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Why calculate amplitudes & form factors?

• Strong Physics motivations

• LHC physics

• precision perturbative QCD

• Mathematical physics motivations

• AdS/CFT

• New dualities

• Hidden symmetries

• Links to integrability



• Calculations with standard Feynman rules are cumbersome

• Gauge dependence, off-shell

• Many diagrams

• Huge cancellations

• E.g.: for 5 gluons

• 2 gluons → n gluons at tree-level                                                            

Hard calculations lead to…

gg => n g n=7 n=8 n=9

Diagrams 559405 10525900 224449225

=



…surprising simplicity
• All-plus/single-minus helicity tree amplitudes

• Maximally Helicity Violating (MHV) tree amplitudes with    
2 negative helicity and n-2 positive helicity gluons  

A(1±, 2+, 3+, . . . , n+) = 0

AMHV(1+, 2+, . . . , i�, . . . , j�, . . . , n+) =
hiji4

h12ih23i . . . hn1i

i=1, j=3

Parke-Taylor/Mangano-Parke
hiji ⇠ p

sije
i�ij

sij = (pi + pj)2

Traditional methods
obscure simplicities

and hidden symmetries



Hidden Simplicities in Amplitudes…

• Why are amplitudes so simple?                                           
Can we make use of this fact?

• Geometry in twistor space (Witten 2003)

• Iterative structures of S-matrix of gauge theory & gravity

• Avoid problems of standard Feynman rules

• gauge dependence, ghosts

• off-shell

• large number of diagrams

Only 3-point
Amplitudes 
needed as

Input!!



... Inspire New Methods

• Novel Methods

• MHV Diagrams (Cachazo-Svrcek-Witten;  AB, Spence Travaglini)                                                        

• Generalised Unitarity algebraic; no phase space/dispersion integrals!                                                                  
(Bern, Dixon, Dunbar, Kosower,... Britto, Cachazo, Feng,…)

• On-shell Recursion Relations (Britto-Cachazo-Feng-Witten)

• Important common feature

• Only on-shell quantities needed                                    
e.g. MHV rules need only

An,MHV =
⇥ij⇤4

⇥12⇤⇥23⇤ . . . ⇥n1⇤

∑ a + ∑ b + ∑ c



Return of the...

• Key ideas go back to pre-history              
old S-matrix approach of 60’s !

• On-shell          ...fields themselves are of little interest. Deal        
with physical, on-shell S-matrix elements directly...

• Unitarity            ...use the analytic structure of the scattering 
amplitudes (poles, branch cuts, factorisation), whether or not         
some underlying Lagrangian theory exists...

• Complexify      ...One of the most remarkable discoveries in 
elementary particle physics has been that of the complex plane

Geoffrey Chew



• The S-Matrix is unitary

tree tree

Loops from Trees

tree tree

Trees from Trees

treetree

S = 1 + iT ! �i(T � T †) = T †T

1
l2i + i✏

! �i⇡�(l2i )
1

l2i + i✏
! �i⇡�(l2i )

BCFW recursion relations Generalised Unitarity Method



N=4 Super Yang-Mills

• Gluons, 4 Weyl fermions, 3 complex scalars X, Y, Z            
all in adjoint representation

• Simplest interacting gauge theory in 4D: superconformal, beta 
function = 0

• New symmetries of amplitudes: Dual Conformal Symmetry => 
Yangian Symmetry => Integrability

• Playground to test and refine new methods: generalised 
unitarity, BCFW recursion relations, symbol of functions

• Clearly very different from QCD:  BUT

- Gluon tree amplitudes in QCD same as N=4 SYM

- N=4 often captures large chunks of full QCD computations



• Long-term goal: extend success of on-shell methods to 
“partially or fully off-shell” quantities

• Partially off-shell: form factors (main focus today)

- MHV diagrams, BCFW, generalised unitarity, remainder functions, symbols, 
scattering equations (CHY)… (AB, Hughes, Panerai, Penante, Spence, Travaglini, Wen, Yang, 
Young; Bork, Kazakov, Vartanov; Loebbert, Nandan, Sieg, Wilhelm, Yang; Gehrmann, Henn…)

- Remarkable simplicities/regularities but no dual conformal symmetry

• Fully off-shell: correlation functions (Engelund-Roiban; AB, Penante, Travaglini,Young)

• Anomalous dimensions    = eigenvalues of hamiltonian         
(dilatation operator) of an integrable spin-chain in N=4! 

