Flavour Physics

Antonio Pich IFIC, Univ. Valencia - CSIC

XXIII IFT Christmas Workshop Madrid, 13-15 December 2017

Flavour Structure of the Standard Model

$$\begin{pmatrix} u & v_e \\ d & e^- \end{pmatrix}, \begin{pmatrix} c & v_\mu \\ s & \mu^- \end{pmatrix}, \begin{pmatrix} t & v_\tau \\ b & \tau^- \end{pmatrix}$$

Pattern of masses

• Flavour Mixing, CP

Flavour Conserving Neutral Currents (GIM)

$$\mathcal{L}_{\rm NC}^{Z} = -\frac{e}{2\sin\theta_{W}\cos\theta_{W}} Z_{\mu} \sum_{\rm f} \overline{\rm f} \gamma^{\mu} \left[v_{\rm f} - a_{\rm f} \gamma_{\rm 5} \right] {\rm f}$$

 $Br(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \times 10^{-9}$, $Br(K_S \to \mu^+ \mu^-) < 1.0 \times 10^{-9}$ (95% CL) LHCb, 1706.00758

$$K_L \to \pi^{0^*} \to (\gamma \gamma)^* \to \mu^+ \mu^-$$
$$K_S \to (\pi^+ \pi^-)^* \to (\gamma \gamma)^* \to \mu^+ \mu^-$$

A. Pich – IFT 2017 3

Flavour Changing Charged Currents

$$\mathcal{L}_{\rm CC} = -\frac{g}{2\sqrt{2}} W^{\dagger}_{\mu} \left[\sum_{ij} \overline{u}_{i} \gamma^{\mu} (1-\gamma_{5}) \mathbf{V}_{ij} d_{j} + \sum_{l} \overline{v}_{l} \gamma^{\mu} (1-\gamma_{5}) l \right] + \text{h.c.}$$

 $\left(\overline{\nu}_{l_j} \equiv \overline{\nu}_i \ \mathbf{V}_{ij}^{(l)}\right)$

LEPTON UNIVERSALITY

CHARGED CURRENT UNIVERSALITY

	$ g_{\mu}/g_{e} $		
$B_{\tau \to \mu} / B_{\tau \to e}$	1.0018 ± 0.0014		
$B_{\pi \to \mu} / B_{\pi \to e}$	1.0021 ± 0.0016		$ g_{ au}/g_{\mu} $
$B_{K\to\mu}/B_{K\to e}$	0.9978 ± 0.0020	$B_{\tau \to e} \ \tau_{\mu} / \tau_{\tau}$	1.0011 ± 0.0015
$B_{K\to\pi\mu}/B_{K\to\pi e}$	1.0010 ± 0.0025	$\Gamma_{\tau \to \pi} / \Gamma_{\pi \to \mu}$	0.9962 ± 0.0027
$B_{W\to\mu}/B_{W\to e}$	0.996 ± 0.010	$\Gamma_{\tau \to K} / \Gamma_{K \to \mu}$	0.9858 ± 0.0070
		$B_{W\to\tau}/B_{W\to\mu}$	1.034 ± 0.013
	$ g_{\tau}/g_{e} $		
$B_{\tau \to \mu} \tau_{\mu} / \tau_{\tau}$	1.0030 ± 0.0015		
$B_{W\to\tau}/B_{W\to e}$	1.031 ± 0.013		A. Pich, arXiv:1310.7922

Flavour Changing Charged Currents

 $\Gamma(d_{i} \rightarrow u_{i} e^{-} \overline{v}_{e}) \propto |\mathbf{V}_{ij}|^{2}$

We measure decays of hadrons (no free quarks)

Important QCD Uncertainties

V_{ud}

 $f_{+}(0) = 1 + O[(m_u - m_d)^2]$

Superallowed Nuclear β Transitions (0⁺ \rightarrow 0⁺)

Inclusive B Decays

(OPE, HQET)

$$\Gamma(\bar{B} \to X_c \ell \bar{\nu}) = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} \left\{ f(\rho) + k(\rho) \frac{\mu_\pi^2}{2m_b^2} + g(\rho) \frac{\mu_G^2}{2m_b^2} \right\} \qquad \rho = m_c/m_b$$

Gambino- Healey-Turczyk, 1606.06174

Higher Power Corrections

$$|V_{cb}| = (42.00 \pm 0.63) \times 10^{-3}$$

 $\mathbf{B} \to \mathbf{D}^* \boldsymbol{\ell} \nu$

QCD Symmetries at $1/M_Q \rightarrow 0$ HQET

Caprini-Lellouch-Neubert parametrization

 $\eta_{\rm EW} \ G(1) \ | \mathbf{V_{cb}} | =$ $(41.57 \pm 1.00) \cdot 10^{-3}$ $\eta_{\rm EW} \ F(1) \ | \mathbf{V_{cb}} | =$

