Form Factors in $\mathrm{N}=4$ SYM \& Higgs+Gluon Amplitudes

Andi Brandhuber

with

Martyna Kostacinska, Brenda Penante \& Gabriele Travaglini (and earlier work with E. Hughes, R. Panerai, B. Spence, C.Wen, G. Yang \& D.Young)

XXIII IFT CHRISTMAS WORKSHOP, 13-15 DECEMBER 2017

Why calculate amplitudes \& form factors?

- Strong Physics motivations
- LHC physics
- precision perturbative QCD
- Mathematical physics motivations
- AdS/CFT
- New dualities
- Hidden symmetries
- Links to integrability

Hard calculations lead to...

- Calculations with standard Feynman rules are cumbersome
- Gauge dependence, off-shell
- Many diagrams
- Huge cancellations
- E.g.: for 5 gluons

- 2 gluons $\rightarrow \mathrm{n}$ gluons at tree-level

$\mathrm{gg}=>\mathrm{ng}$	$\mathrm{n}=7$	$\mathrm{n}=8$	$\mathrm{n}=9$
Diagrams	559405	10525900	224449225

...surprising simplicity

- All-plus/single-minus helicity tree amplitudes

$$
A\left(1^{ \pm}, 2^{+}, 3^{+}, \ldots, n^{+}\right)=0
$$

- Maximally Helicity Violating (MHV) tree amplitudes with 2 negative helicity and $\mathrm{n}-2$ positive helicity gluons
$A_{\mathrm{MHV}}\left(1^{+}, 2^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}$

Parke-Taylor/Mangano-Parke

$$
\begin{aligned}
& \langle i j\rangle \sim \sqrt{s_{i j}} e^{i \phi_{i j}} \\
& s_{i j}=\left(p_{i}+p_{j}\right)^{2}
\end{aligned}
$$

Traditional methods obscure simplicities and hidden symmetries

Hidden Simplicities in Amplitudes...

- Why are amplitudes so simple? Can we make use of this fact?
- Geometry in twistor space (Witten 2003)
- Iterative structures of S-matrix of gauge theory \& gravity

- Avoid problems of standard Feynman rules

Only 3-point Amplitudes needed as Input!!

- gauge dependence, ghosts
- off-shell
- large number of diagrams

... Inspire New Methods

- Novel Methods
- MHV Diagrams (Cachazo-Svrcek-Witten; AB, Spence Travaglini)
- Generalised Unitarity algebraic; no phase space/dispersion integrals! (Bern, Dixon, Dunbar, Kosower,... Britto, Cachazo, Feng, ...)

- On-shell Recursion Relations (Britto-Cachazo-Feng-Witten)
- Important common feature
- Only on-shell quantities needed e.g. MHV rules need only

$$
\mathcal{A}_{n, \mathrm{MHV}}=\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle}
$$

Return of the...

The Analytic S-Matrix

R.J.EDEN
P.V.LANDSHOFF D.I.JLIVE J.C.POLKINGHORNE

- Key ideas go back to pre-history old S-matrix approach of 60's !
- On-shell ...fields themselves are of little interest. Deal with physical, on-shell S-matrix elements directly...
- Unitarity ...use the analytic structure of the scattering amplitudes (poles, branch cuts, factorisation), whether or not some underlying Lagrangian theory exists...
- Complexify ...One of the most remarkable discoveries in elementary particle physics has been that of the complex plane

- The S-Matrix is unitary

$$
S=1+i T \quad \rightarrow \quad-i\left(T-T^{\dagger}\right)=T^{\dagger} T
$$

BCFW recursion relations
Trees from Trees

$\frac{1}{l_{i}^{2}+i \epsilon} \rightarrow-i \pi \delta\left(l_{i}^{2}\right)$

Generalised Unitarity Method
Loops from Trees

$\mathrm{N}=4$ Super Yang-Mills

- Gluons, 4 Weyl fermions, 3 complex scalars X, Y, Z all in adjoint representation
- Simplest interacting gauge theory in 4D: superconformal, beta function $=0$
- New symmetries of amplitudes: Dual Conformal Symmetry => Yangian Symmetry => Integrability
- Playground to test and refine new methods: generalised unitarity, BCFW recursion relations, symbol of functions
- Clearly very different from QCD: BUT
- Gluon tree amplitudes in QCD same as N=4 SYM
- $\quad \mathrm{N}=4$ often captures large chunks of full QCD computations

