The status of standard cosmology and the future with Euclid and SKA

Martin Kunz, University of Geneva

outline

- Super-brief intro
- Planck + galaxy survey / WL data
 - does LCDM fit the data?
 - do the data sets agree with each other? (in LCDM)
 - what are the values of the cosmological parameters?
- Brief overview of upcoming cosmological surveys
- Euclid
- SKA
- Conclusions

cosmological overview

cosmic microwave background (CMB)

Euclid & SKA

The Nobel Prize 2011

The Universe is now officially accelerating, thanks to the prize given to Saul Perlmutter, Brian P. Schmidt and Adam G. Riess, and we need to understand the reason!

What's the problem with Λ ?

Classical problems of the

Evolution of the Universe:

cosmological constant: log horadiation $(\sim 1/a^4)$ 1. Value: why so small? Natural? (but is 0 more natural?) matter 2. Coincidence: Why now? (~1/a³) cosmological constant (~constant) Are we sure that log a the data is right? imagination radiation Lambda matter dominated dominated dominated dominated

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

the Planck mission

the cosmic microwave background

the cosmic microwave background

angular fluctuation spectrum in CMB ca **1998**:

Planck vs LCDM

red curve:

best fit 6-parameter Λ CDM ('standard') model \rightarrow fits thousands of C_I / millions of pixels

Planck 2015 TT combined: ell range 30 – 2508 $X^2 = 2546.67$; N_{dof} = 2479 probability 16.8%

2015 polar power spectrum

- scattering of photons off electrons depends on polarisation
- polarisation decomposed into
 - E: gradient type
 - B: vector / rotation type

- for density / scalar perturbations alone, TT predicts TE and EE (and no B-type polarisation)
- CMB lensing, other constituents (e.g. grav. waves) and foregrounds create B-type polarisation

flat LCDM parameters

arXiv:1605.02985

Parameter	PlanckTT+lowP 68 % limits	PlanckTT+SIMlow 68 % limits	PlanckTTTEEE+lowP 68 % limits	PlanckTTTEEE+SIMlow 68 % limits		
$\Omega_{ m b}h^2$	0.02222 ± 0.00023	0.02214 ± 0.00022	0.02225 ± 0.00016	0.02218 ± 0.00015		
$\Omega_{ m c}h^2$	0.1197 ± 0.0022	0.1207 ± 0.0021	0.1198 ± 0.0015	0.1205 ± 0.0014		
100θ _{MC}	1.04085 ± 0.00047	1.04075 ± 0.00047	1.04077 ± 0.00032	$1.04069 \pm 0.00031 < 0.03\%$		
τ . WMAP9 reionisatio	on: 0.078 ± 0.019	0.0581 ± 0.0094	0.079 ± 0.017	0.0596 ± 0.0089		
$\ln(10^{10}A_{\rm s})$	3.089 ± 0.036	3.053 ± 0.019	3.094 ± 0.034	3.056 ± 0.018		
<i>n</i> _s	0.9655 ± 0.0062	0.9624 ± 0.0057	0.9645 ± 0.0049	$0.9619 \pm 0.0045 > 8\sigma$		
H_0	67.31 ± 0.96	66.88 ± 0.91	67.27 ± 0.66	66.93 ± 0.62		
$\Omega_{\rm m}$	0.315 ± 0.013	0.321 ± 0.013	0.3156 ± 0.0091	0.3202 ± 0.0087		
σ_8	0.829 ± 0.014	0.8167 ± 0.0095	0.831 ± 0.013	0.8174 ± 0.0081		
$\sigma_8\Omega_{ m m}^{0.5}$	0.466 ± 0.013	0.463 ± 0.013	0.4668 ± 0.0098	0.4625 ± 0.0091		
$\sigma_8\Omega_{ m m}^{0.25}$	0.621 ± 0.013	0.615 ± 0.012	0.623 ± 0.011	0.6148 ± 0.0086		
<i>Z</i> _{re}	$9.89^{1.8}_{-1.6}$	8.11 ± 0.93	$10.0^{1.7}_{-1.5}$	8.24 ± 0.88		
$10^9 A_{\rm s} e^{-2\tau} \ldots \ldots$	1.880 ± 0.014	1.885 ± 0.014	1.882 ± 0.012	1.886 ± 0.012		
Age/Gyr	13.813 ± 0.038	13.829 ± 0.036	13.813 ± 0.026	13.826 ± 0.025 25 Myr!		

percent-level constraints – but most of this is model dependent!