 $(35.61 \pm 0.43) \cdot 10^{-3}$

FNAL / MILC :

 $\eta_{\rm EW} G(1) = 1.061 \pm 0.010 \qquad \Longrightarrow \qquad |\mathbf{V}_{\rm cb}| = (39.18 \pm 0.94_{\rm exp} \pm 0.36_{\rm th}) \cdot 10^{-3}$ $\eta_{\rm EW} F(1) = 0.912 \pm 0.014 \qquad \Longrightarrow \qquad |\mathbf{V}_{\rm cb}| = (39.05 \pm 0.47_{\rm exp} \pm 0.58_{\rm th}) \cdot 10^{-3}$

$$|\mathbf{V_{cb}}|_{\text{excl}} = (39.10 \pm 0.60) \cdot 10^{-3}$$

3.3 $\sigma\,$ discrepancy with inclusive measurement

Parametrization Dependence

Analyticity, Unitarity Crossing Symmetry

- Boyd-Grinstein-Lebed (BGL)
- Caprini-Lellouch-Neubert (CLN) (HQET relations valid within 2%)

• $\mathbf{B} \rightarrow \mathbf{D}^* \ell \mathbf{v}$

Belle data (1702.01521) + Lattice + LCSRs

Bigi-Gambino-Schacht, 1703.06124, 1707.09509

See also Grinstein-Kobach, 1703.08170; Bernlochner-Ligeti-Papucci-Robinson, 1703.05330, 1708.07134

Bigi-Gambino-Schacht, 1606.08030

$$|\mathbf{V_{cb}}| = (40.49 \pm 0.97) \cdot 10^{-3}$$

V	CKM entry	Value	Source
v ij	$ \mathbf{V}_{ud} $	0.97417 ± 0.00021	Nuclear β decay
		0.9758 ± 0.0016	$n \rightarrow p e^- \overline{v}_e$
		0.9749 ± 0.0026	$\pi^+ \rightarrow \pi^0 e^+ v_e$
	V _{us}	0.2232 ± 0.0008	$K \to \pi e^- \overline{v}_e$
		0.2253 ± 0.0007	$K/\pi \rightarrow \mu \nu$, Lattice, V _{ud}
		0.2213 ± 0.0023	au decays
	V _{cd}	0.230 ± 0.011	$v d \rightarrow c X$
		$\boldsymbol{0.216\pm0.005}$	$D \rightarrow (\pi) l \nu$, Lattice
•	V _{cs}	0.997 ± 0.017	$D \rightarrow K l v, D_s \rightarrow l v$, Lattice
	V _{cb}	0.0405 ± 0.0010	$B \rightarrow D^* l \overline{v}_l, D l \overline{v}_l$
	· ·	0.0420 ± 0.0006	$b \rightarrow c \ l \ \overline{v_l}$
•	V _{ub}	0.00367 ± 0.00015	$B \rightarrow \pi \ l \ \overline{v_l}$
	· · ·	0.00451 ± 0.00020	$b \rightarrow u \ l \ \overline{v_l}$
		0.00398 ± 0.00040	
	$\left \mathbf{V_{tb}}\right / \sqrt{\sum_{q} \left \mathbf{V_{tq}}\right ^2}$	> 0.92 (95% CL)	$t \to b W / t \to q W$
	$ \mathbf{V_{tb}} $	1.009 ± 0.031	$p\overline{p} \to tb + X$

 $|\mathbf{V}_{ud}|^{2} + |\mathbf{V}_{us}|^{2} + |\mathbf{V}_{ub}|^{2} = 0.9988 \pm 0.0005$ $|\mathbf{V}_{cd}|^{2} + |\mathbf{V}_{cs}|^{2} + |\mathbf{V}_{cb}|^{2} = 1.042 \pm 0.034$

$$\begin{aligned} \left| \mathbf{V}_{ub} \right|^{2} + \left| \mathbf{V}_{cb} \right|^{2} + \left| \mathbf{V}_{tb} \right|^{2} &= 1.020 \pm 0.063 \\ \sum_{j} \left(\left| \mathbf{V}_{uj} \right|^{2} + \left| \mathbf{V}_{cj} \right|^{2} \right) &= 2.002 \pm 0.027 \quad \text{(LEP)} \\ \text{A. Pich} - \text{IFT 2017} \quad 14 \end{aligned}$$

Hierarchical Structure

 $\mathbf{V} \approx \begin{bmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix} + \mathcal{O}(\lambda^4)$