Beyond amplitudes

- Long-term goal: extend success of on-shell methods to "partially or fully off-shell" quantities
- Partially off-shell: form factors (main focus today)
- MHV diagrams, BCFW, generalised unitarity, remainder functions, symbols, scattering equations (CHY)... (AB, Hughes, Panerai, Penante, Spence, Travaglini, Wen, Yang, Young; Bork, Kazakov, Vartanov; Loebbert, Nandan, Sieg, Wilhelm, Yang; Gehrmann, Henn...)
- Remarkable simplicities/regularities but no dual conformal symmetry
- Fully off-shell: correlation functions (Engelund-Roiban;AB, Penante, Travagini,Young)

$$
\langle 0| \mathcal{O}\left(x_{1}\right) \overline{\mathcal{O}}\left(x_{2}\right)|0\rangle \sim \frac{1}{\left(\left(x_{1}-x_{2}\right)^{2}\right)^{\Delta_{0}+\gamma}}
$$

- Anomalous dimensions $\gamma=$ eigenvalues of hamiltonian $H^{A}{ }_{B}$ (dilatation operator) of an integrable spin-chain in $\mathrm{N}=4$!

Form Factors:"going partially off-shell"

- More general objects than correlation functions, Wilson loops, amplitudes: e.g. Wilson loops with operator insertions, correlators of Wilson loops ...
- Form Factors: interpolate between correlators and amplitudes, partially off-shell

$$
\begin{gathered}
\int d^{4} x e^{-i q x}\langle 1 \cdots n| \mathcal{O}(x)|0\rangle=\delta^{(4)}\left(q-\sum_{i=1}^{n} p_{i}\right)\langle 1 \cdots n| \mathcal{O}(0)|0\rangle \\
q=\sum_{i=1}^{n} p_{i} \\
q^{2} \neq 0, \text { off }- \text { shell! }
\end{gathered}
$$

- Simplest case (QCD) Sudakov FF ($\mathrm{n}=2$): IR divergences
- In N=4 2-Loop Sudakov FF first studied by Van Neerven
- 3 Loops: (Gehrmann, Henn, Huber)
- 4 \& 5 Loops (Boels, Huber, Yang):
- Color-Kinematics duality (Bern-Carrasco-Johansson)
- Cusp anomalous dim, Casimir scaling violated at four loops

(26)

(22)

(23)

(28)

(24)

(25)

(27)

(29)

(30)

FFs appear in many physics contexts

- Three-loop correction to electron $g-2$

72 diagrams

$$
=(1.181241456 \ldots)\left(\alpha_{\mathrm{e} . \mathrm{m} .} / \pi\right)^{3}
$$

- wild oscillations between individual diagram
- result is $\mathrm{O}(1)$ => mysterious cancellations
- $e^{+} e^{-} \rightarrow$ hadrons (LEP):

$$
e^{+} e^{-} \rightarrow \text { hadrons }(X)
$$

X

$$
e \bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right) \frac{\eta^{\mu \nu}}{\left(p_{1}+p_{2}\right)^{2}}(-e)\langle X| J_{\nu}^{e . m \cdot}(0)|0\rangle
$$

hadronic electromagnetic current
all orders in $\alpha_{\text {strong, }}$ first order in $\alpha_{\text {e.m. }}$

Effective Lagrangians

- Higgs + multi-gluon amplitudes
- at low M_{H}, dominant Higgs production at the LHC through gluon fusion
- coupling to gluons through a quark loop

- for $M_{H}<2 m_{t}$ integrate out top quark
- Effective Lagrangian description: leading

$$
\mathcal{L}_{\mathrm{eff}} \sim H \operatorname{Tr} F^{2} \quad \operatorname{Tr} F^{2}=\operatorname{Tr} F_{\mathrm{SD}}^{2}+\operatorname{Tr} F_{\mathrm{ASD}}^{2}
$$