Planck-only fLCDM extensions

arXiv:1605.02985

- w is artificial parameter space issue, see later
- We can do much better by combining probes

basic cosmological results

extreme compression!

- science samples: 530'632'594'653 (991'929'524'565 for full mission), a few terabytes
- 2. maps: ca 50 mega-pixels, compression 10'000:1
- 3. power spectrum: ca 2500 values, compression 20'000:1
- 4. model: 6 parameters, compression 3000:1

total compression ca 10¹¹:1 !

(nearly 10⁷:1 from map)

why go beyond Λ ?

- because we can
- because we have to test the model (of course also isotropy/ homogeneity, Gaussianity, initial conditions, nature of DM, ... cf eg Euclid science case)
- and maybe because $n_s \neq 1$

• Scalar field inflaton:
$$1 + w = -\frac{2}{3}\frac{H}{H^2} = \frac{2}{3}\epsilon_H$$
 and r = T/S ~ 24 (1+w)

• Link to dw/da:
$$\frac{d\ln(1+w)}{dN} = 2(\eta_H - \epsilon_H)$$
 $2\eta_H = (n_s - 1) + 4\epsilon_H$

n_s ≠ 1 => ε ≠ 0 or η ≠ 0 => w ≠ -1 and/or w not constant => not a cosmological constant! (Ilic, MK, Liddle & Frieman, 2010)

(current limit: r < 0.1)

 \rightarrow inflation was not an (even effective) cosmological constant! \rightarrow inflation is one measurement ahead of dark energy research!

what is the "consensus" 2015?

	RD	PL	MC	BR	GS	LV	AH	Beyond LCDM
Dimensions	3+1	3+1	2 in UV	4	4	e^(4-x) x>=4	3+1	3+1
FRW	y	y	n	y	n	y	y	n
Inflation?	y or n	y	n	צ	maybe	ک	צ	y
Dark Matter	CDM	CDM+	none	CDM+	Strange	CDM- Like	IDM	SpLit
Gravity Theory	MG	GRish	Not GR	GR	nearly GR	GR++	GR++	SpLit
Acceleration: A/DE/MG/BR	MG	DE	MG	DE	Λ	Degener ate ∞⁄∧	Λ	MG
Anomalies =New Physics	n	y	y	n	y	not yet	n	Split

DE/MG constraints w/ current data

(mostly based on Planck 2015 paper XIV)

- **Planck CMB data** (temperature + polarization)
- 'background' (BSH): constrain H(z) ↔ w(z)
 - supernovae: JLA
 - Baryon acoustic oscillations (BAO): SDSS, BOSS LOWZ & CMASS, 6dFGS
 - H₀: (70.6 ± 3.3) km/s/Mpc [Efstathiou 2014]
- redshift space distortions (BAO/RSD)
 - sensitive to velocities from gravitational infall
 - acceleration of test-particles (galaxies) come from $grad\;\psi$
 - usually given as limit on $f\sigma_8$ (continuity eq.)
 - we use BOSS CMASS
- gravitational lensing (WL and CMB lensing)
 - deflection of light governed by $\phi + \psi$
 - galaxy weak lensing: CFHTLenS with 'ultraconservative cut'
 - CMB lensing: lensing of Planck CMB map
 - extracted from map trispectrum
 - power spectrum is also lensed!

standard rulers: BAO

- On sub-horizon scales, the baryon-photon fluid oscillates until t_{dec}
- After t_{dec}, the photons free-stream away, and the baryons fall into the potential wells of the cold dark matter
- But the CDM also falls a bit into the baryon potential wells
- This imprints the oscillations also into the matter power spectrum
- -> Baryonic Acoustic Oscillations feature -> standard ruler!

BAO distances

a standard ruler of ~150 comoving Mpc gives us an angular diameter distance (linked to same scale as CMB peak position!)