 $\lambda \approx \sin \theta_{\rm C} \approx 0.223$; $A \approx 0.84$; $\sqrt{\rho^2 + \eta^2} \approx 0.4$

- C,P: Violated maximally in weak inter.
- *CP* : Symmetry of nearly all phenom.
- Slight (~0.2%) CP in K⁰ decays (1964)
- Sizeable CP in B⁰ decays (2001)
- Huge Matter-Antimatter Asymmetry

Baryogenesis

$$\mathcal{CPT}$$
 Theorem: $\mathcal{OP} \longleftrightarrow \mathcal{T}$

- Complex Phases
- Interferences

Standard Model \mathcal{CP} : 3 fermion families needed

$$\mathbf{T}(\mathbf{P} \to \mathbf{f}) = \mathbf{T}_{1} e^{i\phi_{1}} e^{i\delta_{1}} + \mathbf{T}_{2} e^{i\phi_{2}} e^{i\delta_{2}}$$
$$\mathcal{CP}$$
$$\mathbf{T}(\overline{\mathbf{P}} \to \overline{\mathbf{f}}) = \mathbf{T}_{1} e^{-i\phi_{1}} e^{i\delta_{1}} + \mathbf{T}_{2} e^{-i\phi_{2}} e^{i\delta_{2}}$$

$$A_{P \to f}^{CP} \equiv \frac{\Gamma(P \to f) - \Gamma(\overline{P} \to \overline{f})}{\Gamma(P \to f) + \Gamma(\overline{P} \to \overline{f})} = \frac{-2 T_1 T_2 \sin(\phi_2 - \phi_1) \sin(\delta_2 - \delta_1)}{T_1^2 + T_2^2 + 2 T_1 T_2 \cos(\phi_2 - \phi_1) \cos(\delta_2 - \delta_1)}$$

One needs:

- 2 Interfering Amplitudes
- 2 Different Weak Phases
- 2 Different FSI Phases

 $\begin{bmatrix} \sin(\phi_2 - \phi_1) \neq 0 \end{bmatrix}$ $\begin{bmatrix} \sin(\delta_2 - \delta_1) \neq 0 \end{bmatrix}$

$$A_{CP}(B \to f) \equiv \frac{\operatorname{Br}(\overline{B} \to \overline{f}) - \operatorname{Br}(B \to f)}{\operatorname{Br}(\overline{B} \to \overline{f}) + \operatorname{Br}(B \to f)}$$

$$A_{CP}(B_d^0 \to \pi^- K^+) = -0.082 \pm 0.006$$
 (13.7 o)

$$A(B_s^0 \to \pi^- K^+) = -0.26 \pm 0.04$$
 (6.5 σ)

$$A_{CP}(B^+ \to K^+ K^- \pi^+) = -0.118 \pm 0.022$$
 (5.4 σ)

Large & Interesting Signals

Big challenge: Get reliable SM predictions

Severe hadronic uncertainties

INDIRECT \mathcal{OP} : $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ **MIXING**

$$\left| K_{S,L}^{0} \right\rangle \sim p \left| K^{0} \right\rangle \mp q \left| \overline{K}^{0} \right\rangle$$
 $q/p \equiv \left(1 - \overline{\varepsilon}_{K} \right) / \left(1 + \overline{\varepsilon}_{K} \right)$

$$\left\langle \overline{K}^{0} \left| \mathbf{H} \right| K^{0} \right\rangle \sim \sum_{ij} \lambda_{i} \lambda_{j} S(r_{i}, r_{j}) \eta_{ij} \left\langle O_{\Delta S=2} \right\rangle$$

$$\left\langle O_{\Delta S=2} \right\rangle = \alpha_{s}(\mu)^{-2/9} \left\langle \overline{K}^{0} \left| \left(\overline{s}_{L} \gamma^{\alpha} d_{L} \right) \left(\overline{s}_{L} \gamma_{\alpha} d_{L} \right) \right| K^{0} \right\rangle \equiv \left(\frac{4}{3} M_{K}^{2} f_{K}^{2} \right) \hat{B}_{K}$$

$$\lambda_{i} \equiv V_{id} V_{is}^{*} \qquad ; \qquad r_{i} \equiv m_{i}^{2} / M_{W}^{2} \qquad (i = u, c, t)$$

• GIM Mechanism: $\lambda_u + \lambda_c + \lambda_t = 0$

 $\left(M_{K_L} - M_{K_S}\right) / M_{K^0} = (7.00 \pm 0.01) \times 10^{-15}$

- \mathcal{CP} : $\operatorname{Im}\lambda_t = -\operatorname{Im}\lambda_c \simeq \eta\lambda^5 A^2$
- Hard GIM Breaking: $S(r_i, r_i) \sim r_i$ \longrightarrow t quark