- coupling $\frac{\alpha_{S}}{12 \pi v}, v=246 \mathrm{GeV}$ independent of m_{t}
- subleading:

$$
\mathcal{L}_{\mathrm{sub}} \sim \frac{C_{1}}{v m_{t}^{2}} H \operatorname{tr} F^{3}+\frac{C_{2}}{v m_{t}^{2}} H \operatorname{tr} D F D F+\ldots
$$

FFs = amplitudes in effective theories

- Higgs amplitudes are form factors of $\operatorname{Tr} F^{2}$
- bring down one interaction, and Wick-contract the Higgs field
$F_{F_{\mathrm{ASD}}^{2}}=\int d^{4} x e^{-i q x}\langle$ state $| \operatorname{Tr} F_{\mathrm{ASD}}^{2}(x)|0\rangle \quad$ with $\quad q^{2}=M_{\mathrm{H}}^{2}$
- Can we look at the same quantity, but in $N=4$ SYM?
- Highly symmetric theory, easier to identify any structure
- Find an appropriate translation of the matrix element to $N=4$ SYM
- What operator? What state? Key question: can we use supersymmetry to simplify/organise the calculation?

Higgs + gluon amplitudes

- Leading order $\mathcal{L}_{\text {eff }} \sim H \operatorname{Tr} F^{2}$
- Early application of on-shell techniques to tree- and oneloop amplitudes (Badger, Dixon, Glover, Khoze; Badger, Glover, Risager, Mastrolia, Williams)

$$
F_{\mathrm{tr} F^{2}}^{\mathrm{tree}}\left(1^{-}, 2^{-}, 3^{+}\right)=\frac{\langle 12\rangle^{3}}{\langle 23\rangle\langle 31\rangle}, \quad F_{\mathrm{tr} F^{2}}^{\mathrm{tre}}\left(1^{+}, 2^{+}, 3^{+}\right)=\frac{q^{4}}{[12][23][31]}, \quad q^{2}=m_{H}^{2}
$$

- This has been pushed in QCD to 2 \& 3-loop order for 2
gluons (Anastasiou, Melnikov; Harlander, Kilgore; Anastasiou, Duhr, Buehler, Herzog, Dulat,
Furlan, Mistlberger),
and to 2 loops for 3 partons (Glover, Gehrmann, Jaquier \& Koukoutsakis)
- Subleading, finite top-mass corrections have been studied as well (e.g. Neill; Dawson, Lewis, Zeng....)

Higgs + gluon amplitudes: from QCD to N=4

- In N=4 SYM operators are organised in multiplets and are related by SUSY transformations
- A) Protected operators (BPS): eg. stress tensor multiplet

$$
\operatorname{tr}\left(X^{2}\right)=\operatorname{tr}\left(\phi_{12}^{2}\right) \xrightarrow{Q^{4}} \mathcal{L}_{\text {on-shell }} \sim \operatorname{tr}\left(F_{\mathrm{SD}}^{2}\right)+\ldots
$$

- B) Non-protected: $\operatorname{tr}\left(F^{3}\right), \operatorname{tr}(D F D F), \ldots$
- In $\mathrm{N}=4$ related to Konishi operator, $K \sim \operatorname{tr}(\bar{X} X+\bar{Y} Y+\bar{Z} Z)$
- Question: are there any similarities between QCD \& $N=4$?

Higgs + gluons amplitude translated to $\mathrm{N}=4$

- Need precise translation of operator $\operatorname{Tr}\left(F_{\text {ASD }}\right)^{2}$ in QCD to $\mathrm{N}=4 \mathrm{SYM}$:
$\operatorname{Tr}\left(F_{\text {ASD }}\right)^{2}$ is contained in the on-shell Lagrangian $\mathcal{L}_{\text {on }}$-shell
- $\mathcal{L}_{\text {on-shell }}$ belongs to a special half-BPS supermultiplet of operators:
- The stress-tensor multiplet:
- Not renormalised
- zero anomalous dimension
- no operator mixing
- correspondingly, there is a supersymmetric form factor of the chiral part of the stress tensor multiplet (AB, Gurdogan, Mooney, Travaglini, Yang)
- use equivalently the operator $\operatorname{Tr} X^{2}$, with $X=$ one of the complex scalars (simpler!)

