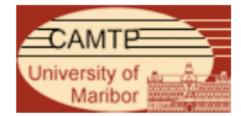
## PGF'18 UAM, IFT, March 5-8, 2018

# Global F-theory Constraints on Gauge Symmetry and Matter Representations Mirjam Cvetič



Univerza *v Ljubljani* Fakulteta za *matematiko in fiziko* 





## **Outline/Topics**

Focus on F-theory implications of Mordell-Weil Group of Elliptically Fibered Calabi-Yau manifolds

 Free part, associated with U(1) gauge symmetries: new insights for global symmetry constrains in the presence of non-Abelian gauge symmetries; implications for F-theory `swampland'

 ii.Torsion part, associated with modding-out non-Abelian factors by a discrete symmetry: novel non-Abelian enhancements & matter; open issues Mordell-Weil and global constrains on gauge symmetry M.C. and Ling Lin, "The Global Gauge Group Structure of F-theory Compactification with U(1)s," arXiv:1706.08521[hep-th], JHEP

Mordell-Weil torsion and novel gauge symmetry enhancements Florent Baume, M.C., Craig Lawrie, Ling Lin, "When Rational Sections Become Cyclic: Gauge Enhancement in F-theory via Mordell-Weil Torsion," arXiv:1709.07453 [hep-th], JHEP

I. U(1)-symmetries in F-theory

## **Abelian Gauge Symmetries**

**Different**: (1,1) forms  $\omega_m$ , supporting U(1) gauge bosons, isolated & associated with  $I_1$ -fibers, only

[Morrison, Vafa'96]



## Abelian Gauge Symmetry & Mordell-Weil Group

rational sections of elliptic fibr. ( rational points of elliptic curve

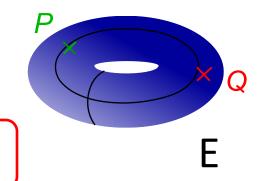
Rational point Q on elliptic curve E with zero point P

• is solution  $(x_Q, y_Q, z_Q)$  in a field K of Weierstrass form

$$y^2 = x^3 + fxz^4 + gz^6$$

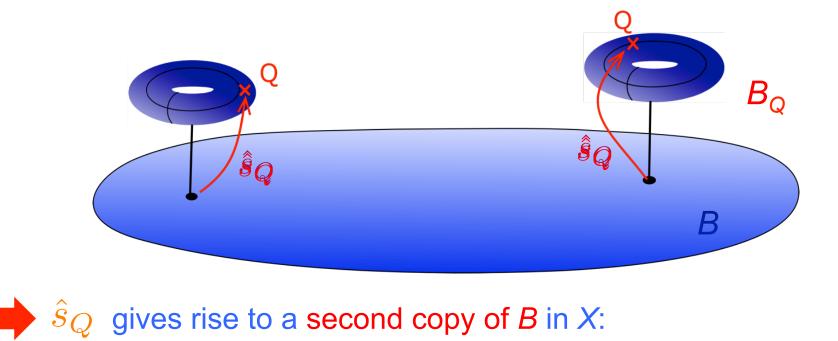
• Rational points form group (addition) on E

Mordell-Weil group of rational points



### U(1)'s-Abelian Symmetry & Mordell-Weil Group

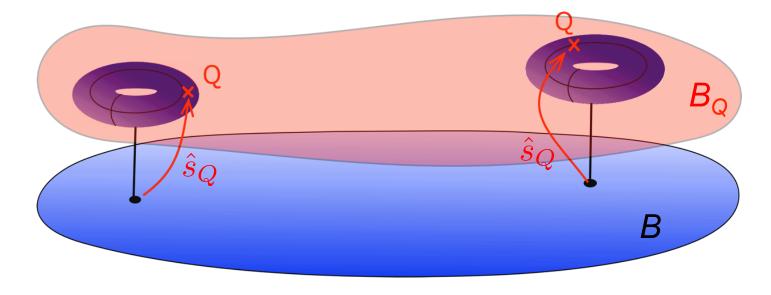
Point **Q** induces a rational section  $\hat{s}_Q : B \to X$  of elliptic fibration