INDIRECT \mathcal{OP} : $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ **MIXING**

$$\left| K_{S,L}^{0} \right\rangle \sim p \left| K^{0} \right\rangle \mp q \left| \overline{K}^{0} \right\rangle$$

$$q/p \equiv \left(1 - \overline{\varepsilon}_{K} \right) / \left(1 + \overline{\varepsilon}_{K} \right)$$

$$K^{0} \to \pi^{-}l^{+}v_{l} \quad (\overline{s} \to \overline{u}) \quad ; \quad \overline{K}^{0} \to \pi^{+}l^{-}\overline{v}_{l} \quad (s \to u)$$

$$\frac{\Gamma\left(K_{L}^{0} \to \pi^{-}l^{+}v_{l}\right) - \Gamma\left(K_{L}^{0} \to \pi^{+}l^{-}\overline{v}_{l}\right)}{\Gamma\left(K_{L}^{0} \to \pi^{-}l^{+}v_{l}\right) + \Gamma\left(K_{L}^{0} \to \pi^{+}l^{-}\overline{v}_{l}\right)} = \frac{|p|^{2} - |q|^{2}}{|p|^{2} + |q|^{2}} = \frac{2 \operatorname{Re}\left(\overline{\varepsilon}_{K}\right)}{1 + |\overline{\varepsilon}_{K}|^{2}} = (0.332 \pm 0.006)\%$$

$$\Longrightarrow \qquad \operatorname{Re}\left(\overline{\varepsilon}_{K}\right) = (1.66 \pm 0.03) \cdot 10^{-3}$$

DIRECT CP in $K \rightarrow \pi \pi$

$$\eta_{+-} \equiv \frac{T(K_L \to \pi^+ \pi^-)}{T(K_S \to \pi^+ \pi^-)} \approx \varepsilon_K + \varepsilon'_K \qquad \qquad \eta_{00} \equiv \frac{T(K_L \to \pi^0 \pi^0)}{T(K_S \to \pi^0 \pi^0)} \approx \varepsilon_K - 2\varepsilon'_K$$

$$\operatorname{Re}\left(\varepsilon_{K}' / \varepsilon_{K}\right) \approx \frac{1}{6} \left\{ 1 - \left| \frac{\eta_{00}}{\eta_{+-}} \right|^{2} \right\} = (16.6 \pm 2.3) \cdot 10^{-4} \qquad \begin{array}{c} \operatorname{NA48, NA31 (1988-2003)} \\ \operatorname{KTeV, E731 (1993-2010)} \end{array}$$

Recent $K \rightarrow (\pi \pi)_{I}$ Lattice Results

Isospin limit:	RBC-UKQCD 1505.07863, 1502.00263	
$\sqrt{\frac{3}{2}} \operatorname{Re} A_2 = (1.50 \pm 0.04 \pm 0.14) \cdot 10^{-8} \operatorname{GeV}$	$\exp: 1.482 (2) \cdot 10^{-8} \mathrm{GeV}_{0.1 \sigma}$	∆I=1/2 Rule
$\sqrt{\frac{3}{2}} \operatorname{Im} A_2 = -(6.99 \pm 0.20 \pm 0.84) \cdot 10^{-13} \operatorname{GeV}$		$\omega \equiv \frac{\text{Re } A_2}{R} \approx \frac{1}{22}$
$\sqrt{\frac{3}{2}} \operatorname{Re} A_0 = (4.66 \pm 1.00 \pm 1.26) \cdot 10^{-7} \text{ GeV}$	$\exp: 3.112(1) \cdot 10^{-7} { m GeV}_{1.0\sigma}$	$\operatorname{Re} A_0 = 22$
$\sqrt{\frac{3}{2}} \operatorname{Im} A_0 = -(1.90 \pm 1.23 \pm 1.08) \cdot 10^{-11} \operatorname{GeV}$		
${ m Re}\left({arepsilon' / arepsilon} ight) \; = \; \left({1.38 \pm 5.15 \pm 4.59} ight) \cdot {10^{ - 4}}$	$\exp:(16.6\pm2.3)\cdot10^{-4}$	Large phase shift
$\delta_0 ~=~ (23.8 \pm 4.9 \pm 1.2)^\circ$	$\exp:(39.2\pm1.5)^\circ$ 2.9 σ	$\delta_0 - \delta_2 = (47.5 \pm 0.9)^\circ$
$\delta_2 ~=~ -(11.6 \pm 2.5 \pm 1.2)^\circ$	$\exp: -(8.5 \pm 1.5)^{\circ}$ 1.0 σ	° 2 ()