3-point 2-loop MHV FF in N=4

- Start with 3-point FF at 2-loops

$$
F_{3}(1,2,3)=\left\langle X\left(p_{1}\right) X\left(p_{2}\right) g^{+}\left(p_{3}\right)\right| \operatorname{Tr} X^{2}|0\rangle
$$

- This is how we mimic $\left\langle g^{ \pm}\left(p_{1}\right) g^{ \pm}\left(p_{2}\right) g^{+}\left(p_{3}\right)\right| \operatorname{Tr} F_{\text {ASD }}^{2}|0\rangle$ in QCD (Higgs into 3 gluons)
- At loop level tree FF (and color factor) can be stripped off $F_{3}^{(L)}=F_{3}^{\text {tree }} \mathcal{G}_{3}^{(L)}(1,2,3)$
- $\mathcal{G}_{3}^{(2)}$ is helicity-blind, scalar function, permutation symmetric
- UV finite in $\mathrm{N}=4$
- IR divergences exponentiate

Finite remainders

(Catani; Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

- Subtract off universal IR divergences from the (renormalised) L-loop answer
- All loops: $\mathcal{A}_{n, \mathrm{MHV}}=\mathcal{A}_{n, \text { MHV }}^{\text {tree }} \mathcal{M}_{n}$

$$
\mathcal{M}_{n}:=1+\sum_{L=1}^{\infty} a^{L} \mathcal{M}_{n}^{(L)} \sim \exp [\mathrm{BDS}+\mathcal{R}] \quad a \sim g^{2} N /\left(8 \pi^{2}\right)
$$

- BDS \sim div $+\gamma_{K}$ Finite $^{(1)}\left(p_{1}, \ldots, p_{n}\right)$ BDS Ansatz, completely known
- div = universal infrared-divergent part, exponentiation is expected
- Finite ${ }^{(1)}\left(p_{1}, \ldots, p_{n}\right)=$ finite part of one-loop amplitude
- $\gamma_{K}=$ cusp anomalous dimension \rightarrow integrability
- R is the so-called remainder function the most interesting part!
- Exponentiation of finite parts for one-loop amplitude due to dual conformal symmetry (Drummond, Hemn, Korchemsk, Sosactcher)
- Four- and five-point amplitudes: $\mathrm{R}=0$
- Non-trivial remainder appears from six points on (Drummond, Henn, Korchemsky, Sokatchev; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich)
- No dual conformal symmetry for form factors
- Still, exponentiating finite parts leads to a very simple remainder
- Compute using modern unitarity methods (Berr, Dxon, Dunarar,Kosower; BDK; Britto, Cachazo, Feng)
- Construct amplitude with two- and multi-particle cuts

- Result of 2-loop calculation: (AB, Travaginin, Yang)

$$
\frac{F_{3}^{(2)}}{F_{3}^{\text {tree }}}=\sum_{i=1}^{2}\left(D \operatorname{Tr}_{i}+D B o x_{i}\right)+\text { TriPent }+N B o x+N T r i+\text { cyclic }
$$

$$
D T r i_{2}=q^{2}\left(s_{12}+s_{31}\right) \times
$$

$$
\text { TriPent }=q^{2} s_{12} s_{23} \times
$$

D Box $_{2}=s_{12}\left(s_{31} \ell \cdot p_{1}-s_{23} \ell \cdot p_{2}\right) \times$

NBox $=s_{23}\left(\frac{1}{2} s_{12} s_{31}-s_{12} \ell_{a} \cdot p_{2}-s_{31} \ell_{b} \cdot p_{3}\right) \times$

result expressed as rational coefficients \times two-loop planar and non-planar integrals

- Main feature of two-loop remainder:
- sum of functions has homogeneous degree of transcendentality $=4$