Beyond amplitudes

H
A
B

h0| O(x1)Ō(x2) |0i ⇠
1

((x1 � x2)2)�0+�

�



• More general objects than correlation functions, Wilson loops, 
amplitudes: e.g. Wilson loops with operator insertions, 
correlators of Wilson loops ...

• Form Factors: interpolate between correlators and amplitudes, 
partially off-shell 

Form Factors: “going partially off-shell”

Z
d4x e�iqx

h1 · · ·n|O(x)|0i = �(4)(q �
nX

i=1

pi) h1 · · ·n|O(0)|0i

q =
nX

i=1

pi

q2 6= 0 , o↵ � shell!



• Simplest case (QCD) Sudakov FF (n=2): IR divergences         

• In N=4 2-Loop Sudakov FF first studied by Van 
Neerven

• 3 Loops: (Gehrmann, Henn, Huber)

• 4 & 5 Loops (Boels, Huber, Yang): 

• Color-Kinematics duality (Bern-Carrasco-Johansson)

• Cusp anomalous dim, Casimir scaling violated at four loops
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FFs appear in many physics contexts

72 diagrams 
like = (1.181241456...) (�e.m./⇥)

3 (Cvitanovic & Kinoshita ’74)

(Laporta & Remiddi ’96) 

hadronic electromagnetic currente+ e− → hadrons (X)
all orders in αstrong,  first order in αe.m.

= e v̄(p2)�µu(p1)
⇥µ�

(p1 + p2)2
(�e)⇥X| Je.m.

� (0) |0⇤

� �
�

�

�

�
�

�
�

X

������
�
�

����
�
�

�
������

•  Three-loop correction to electron g−2 

• wild oscillations between individual diagram

• result is O(1)  => mysterious cancellations

• e+ e−   → hadrons (LEP): 



• Higgs + multi-gluon amplitudes 

• at low MH , dominant Higgs production                                            
at the LHC through gluon fusion 

• coupling to gluons through a quark loop   

• for MH  < 2 mt   integrate out top quark

• Effective Lagrangian description: leading

• coupling                                      independent of mt

• subleading:

Le↵ ⇠ H TrF 2

↵S

12⇡v
, v = 246GeV

Lsub ⇠ C1

vm
2
t

HtrF 3 +
C2

vm
2
t

HtrDFDF + . . .

Effective Lagrangians 

TrF 2 = TrF 2
SD +TrF 2

ASD



• Higgs amplitudes are form factors of  Tr F2

• bring down one interaction, and Wick-contract the Higgs field

• Can we look at the same quantity, but in N=4 SYM? 

• Highly symmetric theory, easier to identify any structure 

• Find an appropriate translation of the matrix element to N=4 SYM

• What operator? What state? Key question: can we use supersymmetry to 
simplify/organise the calculation? 

FF 2
ASD

=

Z
d4x e�iqx hstate|TrF 2

ASD(x)|0i q2 = M2

Hwith

FFs = amplitudes in effective theories 



Higgs + gluon amplitudes

• Leading order

• Early application of on-shell techniques to tree- and one-
loop amplitudes (Badger, Dixon, Glover, Khoze; Badger, Glover, Risager, Mastrolia, 

Williams)

• This has been pushed in QCD to 2 & 3-loop order for 2 
gluons (Anastasiou, Melnikov; Harlander, Kilgore; Anastasiou, Duhr, Buehler, Herzog, Dulat, 

Furlan, Mistlberger),                                                               
and to 2 loops for 3 partons (Glover, Gehrmann, Jaquier & Koukoutsakis) 

• Subleading, finite top-mass corrections have been studied as well 
(e.g. Neill; Dawson, Lewis, Zeng….)