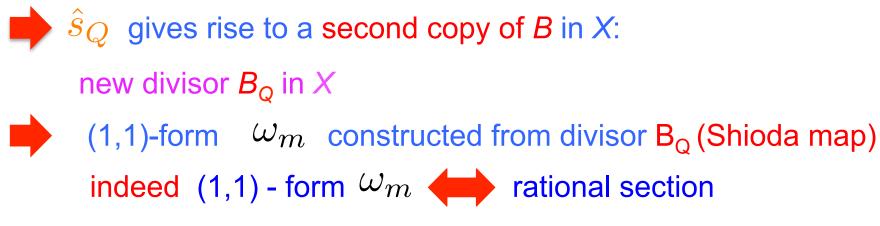


new divisor  $B_Q$  in X

## U(1)'s-Abelian Symmetry & Mordell-Weil Group

Point **Q** induces a rational section  $\hat{s}_Q : B \to X$  of elliptic fibration





# **III. Implications of Mordell-Weil**

## Shioda map & Non-Abelian Gauge symmetry [M.C. and Ling Lin 1706.08521]

Shioda map of section  $\hat{s}_Q$  more involved than  $\mathcal{B}_Q$ :

a map onto divisor complementary to  $\mathcal{B}_{\mathcal{P}}$  divisor of zero section $\hat{s}_{P}$ 

&  $\mathcal{E}_i$  – resolution (Cartan) divisors of non-Abelian gauge symmetry

$$\sigma\left(\hat{s}_{Q}\right) = B_{Q} - B_{P} - \sum_{i} l_{i} E_{i} + \cdots$$

Ensures proper F-theory interpretation of U(1) (via M-theory/F-theory duality)

 $l_i = C_{ij}^{-1}(B_Q - B_P) \cdot \mathbb{P}_j^1 \quad \text{-fractional } \# \quad \text{always an integer } \kappa \text{ s.t. } \forall i : \kappa l_i \in \mathbb{Z}$   $\uparrow \quad \uparrow$ Cartan matrix Fiber of divisor E<sub>i</sub>

 $\kappa \sigma(\hat{s}_Q)$ Shioda  $\overset{(4)}{map}$  and the **Consequences:** Non-trivial central  $\begin{bmatrix} \sigma(\hat{s}_Q) & \mathbb{P} \\ \varepsilon & \varepsilon \\ \sigma(\hat{s}_Q) \end{bmatrix}$  $\mathbb{P}^1$ U(1) matter charges  $q(w) = \sigma(\hat{s})$ intersection of Shour an ABAR SPIN STEPENS AN ABAR All matter charges  $\delta(w) = (B_{0} - B_{0}) = (b)$  Two weights  $w, v \in (b)$  the satisfiest charges  $\delta(w) = (B_{0} - B_{0}) = (b)$  and Currin regar dometries the structure of the set of tCURIR'S SPIN SYSTEMANALOGYA from the outer and inner horizAnna Curir regards a rotation of non-Abelian gauce Anna Curir regards a rotation of the state of the spectration of the spectr Two weights with in the same g-rep The outer horizon is takther moave  $\mathcal{R}_{g}^{(\prime)}$  for and angular momentum J are common to both specific temperature. The state  $\mathcal{R}_{g}^{(\prime)}$  is the temperature  $\mathcal{R}_$ and angular mome **PIN SYSTEM A** CURIR'S SPÎ Anna Curir claims 1[1]. Anna Curir clai

For g = SU(5) [Braun, Grinnin, Keitel '13;  $\underline{H}_{+} - A_{-}Anna$   $\underline{Q}_{\underline{\mu}}$ rin: regards a rotating some aspects via KK reduction [Grinnin,  $\underline{M}A_{\pm}$   $MA_{\pm}$   $MA_{\pm}$   $MA_{\pm}$ 