- Transcendentality

- "constants" have transcendentality 0
- π, log transcendentality 1
- $\pi^{2} ; \log ^{2}, \mathrm{Li}_{2}$ transcendentality 2
- ... $\zeta_{n}, \mathrm{Li}_{n}, \log \times \mathrm{Li}_{n-1} \ldots$ transcendentality n
- at L loops: expect transcendentality equal to $2 L$
- Goncharov polylogarithms: degree-k Goncharov polylog $=\mathrm{k}$-fold iterated integral:

$$
G\left(a_{k}, a_{k-1}, \ldots, a_{1} ; z\right)=\int_{0}^{z} G\left(a_{k-1}, \ldots, a_{1} ; t\right) \frac{d t}{t-a_{k}}, \quad G(z)=1
$$

- Final answer (with the help of the symbol)

(AB,Travaglini, Yang)

$$
\begin{aligned}
\mathcal{R}_{3}^{(2)}= & -2\left[\mathrm{~J}_{4}\left(-\frac{u v}{w}\right)+\mathrm{J}_{4}\left(-\frac{v w}{u}\right)+\mathrm{J}_{4}\left(-\frac{w u}{v}\right)\right]-8 \sum_{i=1}^{3}\left[\operatorname{Li}_{4}\left(1-u_{i}^{-1}\right)+\frac{\log ^{4} u_{i}}{4!}\right] \\
& -2\left[\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-u_{i}^{-1}\right)\right]^{2}+\frac{1}{2}\left[\sum_{i=1}^{3} \log ^{2} u_{i}\right]^{2}-\frac{\log ^{4}(u v w)}{4!}-\frac{23}{2} \zeta_{4}
\end{aligned}
$$

- $u_{1}=u=s_{12} / q^{2}, u_{2}=v=s_{23} / q^{2}, u_{3}=w=s_{31} / q^{2}$ kinematic invariants
- $\mathrm{J}_{4}(z):=\operatorname{Li}_{4}(z)-\log (-z) \operatorname{Li}_{3}(z)+\frac{\log ^{2}(-z)}{2!} \operatorname{Li}_{2}(z)-\frac{\log ^{3}(-z)}{3!} \operatorname{Li}_{1}(z)-\frac{\log ^{4}(-z)}{48}$.
- Bloch-Wigner-Ramakrishnan(-Zagier) polylogarithmic function
- Result:
- only classical polylogarithms - Goncharov polylogarithms "cancel"
- condenses several pages of more complicated functions!

Higgs + parton amplitudes in QCD

- Higgs + 3 partons (Koukoutsakisis 2003; Gehrman, Glover.jaquier x Koukkutsakis 2011)
- $\mathrm{Hg}^{+} \mathrm{g}^{-} \mathrm{g}^{-} \mathrm{MHV}$
- $\mathrm{Hg}^{+} g^{+} g^{+}$maximally non-MHV
- $H q \bar{q} g$ fundamental quarks

$$
\begin{aligned}
F^{\text {tree }}\left(H, g_{1}^{-}, g_{2}^{-}, g_{3}^{+}\right) & =\frac{\langle 12\rangle^{2}}{\langle 23\rangle\langle 31\rangle} \\
F^{\text {tree }}\left(H, g_{1}^{+}, g_{2}^{+}, g_{3}^{+}\right) & =\frac{q^{4}}{[12][23][31]} \\
q^{2} & =M_{H}^{2}
\end{aligned}
$$

- In N=4 SYM:
- ($\mathrm{Hg}^{+} g^{-} \mathrm{g}^{-}$) and $\left(\mathrm{Hg}^{+} g^{+} g^{+}\right)$both derived from super form factor
- from supersymmetric Ward identities:

$$
\frac{F^{(L)}\left(g_{1}^{-}, g_{2}^{-}, g_{3}^{+}\right)}{F^{\text {tree }}\left(g_{1}^{-}, g_{2}^{-}, g_{3}^{+}\right)}=\frac{F^{(L)}\left(g_{1}^{+}, g_{2}^{+}, g_{3}^{+}\right)}{F^{\text {tree }}\left(g_{1}^{+}, g_{2}^{+}, g_{3}^{+}\right)}=\mathcal{G}^{(L)}(u, v, w) \quad \leftarrow \text { what we computed }
$$