F tree
trF 2(1�, 2�, 3+) =

h12i3

h23ih31i , F tree
trF 2(1+, 2+, 3+) =

q4

[12][23][31]
, q2 = m2

H

Le↵ ⇠ H TrF 2



• In N=4 SYM operators are organised in multiplets and are related 
by SUSY transformations

• A) Protected operators (BPS): eg. stress tensor multiplet

• B) Non-protected:

• In N=4 related to Konishi operator,                                        

• Question: are there any similarities between QCD & N=4?

tr(F 3) , tr(DFDF ) , . . .

K ⇠ tr(X̄X + Ȳ Y + Z̄Z)

tr(X2) = tr(�2
12)

Q4

�! Lon-shell ⇠ tr(F 2
SD) + . . .

Higgs + gluon amplitudes: from QCD to N=4



• Need precise translation of operator Tr (FASD)2 in QCD to N=4 SYM:  
 
      Tr (FASD)2  is contained in the on-shell Lagrangian 

•                         belongs to a special half-BPS supermultiplet of operators:

•     The stress-tensor multiplet:

• Not renormalised

• zero anomalous dimension

• no operator mixing

• correspondingly, there is a supersymmetric form factor of the chiral part 
of the stress tensor multiplet (AB, Gurdogan, Mooney, Travaglini, Yang)

• use equivalently the operator Tr X2 , with X = one of the complex scalars 
(simpler!)

Higgs + gluons amplitude translated to N=4 

Lon�shell

Lon�shell



3-point 2-loop MHV FF in N=4

• Start with 3-point FF at 2-loops

• This is how we mimic                                                       
in QCD (Higgs into 3 gluons)

• At loop level tree FF (and color factor) can be stripped off

•        is helicity-blind, scalar function, permutation symmetric

• UV finite in N=4

• IR divergences exponentiate

G(2)
3

F3(1, 2, 3) = hX(p1)X(p2) g
+(p3) |TrX2 |0 i

hg±(p1) g±(p2) g+(p3) |TrF 2
ASD |0 i

F (L)
3 = F tree

3 G(L)
3 (1, 2, 3)



• Subtract off universal IR divergences from the 
(renormalised) L-loop answer                                                      

• All loops: 

 

•                                                          BDS Ansatz, completely known 

- div = universal infrared-divergent part, exponentiation is expected                                        

- Finite(1) (p1, …, pn)  =  finite part of one-loop amplitude    

-       = cusp anomalous dimension   → integrability  

- R is the so-called remainder function  the most interesting part!

Finite remainders
(Catani; Anastasiou, Bern, Dixon, Kosower; Bern, Dixon, Smirnov)

�K

An,MHV = Atree

n,MHV
Mn

☞

Mn := 1 +
1X

L=1

aLM(L)
n ⇠ exp

⇥
BDS + R

⇤
a ⇠ g2N/(8p2)

BDS ⇠ div + �K Finite(1)(p1, . . . , pn)



• Exponentiation of finite parts for one-loop amplitude  
due to dual conformal symmetry (Drummond, Henn, Korchemsky, Sokatchev) 

• Four- and five-point amplitudes:  R = 0                    

• Non-trivial remainder appears from six points on (Drummond, Henn, Korchemsky, Sokatchev; 

Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich)  

• No dual conformal symmetry for form factors

• Still, exponentiating finite parts leads to a very simple remainder

• Compute using modern unitarity methods (Bern, Dixon, Dunbar, Kosower; 
BDK; Britto, Cachazo, Feng)

• Construct amplitude with                                                                                    
two- and multi-particle cuts
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DTri1 = q2(s23 + s31)× DTri2 = q2(s12 + s31)×
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Figure 6: The integral expansion of our final result for the three-point form factor G(2)
3 .

we constructed an MB representation of NBox directly from its Feynman parameter form.
The result is an eight-fold MB representation of the form

(−q2)−2ϵ

2(2πi)8Γ(−1− 3ϵ)