Anna Curir regar**denstratet ing-black teoltrat**sk I. CURIR'S SP

I. CURIR'S SPIN SYSTEM ANALOGY amics from the outer and inner horized the outer and in

Anna Curir regards a rotation sitaic tent to the second with contribution of the second with  $\mathcal{L}(\mathcal{R}_{\mathfrak{g}}^{(\prime)})$ hermodynamics find (in) out of ind inder the second secon &  $C(\mathbf{w}) = \exp(2\pi i \,\xi(\mathbf{w})) \,\mathbf{w} = \mathbf{w}.$   $\Omega_{\pm} = \frac{4\pi J}{MA_{\pm}}$   $T_{\pm} = \pm \frac{A_{\pm} - A_{\pm}}{32\pi MA_{\pm}}$   $MA_{\pm}$   $MA_{\pm}$   $MA_{\pm}$   $MA_{\pm}$   $MA_{\pm}$ thermodynamics from the outer that her  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the frame the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer outer outer  $T_{\pm}$  is out by a factor of 1/4 from the outer outer outer  $T_{\pm}$  is out by a factor of 1/4 from the outer  $T_{\pm}$  is out by a factor of 1/4 from the outer ou &  $C(\mathbf{w}) = \exp(2\pi i \xi(\mathbf{w})) \mathbf{w} = \mathbf{w}.$ 

 $G_{global} = \frac{U(1) \times G_{\pm}}{\langle C \rangle} \stackrel{\text{def}}{=} \frac{U(1) \times J_{\pm}}{\mathbb{Z}_{\kappa}} \text{ and angular momentum } (I) \text{ are constrained} (I) \text{ and } (I) \text{ a$ 

value.

Our J is Anna Curir's L.

note that her  $T_{\pm}$   $\overline{is_{Out}}_{I}$  by a factor

### Global Constraint on Gauge Symmetry:

$$G_{ ext{global}} = rac{U(1) imes G}{\langle C 
angle} \cong rac{U(1) imes G}{\mathbb{Z}_{\kappa}}$$

Exemplify for SU(5) GUT's and Standard Model constructions Including for globally consistent three family SM [M.C., Klevers, Peña, Oehlmann, Reuter 1503.02068]

Toric construction with gauge algebra  $\mathfrak{su}(3) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1)$ 

$$\begin{aligned} \varphi(\sigma) &= S - S_0 + \frac{1}{2} \, E_1^{\mathfrak{su}(2)} + \frac{1}{3} (2 \, E_1^{\mathfrak{su}(3)} + E_2^{\mathfrak{su}(3)}) \Rightarrow C^6 = 1, \\ \text{so } G_{\mathsf{global}} &= [SU(3) \times SU(2) \times U(1)] / \langle C \rangle \cong [SU(3) \times SU(2) \times U(1)] / \mathbb{Z}_6. \end{aligned}$$

Indeed, geometrically realized (chiral) matter representations:  $(3,2)_{1/6}$ ,  $(1,2)_{-1/2}$ ,  $(3,1)_{2/3}$ ,  $(3,1)_{-1/3}$ ,  $(1,1)_1$ 

### Implication for F-theory `Swampland' Criterion

With the choice of Shioda map scaling  $\rightarrow$ 3 singlet field under *G*, with U(1) charge Q<sub>min</sub>=1 `Measure stick'

A necessary condition for a field theory to be in F-theory requires U(1) Charge Constraint on non-Abelian Mater:

(1) If  $\mathcal{R}^{(1)} = (q^{(1)}, \mathcal{R}_g)$  and  $\mathcal{R}^{(2)} = (q^{(2)}, \mathcal{R}_g)$ , then  $q^{(1)} - q^{(2)} \in \mathbb{Z}$ . (2) If  $\bigotimes_{i=1}^n \mathcal{R}_g^{(i)} = \mathbf{1}_g \oplus ...$ , then  $\sum_{i=1}^n q^{(i)} \in \mathbb{Z}$ .