- QCD answer from Gehrmann, Glover, Jaquier \& Koukoutsakis
- very different looking than $\mathrm{N}=4 \mathrm{SYM}$ result!
- transcendentality 4,3,2,1 and 0 (rational). In $\mathrm{N}=4$, only degree 4
- expressed in terms of several pages of Goncharov polylogarithms
- expected because of expansion as \sum (coefficient \mathbf{x} integral) !
- each integral is separately quite complicated
- Comparing the two quantities...

...we find a surprising relation

$$
\left.\mathcal{R}_{H g^{-} g^{-} g^{+}}^{(2)}\right|_{\mathrm{MAXTRANS}}=\left.\mathcal{R}_{H g^{+} g^{+} g^{+}}^{(2)}\right|_{\mathrm{MAX} \mathrm{TRANS}}=\mathcal{R}_{\mathcal{N}=4 \mathrm{SYM}}^{(2)}
$$

- $N=4$ SYM answer is the maximally transcendental part of the QCD amplitudes, and is helicity-independent
- not a "perturbative" expansion
- different calculations !
- different operators $\left(\operatorname{Tr}\left(F_{\text {ASD }}\right)^{2}\right.$ vs $\left.L_{\text {on-shell }}\right)$
- different theories ($\mathrm{N}=4$ SYM vs QCD)
- Goncharov polylogarithms in QCD results eliminated in favour of classical polylogarithms (Duhr)
- Nothing similar holds for the (H, q, \bar{q}, g) form factor
- Principle of maximal transcendentality:
- results in N=4 SYM obtained from results in QCD by deleting all terms with less-than-maximal transcendentality
- an experimental rule, valid only in some cases
- discovered by Kotikov, Lipatov, Onischchenko and Velizhanin in the context of anomalous dimensions of twist-2 operators
- so far seen only in kinematic-independent quantities
- several counter-examples in amplitudes, e.g. broken for one-loop amplitudes in pure Yang-Mills for $n>4$
- Supersymmetry as an organisational principle...
- ...even if supersymmetry is not realised in nature
- Next testing ground: form factors of higher-dimensional operators describing Higgs + multigluon scattering

From $\mathrm{N}=4$ to QCD

(AB, Kostacińska, Penante, Travaglini, Young 'I6;AB, Kostacińska, Penante, Travaglini 'I7 +in progress)

- Effective field theory description for finite $m_{\text {top }}$ corrections
- Beyond leading-order term

$$
\mathcal{L}_{\text {eff }}^{(0)} \sim H \operatorname{Tr} F^{2}
$$

(infinite $m_{\text {top }}$)

- Next corrections: 4 dimension-7 operators in QCD
- Two particular operators also present in N=4 SYM:

$$
\mathcal{L}_{\mathrm{eff}}^{(1)} \sim H \operatorname{Tr} F^{3}
$$

$$
\mathcal{L}_{\mathrm{eff}}^{(2)} \sim H \operatorname{Tr}\left(D_{\mu} F_{\rho \sigma}\right)\left(D^{\mu} F^{\rho \sigma}\right)
$$

- Goal: compute in N=4 SYM and compare to QCD (result not yet available in literature)
- previous work at one loop: Dawson, Lewis \& Zeng; Neill; Harlander \& Neumann...
- higher-dimensional operators also studied as corrections to the Standard Model (Buchmuller \& Wyler '85 and MANY more!)

Questions \& Conjectures

- Does the maximal-transcendentality connection still hold?
- Do protected and non-protected operators in N=4 SYM play a special role for Higgs+gluon amplitudes?
- Can we identify universal building blocks in the results?
- Connections to the dilatation operator of $\mathrm{N}=4 \mathrm{SYM}$?
- Answer is YES for all questions!

