[0.01 , O, None, 0., 1, ’cosmo’]

data.parameters[’m_ncdm__1’]
data.parameters[’m_ncdm__2’]

with two underscores __ after the parameter name to specify the position in the entry (if you

specify data.cosmo_arguments[’N_ncdm’] = 2, if N_ncdm = 1 you don’t need this syntax). The above
corresponds to m_ncdm = 0.05,0.01 in an .ini file.

You need to specify all vector parameters, even when some are not varied.

http://monte-python.readthedocs.io/en/latest/example.html

4.3 Run chain(s)

To compute a chain for a given model, type from the terminal

python montepython/MontePython.py run -p model.param -o output_directory

This will start a new chain in the designated output_directory as specified in model.param.

e Each output directory is for a choice of model/parameters and experiments. The first run in
output_directory will create a log.param with all the specifications for the run. If this file exists
the code will ignore model.param and will instead pick the settings from the log.param. This
ensures that all the chains in a given directory are consistent.

e This is a very minimal run, and will only produce 10 points (controlled by -N, good for debug).
Add at least -N 10000 (or more) if you run a chain for real. Add --update 300 to control how
often you update the covariance matrix.

See all the options and their default values running MP with run --help.

e Note that MP’s parallelization is optional: you can run several instances of the code (one per core)
by repeating the instructions above. Pro tip: run a short sequence with -N 10 to test the code
and create the log.param , then type

for n $(seq 1 4); do python montepython/Montepython run \
-0 output_directory -N 100000 [other_options]; done

(this will Tun 4 chains in output_directory with 10% points). Optional parallelization 1) allows
you to run in any old computer and 2) simplifies your life when you “meet” a new cluster (and
you may “meet” many in your career!).

e Each chain file name reads
yyyy-mm-dd_N__id.txt

where yyyy-mm-dd is the date in which the chain was launched, N is the desired number of points
and id is the identifier (when the date and N are the same).

e The run will also create some additional files such as a covariance matrix. Additional files are
created during the chain analysis, see below.

e To increase the convergence it is recommended to run with a covariance matrix (option -¢ your_file.covmat),
especially for models with many parameters.
4.4 Analyze chains
Once you have several decent-sized chains in a file you can analyze them:
python montepython/MontePython.py info output_directory/

The above command will analyze all the chains in output_directory, computing the convergence of
the chains over different paramters and producing statistical information on the posterior, including
confidence intervals and plots.

e Several files named output_directory.* will be produced:

- .bestfit for the best fit model, .covmat for a covariance matrix. These can be passed for
future runs.

.log for the information on the chains.

- h_info, v_info with horizontal/vertical tables of the parameter constraints, .tex for table
in latex format

*

a directory plot/ with the 1 and 2D marginalized contours.

e This is a very minimal analysis. You can analyze a subset of the chains, produce more/less output
and configure it.

See all the options and their default values running MP with info --help.

e You can analyze several folders at a time
python montepython/MontePython.py info experiment_1/ experiment_2/

This produces combined plots, which is useful to compare models/experiments.

e A very convenient flag is ——extra your_file.plot to pack the options in a file:

#you can operate on parameters

info.redefine = {’parameters_smg__5’: ’100*parameters_smg__5-100"}

#or redefine the names for nicer printing

info.to_change={’parameters_smg__1’:’c_K’,’parameters_smg__2’:’c_B’,
’parameters_smg__5’:’100(M"2-1)’}

#decide to plot just some of teh parameters

info.to_plot=[’c_K’,’c_B’,’100(M"2-1)’]

#configure the plot options

info.decimal = 2

info.bins = 20

info.gaussian_smoothing = 2

#and many other optioms...

	Resources
	Download
	Using CLASS & hi_class
	Compile CLASS
	Input parameters
	Run CLASS

	Using Montepython
	Configuration file (.conf)
	Parameter file (.param)
	Run chain(s)
	Analyze chains