∫ 8∏

i=1

(dziΓ(−zi))u
z5+1vz678+1w−3−2ϵ−z12345678 ×

Γ(−ϵ− z34)Γ(−ϵ+ z4)Γ(1 + z13456)Γ(1 + z157)Γ(−1− ϵ+ z3 − z8)×
Γ(−2− 2ϵ− z1 − z568)Γ(−2 − 2ϵ− z134578)Γ(−2 − 2ϵ− z1234678)× (3.12)

Γ(−2ϵ− z3 + z8)Γ(1 + z168)Γ(1 + z278)Γ(3 + 2ϵ+ z12345678)

Γ(−2ϵ− z3)Γ(−1− 2ϵ− z3 − z48)Γ(−1− 2ϵ+ z34 − z8)Γ(−2ϵ− z34 + z8)
,

where we have introduced the shorthand notation zij...k = zi + zj + . . .+ zk, and

u =:
s12
q2

, v :=
s23
q2

, w :=
s31
q2

. (3.13)

Note that for sake of brevity we have dropped here the terms of the numerator which
are linear in loop momentum ℓ; they lead to a number of similar eight-fold MB integrals.
Furthermore, due to the Γ(−1 − 3ϵ) denominator the integral effectively becomes seven-
dimensional [21]. In this sense this integral is the most complicated and numerically the

14

F (2)
3

F tree
3

=
2X

i=1

(DTrii + DBoxi) + TriPent + NBox + NTri + cyclic

• Result of 2-loop calculation: (AB, Travaglini, Yang) 

result expressed as rational coefficients × two-loop planar and non-planar integrals



• Main feature of two-loop remainder:

• sum of functions has homogeneous degree of transcendentality = 4

• Transcendentality

• “constants” have transcendentality 0

• π, log transcendentality 1

• π2  ; log2 ,  Li2    transcendentality 2

• ...  ζn , Lin ,   log × Lin-1 ... transcendentality n

• at L loops: expect transcendentality equal to  2 L

• Goncharov polylogarithms:                                                  
degree-k Goncharov polylog = k-fold iterated integral:



• Final answer  (with the help of the symbol)          
(AB, Travaglini,  Yang)

• u1 = u = s12 / q2 ,   u2 = v = s23 / q2 ,  u3 = w = s31 / q2   kinematic 
invariants

•  

• Bloch-Wigner-Ramakrishnan(-Zagier) polylogarithmic function 

• Result: 

- only classical polylogarithms - Goncharov polylogarithms “cancel” 

- condenses several pages of more complicated functions!

following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4 ,

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [63] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
ambiguities using constraints from permutation symmetry and collinear limits. In our case
it was sufficient to add the ζ4 term to get a symmetric function, that is smooth throughout
the Euclidean region defined as 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, 0 ≤ w ≤ 1 and u+ v + w = 1, and
vanishes in all collinear and soft limits.

Finally, we have collected in Table 2 results from our numerical evaluations in Section
3.1 and compared them with the exact result (4.32). This also serves as confirmation of
the overall normalisation of the remainder, which is not fixed by the symbol alone.

4.6 A surprising relation with QCD

In this final section we wish to discuss an intriguing connection of our result with the
recent work of [12]. In that paper, the two-loop helicity amplitudes for H → ggg and
H → qq̄g were computed in the large top mass limit. In this approximation the top quark
can be integrated out at one loop and produces a new effective vertex of the form Hgg.

24

this expectation beautifully. As we will show in the final part of this paper, there is an
alternative way to obtain an analytic result of the form factor remainder in terms of two-
dimensional harmonic polylogarithms [62]. This is due to a remarkable relation between
the N = 4 form factor and the planar, maximally transcendental part of the two-loop
QCD amplitude for H → ggg recently obtained in [12, 13].