Two-loop results

- Compare remainders for the two form factors:

$$
\begin{array}{ll}
\left\langle g^{+} g^{+} g^{+}\right| \operatorname{Tr} F_{\mathrm{ASD}}^{3}|0\rangle & \text { in any theory (even without supersymmetry) } \\
\langle X X X| \operatorname{Tr} X^{3}|0\rangle & \text { in } \mathrm{N}=4 \mathrm{SYM}
\end{array}
$$

- $\operatorname{Tr}\left(X^{3}\right)$ is protected "half-BPS", $X=$ one of the three complex $\mathrm{N}=4$ scalars
- $\operatorname{Tr}\left(F_{\text {ASD }}\right)^{3}$ is NOT protected - definitely not part of the same multiplet
- Maximally transcendental parts identical !!

$$
\begin{aligned}
\left.\mathcal{R}_{F_{\text {ASD }}^{3}}^{(2)}\right|_{\text {MAX TRANS }}=\mathcal{R}_{\mathrm{BPS}}^{(2)}= & -\frac{3}{2} \operatorname{Li}_{4}(u)+\frac{3}{4} \operatorname{Li}_{4}\left(-\frac{u v}{w}\right)-\frac{3}{2} \log (w) \operatorname{Li}_{3}\left(-\frac{u}{v}\right)+\frac{1}{16} \log ^{2}(u) \log ^{2}(v) & u:=\frac{s_{12}}{q^{2}} \\
& +\frac{\log ^{2}(u)}{32}\left[\log ^{2}(u)-4 \log (v) \log (w)\right]+\frac{\zeta_{2}}{8} \log (u)[5 \log (u)-2 \log (v)] & v:=\frac{s_{23}}{q^{2}} \\
& +\frac{\zeta_{3}}{2} \log (u)+\frac{7}{16} \zeta_{4}+\operatorname{perms}(u, v, w) . & w:=\frac{s_{31}}{q^{2}}
\end{aligned}
$$

- Same as earlier conclusion for leading-order coupling
- $\operatorname{Tr}(X)^{2}$ also half-BPS, evaluated in $\mathrm{N}=4$ SYM
- $\operatorname{Tr}\left(F_{\text {ASD }}\right)^{2}$ form factor evaluated in $\mathrm{N}=0$

BPS operators in N=4 SYM compute (parts of) phenomenologically relevant quantities in QCD!

- Onto subleading in transcendentality terms
- Need to identify the "appropriate translation"...
- ...or we can just compute with the "component" operator $\operatorname{Tr}\left(F_{\text {ASD }}\right)^{3}$
- Translating the operator $\operatorname{Tr}\left(F_{\mathrm{ASD}}\right)^{3}$ to $\mathrm{N}=4$ language leads to the Konishi supermultiplet
- simplest non-protected operator multiplet in the theory
- tree-level super form factor in $\mathrm{N}=4$ computed recently using LHC superspace! (Chicherin \& Sokatchev)
- generalisation to $\mathrm{N}=2$ and $\mathrm{N}=\mathrm{I}$ supersymmetry straightforward
- Remainder contains two types of terms:
- purely transcendental: 4 (already discussed), 3, 2, 1 and 0
- new: multiplied by a rational prefactor, e.g. $u / v, u / w, v / w$
- Calculation in $\mathrm{N}=4$ done, $\mathrm{N}=2, \mathrm{I}, 0$ almost ready
- maximally transcendental part is universal as new integrals have lower transcendentality

- complete $\mathrm{N}=4$ result extremely simple
- intriguing relations to the finite remainders that have emerged in the calculation of the dilatation operator of the theory.
- UV: Reproduce expected 2-loop anomalous dimension of Konishi operator
- IR-divergences exponentiate as expected
- $\mathrm{N}=2, \mathrm{I}, 0$
- Calculation considerably more involved. Still: remainders R differ only slightly
- Running coupling, need to renormalise form factors...
- ... and compute Catani's remainder to remove UV and IR divergences
- New predictions for anomalous dimensions in $N=2,1,0(S) Y M$

