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The exercises have been ranked by level of difficulty (boring = v, interesting = v v, challenging = v v v)
and whether they require hi class (h c).

All exercises can be completed calling CLASS/hi class from either the terminal or using Classy
(CLASS’ python wrapper). Running the code on the terminal is more direct, and should require no
additional packages. However, running on python has many advantages, particularly for interactivity
and visualization with matplotlib and manipulation of the output. For a premium experience try running
Classy on a jupyter notebook!1

Exercise 1: Producing output for a single model ( v):

This exercise gives an overview of the different outputs that you can expect from CLASS, and is meant
mainly for reference: if you get bored please move on to something more fun!

a) Run a default model with (at least) the following parameters

#If no cosmo parameters specified CLASS will take its defaults

#Get basically all the ouput.

lensing = yes

non linear = halofit

output = tCl,pCl,lCl,mPk,dTk,vTk # no nCl, can be very slow!

write background = yes

write thermodynamics = yes

write primordial = y

k_output_values = 0.0001, 0.01, 0.1

z_pk = 0., 1., 10

#Information on the execution: higher values -> more info!

input_verbose = 1

background_verbose = 1

thermodynamics_verbose = 1

perturbations_verbose = 1

transfer_verbose = 1

primordial_verbose = 1

spectra_verbose = 1

nonlinear_verbose = 1

lensing_verbose = 1

output_verbose = 1

write warnings = y #let the code tell you if parameters don’t make sense

write parameters = yup #for future reference

#root = output/default_ #if you want a certain name for the files

alternative facts = fake #non-existent input -> produce a warning

These parameters ensure that you produce a lot of output to play with. In the output/ directory
you should have a bunch of files named as your .ini file with different subscripts.
BRemember to read explanatory.ini for details on these and other options.

1See https://ipython.org/notebook.html
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b) Plot some background quantities. Try less output/your_model_background.dat on the terminal
(or open the file) to read the output and column numbers in the file’s header. Some suggestions:

− Plot the evolution of the energy density of the different components (rho_g, rho_b, rho_ur,
rho_cdm) relative to the redshift.

− Plot the fractional densities of each component Ωi = ρi/rho_crit. In Python you can operate
directly on the output arrays:

On Python with CLASS

import numpy as np

import matplotlib.pyplot as plt

b = np.loadtxt(’.._background.dat’,

unpack=True)

plt.plot(b[0],b[8]/[13]) #Omega_g

On Python with classy

import matplotlib.pyplot as plt

#after running ’cosmos’

b = cosmos.get_background()

plt.plot(b[’z’],

b[’(.)rho_g’]/cl2[’(.)rho_crit’])

You can also check that the densities add to H2 (in CLASS the units are so that the Friedmann
equation reads H2 =

∑
i ρi), or alternative that the fractional densities add up

∑
i Ωi = 1.

− Plot the luminosity and angular diameter distances.

− Take a look at the thermal history output: less output/your_model_thermodynamics.dat

c) Plot the raw (less output/your_model_cl.dat) and lensed (less output/your_model_cl_lensed.dat)
CMB spectra. For instance:

− Plot the TT, TE and EE unlensed power spectra.

− Compare the lensed and unlensed TT power spectrum.

− Plot the lensing potential (column phiphi).

d) Plot the linear power spectrum (less output/your_model_z*_pk.dat)

− Compare the power spectrum at different redshifts z1, z2, z3

− Compare the linear and non-linear spectra (less output/your_model_z*_pk_nl.dat)

e) Study the evolution of perturbations:

− The transfer functions for density and velocity (less output/your_model_z*_tk.dat) give a
snapshot of the perturbations (at the same redshifts at which you request the power spectrum).
Plot the transfer function for baryons at different redshfits.

− You can also look at the time evolution of the perturbations for different scales
(less output/your_model_perturbations_k*_s.dat). Plot the evolution of baryons for
different scales. What regimes can you distinguish?

Exercise 2: Simple moidifications of Gravity (h c, v):

hi class puts gravity is in your hands! Here you will explore a simple model in which the Horn-
deski/EFT functions are proportional to the Dark Energy fractional density: αi(z) = ciΩsmg(z), for
cK = 1, variable cB , cM = cT = 0 and the same expansion as a ΛCDM universe.