4.5 The analytic remainder function

The remaining task now is to find a transcendentality-four function whose symbol is given
by (4.28). Recall that the symbol only takes entries from the list {u, v, w, 1−u, 1−v, 1−w}
and has the symmetry (4.29), which implies the result should be expressed purely in terms
of classical polylogarithms of degree up to four and logarithms [61,23]. This however does
not fix a priori the allowed arguments of these functions, but the arguments of individual
functions must be such that the symbol of that function has only entries from that list.
Taking these considerations into account, the most general ansatz will be built from the
following set of functions:

log x1 log x2 log x3 log x4 , Li2(x1) log x2 log x3 , Li2(x1)Li2(x2) , Li3(x1) log x2 and Li4(xi) ,
(4.30)

where we found it sufficient to take the possible arguments xi from the list
{
u, v, w, 1− u, 1− v, 1− w, 1− 1

u
, 1− 1

v
, 1− 1

w
,−uv

w
,−vw

u
,−wu

v

}
. (4.31)

Imposing the constraint that the ansatz has the same symbol as (4.28) one can easily
find a solution. We have then applied various polylogarithm identities to simplify the raw
solution obtained in this way. The final result takes the remarkably simple and compact
form

R(2)
3 = −2

[
J4

(
−uv

w

)
+ J4

(
−vw

u

)
+ J4

(
−wu

v

)]
− 8

3∑

i=1

[
Li4

(
1− u−1

i

)
+

log4 ui

4!

]

−2

[
3∑

i=1

Li2(1− u−1
i )

]2

+
1

2

[
3∑

i=1

log2 ui

]2

− log4(uvw)

4!
− 23

2
ζ4

(4.32)

where u1 = u, u2 = v and u3 = w and we have introduced the function

J4(z) := Li4(z)− log(−z)Li3(z) +
log2(−z)

2!
Li2(z)−

log3(−z)

3!
Li1(z)−

log4(−z)

48
. (4.33)

It is curious to note here that J4(z) is almost identical to the function D4(z) introduced
by Ramakrishnan. The functions Dm(z), m > 2, are generalisations of the Bloch-Wigner
functions (see [65] for an inspirational exposition of these topics and references).

In the representation obtained above we have already taken into account beyond-the-
symbol ambiguities which arise due to the fact that the symbol is blind to transcendentality-
four terms of the form π4 or π2 × {log xi log xj ,Li2(xi)}. It is a simple task to fix these
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Next: QCD



• Higgs + 3 partons  (Koukoutsakis 2003; Gehrmann, Glover, Jaquier & Koukoutsakis 2011)

• H g+ g− g−   MHV

• H g+ g+ g+   maximally non-MHV 

• H         g      fundamental quarks

• In N=4 SYM: 

• (H g+ g− g−)      and  (H g+ g+ g+)  both derived from super form factor

• from supersymmetric Ward identities: 

q q̄

F (L)(g�1 , g
�
2 , g

+
3 )

F tree(g�1 , g
�
2 , g

+
3 )

=
F (L)(g+1 , g

+
2 , g

+
3 )

F tree(g+1 , g
+
2 , g

+
3 )

= G(L)(u, v, w)

q2 = M2
H

← what we computed

F
tree(H, g

+
1 , g

+
2 , g

+
3 ) =

q
4

[1 2] [2 3] [3 1]

F
tree(H, g

�
1 , g

�
2 , g

+
3 ) =

h1 2i2

h2 3i h3 1i

Higgs + parton amplitudes in QCD



• QCD answer from Gehrmann, Glover, Jaquier & Koukoutsakis 

• very different looking than N=4 SYM result!

• transcendentality 4,3,2,1 and  0 (rational). In N=4, only degree 4

• expressed in terms of several pages of Goncharov polylogarithms

• expected because of expansion as ∑ (coefficient x integral) !

• each integral is separately quite complicated 

• Comparing the two quantities…



• N=4 SYM answer is the maximally transcendental part of the QCD 
amplitudes, and is helicity-independent

• not a “perturbative” expansion 

• different calculations ! 