Anomaly? New-physics ? (Buras et al, Kitahara et al, Endo et al, Cirigliano et al...) $\operatorname{Re}(\varepsilon'_{K}/\varepsilon_{K})_{\mathrm{SM}} = -\frac{\omega}{\sqrt{2}|\varepsilon_{K}|} \left[\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}} (1 - \Omega_{\mathrm{eff}}) - \frac{\operatorname{Im} A_{2}^{\mathrm{emp}}}{\operatorname{Re} A_{2}} \right] \approx 2.2 \cdot 10^{-3} \left\{ \frac{B_{6}^{(1/2)}}{1 - \Omega_{\mathrm{eff}}} - 0.48 B_{8}^{(3/2)} \right\}$

 $\Omega_{\rm eff} = 0.060 \pm 0.077$ Cirigliano-Ecker-Neufeld-Pich (2003)

Effective Field Theory: Long & Short distance dynamics

$B^0 - B^0 M$ IXING

very small

•
$$\Delta M_{B_d^0} / \Gamma_{B_d^0} = 0.770 \pm 0.004$$

•
$$\Delta M_{B_s^0} = (17.757 \pm 0.021) \text{ ps}^{-1}$$

•
$$\Delta \Gamma_{B^0} / \Delta M_{B^0} \sim m_b^2 / m_t^2 \ll 1$$

•
$$\operatorname{Re}\left(\overline{\varepsilon}_{B_d^0}\right) = -0.0005 \pm 0.0004$$

$$\Delta M_{B_s^0} / \Gamma_{B_s^0} = 26.72 \pm 0.09$$
$$|V_{ts}|^2 \gg |V_{td}|^2$$
$$\Delta \Gamma_{B_s^0} / \Gamma_{B_s^0} = -0.130 \pm 0.009$$
$$\operatorname{Re}\left(\overline{\varepsilon}_{B_s^0}\right) = -0.0002 \pm 0.0007$$
$$|q/p| - 1 \sim m_c^2 / m_t^2$$

 ΛM

$B^{0} - \overline{B}^{0}$ MIXING AND DIRECT CP

CP sell-conjugate:
$$1 - \eta_f I$$

CD colf conjugates $\overline{f} - n$ f

$$\frac{q}{p} \approx \frac{\mathbf{V}_{tb}^* \mathbf{V}_{tq}}{\mathbf{V}_{tb} \mathbf{V}_{tq}^*} = e^{-2i\phi_M} \quad ; \qquad \phi_M \approx \begin{cases} \beta & (B_d^0) \\ -\beta_s \approx -\lambda^2 \eta & (B_s^0) \end{cases}$$

qAssumption:Only 1 decay amplitudeq' $A_{b \to q\bar{q}q'}$ $V_{qb}^* V_{qq'}^* = e^{-2i\phi_D}$ $\rho_{\bar{f}} = \bar{\rho}_f^* = \eta_f e^{2i\phi_D}$ $q_{\bar{q}}$ $A_{\bar{b} \to \bar{q}q\bar{q}'}$ $V_{qb}^* V_{qq'} = e^{-2i\phi_D}$ $\rho_{\bar{f}} = \bar{\rho}_f^* = \eta_f e^{2i\phi_D}$ $C_f = 0$

$$\frac{\Gamma\left(\overline{B}^{0} \to \overline{f}\right) - \Gamma\left(B^{0} \to f\right)}{\Gamma\left(\overline{B}^{0} \to \overline{f}\right) + \Gamma\left(B^{0} \to f\right)} = -\eta_{f} \sin(2\phi) \sin(\Delta M t) \qquad ; \qquad \phi = \phi_{M} + \phi_{D}$$

Direct information on the CKM matrix

$$\frac{\Gamma(\overline{B}^{0} \to J/\psi K_{S}) - \Gamma(B^{0} \to J/\psi K_{S})}{\Gamma(\overline{B}^{0} \to J/\psi K_{S}) + \Gamma(B^{0} \to J/\psi K_{S})} = -\eta_{f} \sin(2\beta) \sin(\Delta M t)$$

HFAG:

 $sin(2\beta) = 0.69 \pm 0.02$

 $B^0 \rightarrow J/\psi K_{S,L}, \psi(2S) K_S, \chi_c K_S, \eta_c K_S$

 $V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$

$$\mathbf{UT}_{fit} \quad \overline{\eta} \equiv \eta \left(1 - \frac{1}{2} \lambda^2 \right) = 0.343 \pm 0.011$$
$$\overline{\rho} \equiv \rho \left(1 - \frac{1}{2} \lambda^2 \right) = 0.153 \pm 0.013$$
$$\alpha = 91.0 \pm 2.5^\circ \ ; \ \beta = 23.2 \pm 1.2^\circ \ ; \ \gamma = 65.3 \pm 2.0^\circ$$