Planck 2015

BOSS

150

200

150 Mpc

100

50

60

Galaxy Correlations

redshift space distortions

We observe galaxies in redshift space, not real space

- large scales: coherent infall → squashing
- small scales random motion \rightarrow elongation (`finger of god')

redshift space distortions

particle conservation: velocities → growth
 → RSD measure combination fσ₈, f = dlnD/dlna

• particle acceleration ~ grad Ψ

gravitational lensing

seen as a future key probe, but difficult:

- non-linear scales
- baryons
- intrinsic alignments
- photo-z

mass deflects light this distorts galaxy shapes a tiny bit

(lensing potential $\sim \Phi + \Psi$)

CMB lensing

comparison with lensing data

0.80

0.75

0.27

0.30

 $\Omega_{\rm m}$

Planck TT.TE.EE+lowP

0.36

Planck TT, TE, EE+lowP+lensing

Planck TT, TE, EE+reion prior

0.33

- CMB lensing now quite mature
- relatively good agreement with primary CMB
- (still a slight `lensing excess' in power spectrum)

status of the Hubble constant H₀

status of the Hubble constant H₀

(Cardona et al, arXiv:1611.06088)

dark energy

- Planck and WL prefer high H₀ and the 'phantom domain'
- no deviation from LCDM when adding BAO+JLA+H0
- const w: w=-1.02±0.04 (TT,TE,EE+lowP+lensing+ext)

w(z) reconstruction

from ensemble of $w_0+(1-a)w_a$ curves (we also tried cubic in a) PCA (we also tried more bins)

no deviation from w=-1

deviations from GR?

parameterisation of late-time perturbations:

 $-k^{2}\Psi \equiv 4\pi G a^{2}\mu(a, \mathbf{k})\rho\Delta$ $\eta(a, \mathbf{k}) \equiv \Phi/\Psi$

functions ~ $\Omega_{DE}(a)$ ACDM background

- no scale dependence detected
- deviation driven by CMB and WL

 $\Delta \chi^2 = -10.8$ (Planck TT+lowP+WL+BAO/RSD)

*L*0

MG impact on observables

planck

intermediate summary

- We seem to live in the maximally boring, minimalinformation-content universe...
- 95% is composed of apparently two very simple components – while the other 5% are composed of an amazing collection of SM particles and fields?!
- Maybe the reason for acceleration is dynamical, but it may be too close to Λ to ever know?
- There are some hints of anomalies, but nothing very convincing yet – need more data.
- Of course we have to test all aspects of the model ... so what will the future bring?

cosmological surveys

future surveys (near-term)

- DES
 - wide-field camera on 4m telescope, 2013-2018
 - 5000 deg2, optical (griz), goal 3x10⁸ galaxies
 - probes: LSS/BAO, WL, SNe, clusters
 - photo-z's

eBOSS/SDSS-IV

- Sloan telescope (2.5m)
- 1500 deg2 (10⁶ ELG) + 7500 deg2 60k quasars, LRG's
- 2014 2020
- other LSS: Pan-STARRS (2x 1.8m, 5 filters, Hawaii), VST-VISTA (ESO Paranal, VST 2.6m, VISTA 4.1m, surveys KiDS, VHS), SkyMapper (1.35m, southern sky, 6 filters), PAU/JPAS (Spain, many filters, 'near-spec' redshifts)
- CMB: several suborbital experiments with 1000's of detectors, for polarisation (E & B), lensing, CIB [latest ACTpol data in good agreement with Planck, arXiv:1610.02360]

another look at lensing

ACTpol, arXiv:1611.09753

ACTpol and Planck are very consistent in this parameter plane

future surveys (medium term)

- Multi-object spectrographs on 4m class telescopes
 - 5000 to 14000 deg2, ca 4x10⁷ spec gal, 5x10⁵ quasars, cosmic variance limited to z~1.4
 - DESI (BigBOSS+DESpec), 2019 start
 - WEAVE (2018 start), 4MOST (2020 start?)
- **MOS** on 10 class telescopes
 - HETDEX (Hobby Eberle) 420 deg2, 800'000 gal 1.9<z<3.5
 - PFS (Subaru) 1400 deg2 ELGs, 3x10⁶ gals, 0.6<z<2.4
- imaging surveys
 - LSST: 8.4m telescope, rolling survey, WL & photo-z, 2021 2030
- space missions
 - Euclid (30M spec gal, 10⁹ WL gal, 0.9<z<1.8), launch 2020
 - SPHEREx: 20cm telescope, launch 2020+ (?)
 - WFIRST: launch 202X(?)
 - CMB: (LiteBIRD, PIXIE, CORE) / GW: LISA / ...
- radio
 - CHIME/HIRAX: intensity mapping, 2016+
 - SKA1 / SKA2: lots, 2020+
- and many more that I forgot... (adv LIGO/VIRGO, icecube, etc, ...)