The relevant parameters are

Omega_Lambda = 0 # no cosmological constant

Omega_fld = 0 # no perfect fluid DE

Omega_smg = -1 # use closure relation to find the density of modified gravity

gravity_model = propto_omega

# c_K, c_B, c_M, c_T, M*_ini

parameters_smg = 1., 0.5, 0., 0., 1. #vector with the model parameters

expansion_model = lcdm #model for rho_smg(z)

expansion_smg = 0.5 #vector with expansion parameters (one varied to adjust Omega_smg)
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Try values of the braiding cB = 0, 0.5, 1, 1.5. The case cB = 0 is practically indistinguishable from Λ-GR,
you can take it as your fiducial model.

a) Reproduce the plots of Figure 2 of the hi_class paper (https://arxiv.org/abs/1605.06102).
Check that the oscillations are due to CMB lensing.

b) Plot the time evolution of αB (column braiding_smg in the _background.dat file). You can check
that αB/Ωsmg is a constant.

c) The effect of modified gravity on low multipoles is due to the Integrated Sachs Wolfe Effect (ISW).
With CLASS you can separate the different components that contribute to the CMB to figure
out which where the differences are coming from. For the cB = 0, 1.5 cases compare the re-
sults of setting temperature contributions = tsw, temperature contributions = lisw and
temperature contributions = tsw, lisw. These flags represent the temperature Sachs-Wolfe
effect and the late ISW effect.

Exercise 3: Massive neutrinos ( v v)

In this exercise we will compare the predictions of different models and investigate the imprint of neutrino
masses on cosmological observables

a) Obtain the output for the background, CMB temperature and matter power spectra for a flat
model with one massive neutrino for different values of the mass. Try 0 eV, 0.06, 0.1, and 1 eV,
roughly corresponding to no mass, the minimal sum of neutrino masses for the normal and inverted
hierarchies, and a large value excluded by current data. The relevant parameters are:

N_ur = 2.0328 #get the right number of relativistic species in the early universe

N_ncdm = 1 #number of massive neutrios (= non-cold dark matter in CLASS lingo)

m_ncdm = 0.06 #mass of the massive neutrino in eV

b) Plot the evolution of the energy density of the massive neutrino component rho_ncdm[0] (use log
scale in both axes). When does it become non-relativistic?

c) Plot the CMB and matter power spectra, and the relative deviations with respect to the massless
case. The CMB output should have the same ` values, but you might need to use interpolation for
the matter power spectra (see Appendix A or an interpolation routine)

d) The case of a single massive neutrino is not realistic. We know from neutrino oscillation experiments
that at least two neutrinos have to be massive (cf. page 50 of the PDG report http://pdg.lbl.

gov/2014/reviews/rpp2014-rev-neutrino-mixing.pdf).
Repeat the previous exercise for the realistic cases in which the total mass is distributed in a
manner compatible with neutrino data:

• Normal Hierarchy: m1 � m2 < m3 with m2 ≈ 0.0087eV, m3 ≈ 0.050eV

• Inverted Hierarchy: m3 � m1 < m2 with m1 ≈ m2 ≈ 0.049eV

Note that the subindices label neutrino generations. They are important for particle physics, but
irrelevant for CLASS.

e) Compare the output of each simple model (one massive neutrino, part 1) with the realistic one (2-3
massive neutrinos, part 3). Plot the relative deviations. Can we detect this differences?

f) Take a look at all the ncdm options in explanatory.ini. There are lots of things you can do to
massive neutrinos, warm DM, etc...