Tree-level determinations

Loop processes

CP Conserving

CP Violating

Bounds on New Flavour Physics

$$L_{\rm eff} = L_{\rm SM} + \sum_{D>4} \sum_{k} \frac{c_k^{(D)}}{\Lambda_{\rm NP}^{D-4}} O_k^{(D)}$$

lsidori, 13	302.	0661
-------------	------	------

Operator	Bounds on Λ in TeV ($c_{\rm NP} = 1$)		Bounds on $c_{\rm NP}$ ($\Lambda = 1$ TeV)		Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	$3.2 imes 10^5$	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(\overline{b}_L \gamma^\mu d_L)^2$	6.6×10^2	$9.3 imes 10^2$	2.3×10^{-6}	1.1×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	2.5×10^3	3.6×10^3	3.9×10^{-7}	1.9×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_L \gamma^\mu s_L)^2$	1.4×10^2	$2.5 imes 10^2$	5.0×10^{-5}	1.7×10^{-5}	$\Delta m_{B_s}; S_{\psi\phi}$
$(\bar{b}_R s_L)(\bar{b}_L s_R)$	4.8×10^2	$8.3 imes 10^2$	8.8×10^{-6}	2.9×10^{-6}	$\Delta m_{B_s}; S_{\psi\phi}$

- Generic flavour structure [c_{NP}~O(1)] ruled out at the TeV scale
- $\Lambda_{NP} \sim 1$ TeV requires c_{NP} to inherit the strong SM suppressions (GIM)

Minimal Flavour Violation:The up and down Yukawa matrices are the
only source of quark-flavour symmetry breakingD'Ambrosio et al, Buras et al

Yukawa Interactions in 2HDMs

$$L_{Y} = -\overline{Q}'_{L} (\Gamma_{1} \phi_{1} + \Gamma_{2} \phi_{2}) d'_{R} - \overline{Q}'_{L} (\Delta_{1} \tilde{\phi}_{1} + \Delta_{2} \tilde{\phi}_{2}) u'_{R}$$

$$SSB \qquad \phi_{i}^{(0)} = \frac{v_{i}}{\sqrt{2}} , \quad v = \sqrt{v_{i}^{2} + v_{2}^{2}}$$

$$L_{Y} = -\frac{\sqrt{2}}{v} \{ \overline{Q}'_{L} (M_{d} \cdot \Phi_{1} + Y_{d} \cdot \Phi_{2}) d'_{R} - \overline{Q}'_{L} (M_{u} \cdot \tilde{\Phi}_{1} + Y_{u} \cdot \tilde{\Phi}_{2}) u'_{R} \}$$

$$M_{q}' \text{ and } Y_{q}' \text{ unrelated} \qquad \overrightarrow{FCNCs} \qquad \frac{H^{0}}{--} \quad \overbrace{d}^{s}$$

$$\frac{I}{k^{0}} \quad \overbrace{K^{0}}^{s} \quad \overbrace{d}^{s} \quad \overbrace{K^{0}}^{s} \rightarrow \mu^{-}\mu^{+}$$

Phenomenological disaster!

Aligned 2HDM

Pich-Tuzón, 0908.1554

Yukawa alignment in Flavour Space: $Y_{d,l} = \varsigma_{d,l} M_{d,l}$, $Y_u = \varsigma_u^* M_u$

$$\begin{split} \mathcal{L}_{Y} &= -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[\varsigma_{d} V_{CKM} M_{d} \mathcal{P}_{R} - \varsigma_{u} M_{u}^{\dagger} V_{CKM} \mathcal{P}_{L} \right] d + \varsigma_{I} \left(\bar{\nu} M_{I} \mathcal{P}_{R} I \right) \right\} \\ &- \frac{1}{v} \sum_{\varphi_{i}^{0}, f} y_{f}^{\varphi_{i}^{0}} \varphi_{i}^{0} \left(\bar{f} M_{f} \mathcal{P}_{R} f \right) + \text{h.c.} \\ &y_{d, I}^{\varphi_{i}^{0}} = \mathcal{R}_{i1} + \left(\mathcal{R}_{i2} + i \mathcal{R}_{i3} \right) \varsigma_{d, I} , \qquad y_{u}^{\varphi_{i}^{0}} = \mathcal{R}_{i1} + \left(\mathcal{R}_{i2} - i \mathcal{R}_{i3} \right) \varsigma_{u}^{*} \end{split}$$