Galaxy redshift survey "history"

BAO's from future surveys

using the code of Seo & Eisenstein 2007, arXiv:0701079

weak lensing surveys (wide-field cosmic shear)

CFHTLS: www.cfhtlens.org, KiDS: kids.strw.leidenuniv.nl, DES: www.darkenergysurvey.org

more details on:

near-infrared and optical space telescope

- 15'000 square degrees
- 1 million+ images
- data rate ~1Tb/day
 - \sim 100 Pb data (inc grnd)
 - 12 billion sources
- 1.5 billion shapes
- 30 million redshifts

Euclid Collaboration/Consortium

Euclid

Euclid Survey Machine: 15,000 deg² + <u>40 deg² deep</u>

primary probe 1: Euclid Weak Lensing Survey

Cosmic shear over 0<z<2

$$\kappa_{eff} = \frac{3H_0^2\Omega_0}{2c^2} \int_0^\omega \frac{f_K\left(\omega - \omega'\right)f_K\left(\omega'\right)}{f_K\left(\omega\right)} \frac{\delta\left[f_K\left(\omega'\right)\boldsymbol{\theta};\omega'\right]}{a\left(\omega'\right)} \mathrm{d}\omega'$$

• Probes distribution of matter (Dark +Luminous): expansion history, lensing potential $\phi+\psi$.

→ Shapes+distance of galaxies: shear amplitude, and bin the Universe into slices.

 \rightarrow "Photometric redshifts" sufficient for distances: optical+NIR data.

Euclid:

WL with 1.5 billion galaxies over 15,000 deg²

VIS performance:imaging

A 4kx4k view of the Euclid sky

VIS image: cuts made to highlight artefacts

goal: measure shapes to high accuracy GREATxx challenges

Courtesy Mark Cropper, Sami M. Niemi

photometric redshifts

EUCLID Consortium

- For majority of objects we only have `colours', no spectra
- But we need to have `rough' redshift → photo-z
- Nice statistical challenge

some approaches:

- template fitting
- neural networks / other ML
- linear and other regression
- Bayesian parameterized models
- meta methods (combine several)

primary probe 2: Galaxy Clustering: BAO + RSD

3-D position measurements of galaxies over 0.7<z<1.8

• Probes expansion rate of the Universe (BAO) and clustering history of galaxies induced by gravity (RSD); ψ , H(z).

• Need high precision 3-D distribution of galaxies with spectroscopic redshifts.

Euclid:

30 million spectroscopic redshifts with 0.001 (1+z) accuracy over 15,000 deg²

NISP-spectroscopy (2015 simulations)

goal: galaxy spectra and redshifts

From P. Franzetti, B. Garilli, A. Ealet, N. Fourmanoit & J. zoubian

Simulation of M51 with VIS

(Courtesy J. Brinchmann and S. Warren)

Messier 51 galaxy at $z\sim0.1$ and 0.7: Euclid will get the resolution of Sloan Digital Sky Survey but at z=1 instead of z=0.05. Euclid will be 3 magnitudes deeper \rightarrow Euclid Legacy = Super-Sloan Survey

BAO : SDSS vs Euclid

Euclid Post-Planck Forecast for the Primary Program

- From Euclid data alone, get FoM=1/($\Delta w_a x \Delta w_p$) > 400 \rightarrow ~1% precision on w's.
- Notice neutrino constraints -> minimal mass possible ~ 0.05 eV!