Help: a neat iPython notebook for neutrino plotting https://github.com/ThomasTram/iCLASS/blob/

master/neutrinohierarchy.ipynb
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Exercise 4: Adding a new model in hi class (h c, v v v)

hi class has been designed so that adding a new model is nearly trivial. Remember you can search for
all instances of a model to see what you have to change (just type grep propto_omega */*.* on the
terminal). There are just a handful of those.2

As an example you will consider a modification of the model in the previous exercise in which the
α-functions are proportional to the n-th power of the Ωsmg:

αi(z) = ciΩ
n
smg(z) . (1)

The effective Planck mass M∗ is defined by αM = d log(M2
∗ )/d log(a) and obtained integrating αM

numerically from an initial value M2
∗ (τini). The parameters of this model are(
cK , cB , cM , cT ,M

2
∗ (τini), n

)
, (2)

and are specified in that order. We can call the model propto_omega_n internally in the code.

a) Declare the model as a case of gravity_model at the begining of include/background.h. Make
sure to run make clean before compiling again.

b) In source/input.c copy-paste the block for propto_omega and adapt (-> in comments)

if (strcmp(string1,"propto_omega") == 0) { /* model name in .ini file -> propto_omega_n */

pba->gravity_model_smg = propto_omega; /* model name in code -> propto_omega_n */

pba->field_evolution_smg = _FALSE_; //for non-parameterized models

pba->M_pl_evolution_smg = _TRUE_; //M_pl from alpha_M or vice versa?

flag2=_TRUE_; //model is read

pba->parameters_2_size_smg = 5; /* number of parameters -> 6 */

class_read_list_of_doubles("parameters_smg",pba->parameters_2_smg,pba->parameters_2_size_smg);

// You can add tests for your parameters here [search for class_test() below]

}

The string "propto_omega"in the first line is the model name in the .ini file (you can give multiple
options). propto_omegain pba->gravity_model_smg is the internal label.
Bonus: add a class_test to make the code stop if n < 0 (avoid when α’s diverge at early times).

c) In source/background.c→background_initial_conditions(... copy and paste the block for
propto_omega and change the condition in the if (... statement so that it refers to propto_omega_n.
If you omit this step then M2

∗ (τini) = 1 and the 4th parameter will be ignored.

d) In source/background.c→background_gravity_functions(... copy and paste the block for
propto_omega and modify it. You need to 1) modify the condition in the if (... statement so that
it refers to propto_omega_n 2) add the new parameter double n = pba->parameters_2_smg[5];

(recall that the fourth entry is for the initial condition of M2
∗ ) and 3) modify the expression for the

αs by replacing Omega_smg with pow(Omega_smg,n) to reflect the changes on your model:

if (pba->gravity_model_smg == propto_omega_n) { //make sure it refers to the new model

...

double n = pba->parameters_2_smg[5]; // recall 4th param is IC for M_*^2

pvecback[pba->index_bg_kineticity_smg] = c_k*pow(Omega_smg,n); // form of the alpha’s

...

}

e) In source/background.c→background_gravity_parameters(... copy and paste the block for
propto_omega and modify it. This prints the information on the model. It won’t affect the results,
but it’s nice to have.

Now you can compile and check if the code works (it should!). Some things you can do now include:

2You can also find all the hi class-specific modifications by searching for smg (acronym for scalar modified gravity).
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− Plot the evolution of the α-functions for different values of n.

− Check that you get the same results (CMB, matter spectra) as in propto_omega whenever n = 1.

− For fun: see that setting n & 0 produces very large departures relative to ΛGR, even for small ci’s
(this is because modified gravity acts for a longer fraction of the cosmic history).

− Use MontePython (see corresponding notes) to run an MCMC and obtain constraints on n (together
with the other parameters). Publish a paper with the results. You are welcome :)

A Some useful routines

Interpolation

In Python

#routine to compare relative spectra

#credits Carlos Garcia

import numpy as np

from scipy import interpolate

def rel_diff(x1, y1, x2, y2):

""" Relative difference between data vectors

Args:

x1,y1,x2,y2 (np array): data to interpolate.

Returns:

[x,y]: arrays with x values and relative difference.

"""

data2 = interpolate.interp1d(x2,y2)

xmin = max(min(x1),min(x2))

xmax = min(max(x1),max(x2))

X = x1[x1>=xmin]

X = x1[x1<=xmax]

# Use the y-values of the X-array

b1 = np.where(x1 == X[0])[0][0] #Lowest index

b2 = np.where(x1 == X[-1])[0][0] #Highest index

Y = y[b1:b2 + 1]

diff = data2(X)/Y-1.

return [X, diff]
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