Sf 🟓

New sources of CP violation without tree-level FCNCs

	Model	Sd	ς _u	51
	Type I	$\cot eta$	\coteta	\coteta
models:	Type II	— tan eta	\coteta	- aneta
indució	Type X	$\cot eta$	\coteta	- aneta
	Type Y	— tan eta	\coteta	\coteta
	Inert	0	0	0

Only one ϕ_a couples to f_R (Glashow-Weinberg, Paschos '77)

 Z_2

Flavour Alignment

Celis-Ilisie-AP, 1302.4022, 1310.7941

(Aligned 2HDM) AP-Tuzón

General setting without FCNCs & new sources of CP violation

$$Y_{d,l} = \varsigma_{d,l} M_{d,l} \quad , \quad Y_u = \varsigma_u^* M_u$$

Rich phenomenology @ LHC

Altmannshofer et al, Barger et al, Celis et al, Cervero-Gerard, López-Val et al...

Many allowed possibilities Search for light H[±], H, A CP violation

Flavour constraints fulfilled

Celis et al, Jung et al, Li et al

EDMs

Jung-AP, 1308.6283

 Usual Z₂ models recovered in particular (CP-conserving) limits

Flavour Physics

A. Pich – IFT 2017 33

0.4

Model-Independent Analysis of $R(D^{(*)})$

Flavour Physics

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} = 0.71 \pm 0.17 \,(\text{stat}) \pm 0.18 \,(\text{syst})$$

2σ above SM prediction

1) New physics only contributes to the SM operator

 $[\overline{c}\gamma^{\mu}P_{L}b][\overline{\tau}\gamma_{\mu}P_{L}v_{\tau}]$

$$R_{J/\psi}/R_{J/\psi}^{\rm SM} = R_D/R_D^{\rm SM} = R_{D^*}/R_{D^*}^{\rm SM}$$

2) At higher scales, it originates from (avoids $b \rightarrow svv$ constraints)

 $[\overline{Q}_{2}\gamma^{\mu}Q_{3}][\overline{L}_{3}\gamma_{\mu}L_{3}] + [\overline{Q}_{2}\gamma^{\mu}\sigma^{I}Q_{3}][\overline{L}_{3}\gamma_{\mu}\sigma^{I}L_{3}] \approx 2 [(\overline{c}_{L}\gamma_{\mu}b_{L})(\overline{\tau}_{L}\gamma^{\mu}\nu_{\tau L}) + (\overline{s}_{L}\gamma_{\mu}b_{L})(\overline{\tau}_{L}\gamma^{\mu}\tau_{L})]$

 \blacksquare Large Br(b \rightarrow s $\tau^+\tau^-$)

See also:

Alonso et al, 1505.05164 Crivellin et al, 1703.09226

Rare Decays

Sensitive to (pseudo) scalar contributions

LHCb, 1703.05747: $\overline{B}(B_s^0 \to \mu^+ \mu^-)_{exp} = \left(3.0 \pm 0.6 + 0.3 \\ -0.2\right) \cdot 10^{-9}$, $\overline{B}(B_d^0 \to \mu^+ \mu^-)_{exp} < 3.4 \cdot 10^{-10}$ (95% CL) $\begin{bmatrix} SM: (3.65 \pm 0.23) \cdot 10^{-9} \end{bmatrix}$ **SM**: $(1.06 \pm 0.09) \cdot 10^{-10}$

 $\overline{B}(B_s^0 \to \tau^+ \tau^-)_{\text{exp}} < 6.8 \cdot 10^{-3}$, $\overline{B}(B_d^0 \to \tau^+ \tau^-)_{\text{exp}} < 2.1 \cdot 10^{-3}$ (95% CL) LHCb, 1703.02528:

1.5

$b \rightarrow s \,\mu^+\mu^-$ Differential Branching Ratios

> Results consistently lower than SM predictions

$\mathbf{B^0} \rightarrow \mathrm{K^{*0}}\mu^+\mu^- \rightarrow \mathrm{K^+}\pi^-\mu^+\mu^-$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K + \frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_K \cos 2\theta_\ell \\ -F_\mathrm{L}\cos^2\theta_K \cos 2\theta_\ell + S_3\sin^2\theta_K \sin^2\theta_\ell \cos 2\phi \\ +S_4\sin2\theta_K \sin 2\theta_\ell \cos\phi + S_5\sin2\theta_K \sin\theta_\ell \cos\phi \\ +S_6\sin^2\theta_K \cos\theta_\ell + S_7\sin2\theta_K \sin\theta_\ell \sin\phi \\ +S_8\sin2\theta_K \sin2\theta_\ell \sin\phi + S_9\sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \end{bmatrix}$$