• different operators  (Tr (FASD)2  vs Lon-shell)

• different theories (N=4 SYM  vs QCD)  

• Goncharov polylogarithms in QCD results eliminated in favour of 
classical polylogarithms (Duhr)

• Nothing similar holds for the               form factor  (H, q, q̄, g)

R(2)
H g�g�g+

���
MAXTRANS

= R(2)
H g+g+g+

���
MAXTRANS

= R(2)
N=4SYM

…we find a surprising relation



• Principle of maximal transcendentality:  

• results in N=4 SYM obtained from results in QCD  by deleting  
all terms with less-than-maximal transcendentality

• an experimental rule, valid only in some cases

• discovered by Kotikov, Lipatov, Onischchenko and Velizhanin  
in the context of anomalous dimensions of twist-2 operators 

• so far seen only in kinematic-independent quantities

• several counter-examples in amplitudes, e.g. broken for  
one-loop amplitudes in pure Yang-Mills for n>4  

• Supersymmetry as an organisational principle…

• …even if supersymmetry is not realised in nature

• Next testing ground: form factors of higher-dimensional 
operators describing Higgs + multigluon scattering   



• Effective field theory description for finite mtop  corrections 

• Beyond leading-order term                                         (infinite mtop)  

• Next corrections:   4 dimension-7 operators in QCD

• Two particular operators also present in N=4 SYM:  
  

• Goal: compute in N=4 SYM and compare to QCD (result not yet available in 
literature)

• previous work at one loop: Dawson, Lewis & Zeng; Neill; Harlander & Neumann…

• higher-dimensional operators also studied as corrections to the Standard Model  
(Buchmuller & Wyler ’85 and MANY more!)

From N=4 to QCD 

L(1)
e↵ ⇠ H TrF 3 L(2)

e↵ ⇠ H Tr(DµF⇢�)(D
µ
F

⇢�)

(AB, Kostacińska, Penante, Travaglini,  Young ’16; AB, Kostacińska, Penante, Travaglini ’17 +in progress)

L(0)
e↵ ⇠ H TrF 2



• Does the maximal-transcendentality connection still hold?

• Do protected and non-protected operators in N=4 SYM play a 
special role for Higgs+gluon amplitudes?  

• Can we identify universal building blocks in the results?

• Connections to the dilatation operator of N=4 SYM?   

• Answer is YES for all questions!  

Questions & Conjectures



• Compare remainders for the two form factors:

• Tr (X3)  is protected  “half-BPS”,  X = one of the three complex N=4 scalars

• Tr (FASD)3  is NOT protected — definitely not part of the same multiplet

• Maximally transcendental parts identical !! 

Two-loop results 

hg+g+g+|TrF 3
ASD | 0 i

hXXX|TrX3 | 0 i

in any theory (even without supersymmetry) 

in N=4 SYM 

R(2)
F 3

ASD

���
MAXTRANS

= R(2)
BPS =� 3

2
Li4(u) +

3

4
Li4

⇣
�uv

w

⌘
� 3

2
log(w) Li3

⇣
�u
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⌘
+

1

16
log2(u) log2(v)

+
log2(u)

32

h
log2(u)� 4 log(v) log(w)

i
+

⇣2
8
log(u)

h
5 log(u)� 2 log(v)

i

+
⇣3
2
log(u) +

7

16
⇣4 + perms (u, v, w) .

u : =
s12
q2

v : =
s23
q2

w : =
s31
q2



• Same as earlier conclusion for leading-order coupling

• Tr (X)2  also half-BPS, evaluated in N=4 SYM

• Tr (FASD)2  form factor evaluated in N=0

• Onto subleading in transcendentality terms

• Need to identify the “appropriate translation”…

• …or we can just compute with the “component” operator Tr (FASD)3

BPS operators in N=4 SYM compute (parts of)  
phenomenologically relevant quantities in QCD!