Euclid VIS+NISP Legacy

Euclid

SLACS (~2010 - HST)

COC cons	1 0 .ortium								
0			1		27	•			
SDSS J1420+6019	SDSS J2321-0939	SDSS J1106+5228	SDSS J1029+0420	SDSS J1143-0144	SDSS J0955+0101	SDSS J0841+3824	SDSS J0044+0113	SDSS J1432+6317	SDSS J1451-0239
	ø	-		١	1	۲	0	1	10
SDSS J0959+0410	SDSS J1032+5322	SDSS J1443+0304	SDSS J1218+0830	SDSS J2238-0754	SDSS J1538+5817	SDSS J1134+6027	SDSS J2303+1422	SDSS J1103+5322	SDSS J1531-0105
1	0	0		٩	67	1	** ;		.).
SDSS J0912+0029	SDSS J1204+0358	SDSS J1153+4612	SDSS J2341+0000	SDSS J1403+0006	SDSS J0936+0913	SDSS J1023+4230	SDSS J0037-0942	SDSS J1402+6321	SDSS J0728+3835
٢	Ć,	۲	٢	1	0	١	١		1
SDSS J1627-0053	SDSS J1205+4910	SDSS J1142+1001	SDSS J0946+1006	SDSS J1251-0208	SDSS J0029-0055	SDSS J1636+4707	SDSS J2300+0022	SDSS J1250+0523	SDSS J0959+4416
		1		1	\bigcirc	0	6		
SDSS J0956+5100	SDSS J0822+2652	SDSS J1621+3931	SDSS J1630+4520	SDSS J1112+0826	SDSS J0252+0039	SDSS J1020+1122	SDSS J1430+4105	SDSS J1436-0000	SDSS J0109+1500
	6	۲	0		5	()	١		
SDSS J1416+5136	SDSS J1100+5329	SDSS J0737+3216	SDSS J0216-0813	SDSS 00935-0003	SDSS J0330-0020	SDSS J1525+3327	SDSS J0903+4116	SDSS J0008-0004	SDSS J0157-0056

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Image credit: A. Bolton, for the SLACS team and NASA/ESA

Euclid data release

Square Kilometre Array

SKA is a huge radio telescope, composed of many small telescopes with interferometry

- ~200 dishes in South Africa
- ~130'000 antennae in Australia

Phase 1 to start ~ 2023, several precursors already/soon in operation

Computing power and data management will be a major challenge

SKA Phase 1 (SKA1) Cost: €650M, construction start 2017

Southern Africa

SKA1_MID 254 Dishes including: 64 x MeerKAT dishes 190 x SKA dishes

Australia

SKA1_LOW Low Frequency Aperture Array Stations

Exploring the Universe with the world's largest radio telescope

SKA cosmological surveys

• HI galaxy redshift survey

- `21cm' radiation from neutral hydrogen spin flip
- individual galaxies detected
- precise redshift, radio analogue of optical spectroscopic survey
- no foregrounds, but needs very high sensitivity

• HI intensity mapping survey (IM)

- individual galaxies not detected, only integrated emission
- good for large-scale structure mapping
- a bit like CMB but with multiple redshifts, can also extract lensing information (similar to CMB)
- many narrow redshift bins possible
- foreground a big problem, not yet fully proven technique

Radio continuum survey

- total radio emission from galaxies
- many galaxies at high redshift, but no redshifts
- can do weak lensing, needs HI redshift information

SKA HI galaxy redshift surveys

- SKA1: 10 million galaxies, 5000 deg2, z<0.6
- SKA2: 1 billion galaxies, 30000 deg2, z<2
- SKA1 not a game changer, but complementary to optical surveys
- SKA2 will be a game changer

SKA1 intensity mapping

testing the nature of dark energy

dark energy pressure

testing isotropy on large scales

Does the matter dipole agree with the CMB dipole?

 current data (NVSS) shows a difference in velocity (? cf Planck kSZ)

SKA continuum surveys:

- SKA1 will locate dipole within 5°
- SKA2 will locate dipole within 1°
- IM survey can test Copernican Principle to a few per cent
- These are fundamental tests on which all the other cosmological analyses rely!
- Surveys probing ultra-large scales are also the best (the only?) hope for testing the Planck large scale anomalies.

SKA1 data product sizes

Summary

- Amazing progress in cosmology during last decades, precision cosmology has arrived
- The standard LCDM model can fit available data, but we don't understand 95% of the ingredients
- No really convincing `anomalies', some puzzles (H₀, isotropy of CMB clustering), systematics are becoming important
- Most surveys are not competing but rather are complementary with each other (eg Euclid & SKA)
- Work is ongoing to optimize methods (eg relativistic effects, multi tracer methods)
- Theory needs to prepare for the coming monster surveys (eg non-linear behaviour, baryons, stats, ...)!