Belle 1604.04042 1.0 1.5 Belle preliminary Belle preliminary Ð This Analysis 0.5 LHCb 2013 1.0 LHCb 2015 0.0 SM from DHMV 0.5 -0.5 P_4 0.0 D -1.0 -0.5 -1.5 This Analysis LHCb 2013 -1.0-2.0 LHCb 2015 SM from DHMV -2.5 -1.5 0 5 10 15 20 0 5 10 15 20 $q^2 \,({ m GeV}^2/c^4)$ $q^2 \left({\rm GeV}^2/c^4 \right)$ 1.5 1.0 Belle preliminary Belle preliminary This Analysis LHCb 2013 1.0 0.5 LHCb 2015 SM from DHMV 0.5 0.0 Q.0 0.0 J_{∞}^{N} -0.5 -0.5 H∎ This Analysis LHCb 2013 -1.0-1.0 LHCb 2015 SM from DHMV -1.5 -1.50 5 10 15 20 0 5 10 15 20 $q^2 \left({\rm GeV}^2/c^4 \right)$ $q^2 \,({\rm GeV}^2/c^4)$

Descotes-Genon et al, 1510.04239

 $O_9 = \left(\overline{s} \gamma_{\mu} P_L b\right) \left(\overline{\ell} \gamma^{\mu} \ell\right)$

Flavour Physics

Belle, 1612.05014

 $Q_i \equiv P_i^{'\mu} - P_i^{'e}$

Violations of Lepton Flavour

$$R_{K^{*0}} = \frac{\text{Br}(B^0 \to K^{*0} \mu^+ \mu^-)}{\text{Br}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\text{Br}(B^0 \to K^{*0} e^+ e^-)}{\text{Br}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

	$low-q^2$	$central-q^2$
$R_{K^{*0}}$	$0.66~^{+}_{-}~^{0.11}_{0.07}\pm0.03$	$0.69~^{+}_{-}~^{0.11}_{0.07}\pm0.05$
$95.4\%~\mathrm{CL}$	[0.52, 0.89]	[0.53, 0.94]
$99.7\%~\mathrm{CL}$	[0.45, 1.04]	[0.46, 1.10]

New-Physics Fits with Effective Operators

A. Pich – IFT 2017 42

$$O_{9}^{\ell} = \left(\overline{s} \gamma_{\mu} P_{L} b\right) \left(\overline{\ell} \gamma^{\mu} \ell\right)$$
$$O_{10}^{\ell} = \left(\overline{s} \gamma_{\mu} P_{L} b\right) \left(\overline{\ell} \gamma^{\mu} \gamma_{5} \ell\right)$$

 $O_{9}^{\ell'} = \left(\overline{s} \gamma_{\mu} P_{R} b\right) \left(\overline{\ell} \gamma^{\mu} \ell\right)$ $O_{10}^{\ell'} = \left(\overline{s} \gamma_{\mu} P_{R} b\right) \left(\overline{\ell} \gamma^{\mu} \gamma_{5} \ell\right)$

 $\mathcal{L} \supset \frac{g_2}{2c_W} Z'_{\alpha} \left\{ \left[\bar{s} \gamma^{\alpha} (g_L^Q P_L + g_R^Q P_R) b + h.c. \right] + \bar{\ell} \gamma^{\alpha} (g_V^{\ell} + \gamma_5 g_A^{\ell}) \ell \right\}$ $\frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \cdot \left\{ C_9^\ell, \, C_{10}^\ell \right\} = \frac{M_Z^2}{2m_{Z'}^2} \cdot \left\{ g_L^Q g_V^\ell, \, g_L^Q g_A^\ell \right\}$

More possibilites...

S

 μ^+

b

μ

Flavour conserving Z'

Kamenik et al, 1704.06005

Leptoquarks

Hiller- Nisandzic, 1704.05444 D'Amico et al, 1704.05438 Becirevic-Sumensari, 1704.05835

LQ

New Fermions and Scalars

LQ

S

 μ^+

D'Amico et al, 1704.05438

Flavour Physics

b

μ

New Experiments Needed:

NA62, K0TO (ORKA, Project-X)

SUMMARY

- Flavour Structure and *P* are major pending questions
- Related to SSB Scalar Sector (Higgs)
- Important cosmological implications (Baryogenesis)
- Sensitive to New Physics: Flavour Anomalies!
- Is highly constrained in the SM: 1 phase only
- Better control of QCD effects urgently needed
- Challenging future ahead: BES-III, LHCb, NA62, J-Parc, Super-Belle, τcF, …