• Translating the operator Tr (FASD)3  to N=4 language leads to the 
Konishi supermultiplet

• simplest non-protected operator multiplet in the theory

• tree-level super form factor in N=4 computed recently using LHC 
superspace ! (Chicherin & Sokatchev)

• generalisation to N=2 and N=1 supersymmetry straightforward  

• Remainder contains two types of terms:

• purely transcendental: 4 (already discussed), 3, 2, 1 and 0

• new: multiplied by a rational prefactor, e.g.  u/v, u/w, v/w  

• Calculation in N=4 done, N=2,1, 0 almost ready

• maximally transcendental part is universal as  
new integrals have lower transcendentality

Figure 2: The single-scale integral topology which incorporates the e↵ect of having a di↵erent field

content compared to that of N =4 SYM.

in Figure 2 which, due to non-trivial cancellations, is absent for N = 4 SYM. Evaluating
explicitly the integrals with appropriate numerators coming from fermions and scalars cross-
ing the cut, we find again that they only contribute at sub-maximal transcendental weight.
Hence we conclude that the transcendentality-four slice of the remainder function is indeed
universal for this particular form factor in Yang-Mills theories with any amount of super-
symmetry and QCD (the presence of fermions in the fundamental representation does not
alter this statement).

We end by commenting on possible extensions of our work that are currently under
investigation [28]. An obvious important step is to generalise our calculation to theories
with less supersymmetry, including pure Yang-Mills and QCD. Here it will be important to
address potential rational terms that may be missed in less supersymmetric theories when
four-dimensional cuts are employed (rather than D-dimensional ones). Note that issues
encountered with dimensional regularisation in the case of the Konishi operator in [26] did not
arise in [24] and in the present work since the operator definition does not involve state sums.
Other aspects to be discussed in future work are form factors of other dimension-six operators
such as Tr(DFDF ) appearing in the e↵ective theory for Higgs plus multi-parton scattering,
and studies of the operator mixing using subminimal/non-minimal form factors as in [24].
Finally, we are also investigating form factors with more general helicity configurations than
the one considered in this letter. We expect that in all these considerations supersymmetry
will emerge as a powerful organisational principle and that results for form factors in QCD
will reveal further remarkable similarities with N =4 SYM.
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• complete N=4 result extremely simple

• intriguing relations to the finite remainders that have emerged in the 
calculation of the dilatation operator of the theory.                    

• UV: Reproduce expected 2-loop anomalous dimension of Konishi 
operator

• IR-divergences exponentiate as expected

• N=2,1,0

• Calculation considerably more involved.                                                    
Still: remainders R differ only slightly

• Running coupling, need to renormalise form factors…

• … and compute Catani’s remainder to remove UV and IR divergences

• New predictions for anomalous dimensions in N=2,1,0 (S)YM



• Transcendentality 3, 2, 1, 0 parts of the N=4 SYM 
result for the Konishi supermultiplet: 
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• result for Konishi almost identical to result  
for Tr (X[Y , Z])

• Same building blocks have already appeared in the computation 
of the form factor/dilatation operator of the theory in the SU(2) 
sector (operators built out of X and Y)

‣ surprising! [ technical comment: Tr (X[Y , Z])  belongs to the SU(2|3) sector 
> SU(2)] 

‣ results much more structured than expected. Connections to integrability?

• Hints at universal building blocks? 

• Results for N<4, and for pure Yang-Mills on the way.  
Stay tuned!

More surprises…



• Form factors in N=4 SYM

• share simplicity of amplitudes 

• compute Higgs amplitudes in QCD in an effective Lagrangian 
approach                                 

• remarkable simplicity of the remainders

• N=4 SYM computes the most complicated part of the 
remainder 

• Systematise (understand!) the connection between Higgs 
amplitudes in QCD and form factors in N=4 SYM  

Summary



• Reinforce links with integrability

• Dual conformal symmetry of amplitudes implies Yangian 
symmetry of dilatation operator D

• Can extract D from form factors, e.g. SU(2|3)/SU(2) sector 
at 2 loops; complete 2-loop dilatation operator?

• Hidden symmetries responsible for simple results?            
How is dual conformal symmetry of amplitudes realised?

• Form factors link completely on-shell and off-shell worlds.

• More applications/connections/similiarities to/with 
phenomenologically interesting theories to be explored   

Further open questions