Caveat: Non-Higgsable U(1)'s? [Morrison, Taylor'16], [Wang'17] In the presence of non-Abelian matter, expect to have singlet representation(s)  $\rightarrow$  probably O.K.

Further comments:

studied unHiggsing; some models with non-minimal codim. 2 loci  $\rightarrow$  strongly coupled CFT's [further studies]

# Inclusion of Fluxes and Massive U(1)'s

- Multiple U(1)'s: singlet fields w/ co-prime U(1) charges (measured with Shioda map  $\omega_k = \varphi(\sigma_k)$ , k=1,...m) MW spans full integer lattice
- Each U(1) has its associated charge constraint for non-Abelian matter
- Adding fluxes  $G_4$  can break certain combinations of U(1)'s via Stückelberg mechanism with mass matrix:

w/ $\sum_{i} \xi_{k,\alpha} \lambda_k^s = 0 \quad \forall \alpha$  Sublattice of MW- group

Geometric properties leading to charge constraints still hold!

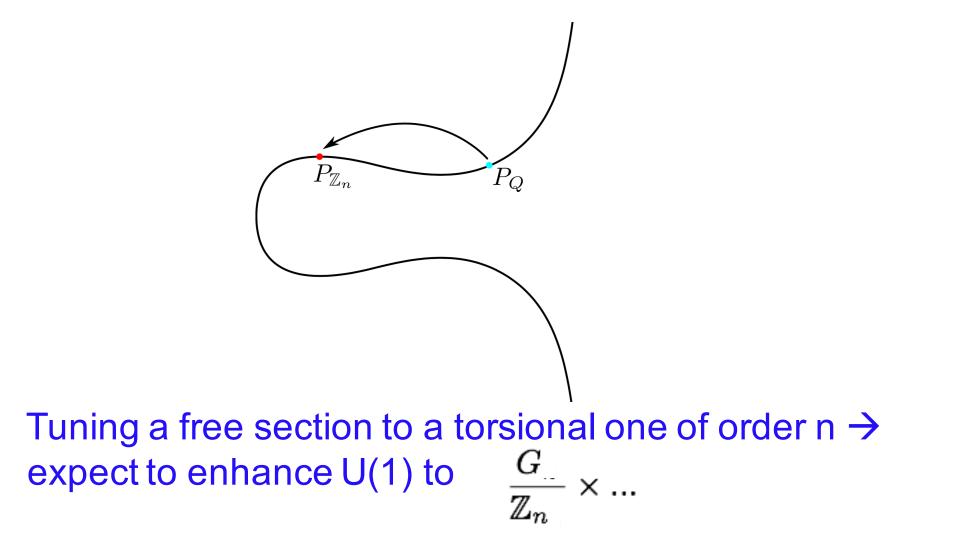
#### ii. Mordell-Weil torsion & Gauge enhancement

[Baume, M.C., Lawrie, Lin 1709.07453]

Mordell-Weil:  $MW(Y) = \mathbb{Z}^m \oplus \bigoplus \mathbb{Z}_{n_k}$  $\uparrow$  k  $\uparrow$ rational torsional sections sections [Aspinwall, Morrison '98], [Mayrhofer, Morrison, Till, Weigand '14] Shioda-map for torsion:  $\sigma(\hat{s}_Q) = B_Q - B_P - \sum_i l_i E_i + \cdots = 0 - \text{no U(1)}$  $l_i \in \frac{1}{n_k} \mathbb{Z}.$ As with U(1): integer condition on Cartan charges:  $\sum_{i} l_i \mathbf{w}_i \in \mathbb{Z}$ . Results in the global gauge group:  $G \supset \frac{G_k}{\mathbb{Z}_m}$ 

#### Gauge enhancement via Mordell-Weil torsion

Gauge enhancement when a section becomes torsional:



Gauge enhancement via Mordell-Weil torsion Expect U(1) to unHiggs to non-Abelian  $\mathscr{G}$  with  $\pi_1(\mathscr{G}) = Z_n$ 

- Similar to unHiggsing through colliding free sections:

[Morrsion, Park '12]

U(1)xU(1) w/ (2,2) charge matter  $\rightarrow$  SU(3) w/ symm. 6 rep. [M.C., Klevers, Piragua, Taylor '15]

U(1)-model w/ charge 3 matter $\rightarrow$ SU(2) w/ three index symm. 4 rep. [Klevers, Taylor '16]

- Torsional unHiggsing (to Z<sub>2</sub> torsion-prototype):

U(1) w/ charge 1 matter $\rightarrow$ SU(2)/Z<sub>2</sub> w/adj. 3 rep.(`Cartan ch.'2)

[Mayrhofer, Morrison, Till, Weigand '14]

U(1) w/ charge 2 matter  $\rightarrow$  Enhanced gauge symmetry? Matter representation?

Spoiler alert: NOT 5-rep. ('Cartan charge' 4)

 $\rightarrow$  possible ties to (other) `swampland' conjectures

[Klevers, Morrison, Raghuram, Taylor, '17],

c.f., Taylor's,, Valandro's talks

#### Gauge enhancement via Mordell-Weil torsion

Explicit model: rank- one MW-group  $Bl_1P_{112}$  [Morrison, Park `12]  $\rightarrow U(1)$  with matter charges **1 & 2** 

Implement condition for a section  $\sigma$  to become 2-torsional:  $y_{\sigma} = 0$ 

 $2P_{\mathbb{Z}_2} = \mathcal{O}$  (Weierstrass)

 $\rightarrow$  Elliptic fibration (by construction) with MW-group torsion  $\mathbb{Z}_2$ 

Gauge enhancement via Mordell-Weil torsion

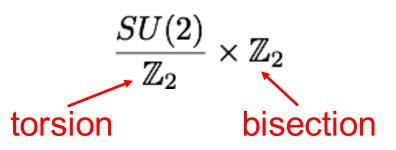
Resulting in Gauge group:  $\frac{SU(2) \times SU(4)}{\mathbb{Z}_2} \times SU(2)$ 

Novel features: explicit global model with

- gauge factor [SU(2)] not affected by torsional section
- resolution of singular co-dim 2 fiber:

new matter rep.: (3,1,2) [no (5,1,1)]

Gauge enhancement via Mordell-Weil torsion Another example (Higgsed version of the previous one): Construct a fibration giving rise to gauge symmetry



Bisection due to discrete symmetry (related to Tate-Shafarevich) another topic - no time

- Construction involves genus-one fibration Y' with bisection
- There is also Jacobian map of Y'- elliptic fibration Y: has resolvable I<sub>2</sub>-singularity (in codim 1) & Z<sub>2</sub> - MW torsion
- → Signifies SU(2)/ $Z_2 \sim$  SO(3) gauge symmetry

- Gauge enhancement via Mordell-Weil torsion Another example:
- Puzzles:
- For genus-one fibration Y' with bisection monodromy exchanges l₂ components in codim 1
   → no exceptional divisor [in M-theory missing Cartan U(1)]
- Field theory (Higgsing chain) analysis: expect discretely charged adj. 3 of SO(3), but no apparent localized (codim 2) states in Y' or Jacobian Y

Need to sharpen/augment the definition of F-theory on genus-one fibrations and their Jacobians.

[work in progess w/Lin, Lawrie & Weigand]

# Summary

Novel F-theory implications of Mordell-Weil Group

Encountered subtle issues:

- Free part: presence of U(1) → global constraints on gauge symmetry and on U(1) charges of non-Abelian matter (`swampland' conjecture)
- ii. Torsion part: novel gauge symmetry enhancements and representations

Even more obscure: better understanding of F-theory on torus-fibrations without sections → Further Studies Thank you!