- Transcendentality 3, 2, 1, 0 parts of the N=4 SYM result for the Konishi supermultiplet:

$$
\begin{aligned}
&\left.\mathcal{R}_{\mathcal{K}, 3}^{(2)}\right|_{\text {pure }}=\operatorname{Li}_{3}(u)+\operatorname{Li}_{3}(1-u)-\frac{1}{4} \log ^{2}(u) \log \left(\frac{v w}{(1-u)^{2}}\right)+\frac{1}{3} \log (u) \log (v) \log (w) \\
&+\zeta_{2} \log (u)-\frac{5}{3} \zeta_{3}+\operatorname{perms}(u, v, w) \\
&\left.\mathcal{R}_{\mathcal{K} ; 3}^{(2)}\right|_{u / w}=\left[-\operatorname{Li}_{3}\left(-\frac{u}{w}\right)+\log (u) \operatorname{Li}_{2}\left(\frac{v}{1-u}\right)-\frac{1}{2} \log (1-u) \log (u) \log \left(\frac{w^{2}}{1-u}\right)\right. \\
&\left.+\frac{1}{2} \operatorname{Li}_{3}\left(-\frac{u v}{w}\right)+\frac{1}{2} \log (u) \log (v) \log (w)+\frac{1}{12} \log ^{3}(w)+(u \leftrightarrow v)\right] \\
&+\operatorname{Li}_{3}(1-v)-\operatorname{Li}_{3}(u)+\frac{1}{2} \log ^{2}(v) \log \left(\frac{1-v}{u}\right)-\zeta_{2} \log \left(\frac{u v}{w}\right) \\
& \underbrace{\left.\mathcal{R}_{\mathcal{K} ; 2}^{(2)}\right|_{\text {pure }}}=--\operatorname{Li}_{2}(1-u)-\log ^{2}(u)+\frac{1}{2} \log (u) \log (v)-\frac{13}{2} \zeta_{2}+\operatorname{perms}(u, v, w) \\
&\left.\mathcal{R}_{\mathcal{K} ; 2}^{(2)}\right|_{u^{2} / w^{2}}=\operatorname{Li}_{2}(1-u)+\operatorname{Li}_{2}(1-v)+\log (u) \log (v)-\zeta_{2}
\end{aligned}
$$

$$
\mathcal{R}_{\mathcal{K} ; 1}^{(2)}=\left(-4+\frac{v}{w}+\frac{u^{2}}{2 v w}\right) \log (u)+\operatorname{perms}(u, v, w), \quad \mathcal{R}_{\mathcal{K} ; 0}^{(2)}=7\left(12+\frac{1}{u v w}\right)
$$

More surprises...

- result for Konishi almost identical to result for $\operatorname{Tr}(X[Y, Z])$
- Same building blocks have already appeared in the computation of the form factor/dilatation operator of the theory in the $S U(2)$ sector (operators built out of \mathbf{X} and Y)
- surprising! [technical comment: $\operatorname{Tr}(X[Y, Z])$ belongs to the $\operatorname{SU}(213)$ sector $>S U(2)]$
- results much more structured than expected. Connections to integrability?
- Hints at universal building blocks?
- Results for $\mathrm{N}<4$, and for pure Yang-Mills on the way. Stay tuned!

Summary

- Form factors in $\mathrm{N}=4 \mathrm{SYM}$
- share simplicity of amplitudes
- compute Higgs amplitudes in QCD in an effective Lagrangian approach
- remarkable simplicity of the remainders
- $\mathrm{N}=4$ SYM computes the most complicated part of the remainder
- Systematise (understand!) the connection between Higgs amplitudes in QCD and form factors in N=4 SYM

Further open questions

- Reinforce links with integrability
- Dual conformal symmetry of amplitudes implies Yangian symmetry of dilatation operator D
- Can extract D from form factors, e.g. $\operatorname{SU}(2 \mid 3) / \mathrm{SU}(2)$ sector at 2 loops; complete 2-loop dilatation operator?
- Hidden symmetries responsible for simple results? How is dual conformal symmetry of amplitudes realised?
- Form factors link completely on-shell and off-shell worlds.
- More applications/connections/similiarities to/with phenomenologically interesting theories to be explored

