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Introduction Global anomalies New method Conclusions

String theory vs. Quantum Field Theory

String Theory is a very rich and powerful framework for studying
Quantum Field Theory.

A natural question is whether all consistent QFTs can be embedded
in String Theory.

This is too wide a question at this point, so I will ask instead
whether all supersymmetric QFTs admit an embedding in String
Theory.
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Known results for supersymmetric universality
Once we assume supersymmetry we can make progress:

In more than 11 dimensions every susy Lagrangian theory
includes excitations of helicity larger than two (except, possibly,
for F-theory viewed as a theory of signature (10, 2) [Vafa ’96]).

In 11d there is a single choice, 11d supergravity, which we believe to
be a limit of string theory (for example, strongly coupled IIA). So
string theory is universal in 11d.
In 10d we have IIA and IIB sugra in the N = 2 sector. Pure N = 1
gauge theory is anomalous. If we couple it to supergravity we can
cancel the anomalies using the Green-Schwarz mechanism [Green,
Schwarz ’84]. This is possible for the gauge algebras

g ∈ {e8 ⊕ e8, so(32), e8 ⊕ u(1)248, u(1)496} . (1)

The first two possibilities are realized by string theory, while the
second two are more subtly inconsistent [Adams, DeWolfe,
Taylor ’10]. So string theory is also universal in 10d.
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String universality below 10d
What happens at the next steps is unclear: in d ∈ {9, 8, 7}
supersymmetry implies that the fermions are in the adjoint, so
these theories have no local anomalies.

On the other hand in these dimensions the minimal amount of
supersymmetry is 16 supercharges, and the set of known string
compactifications preserving so much susy is very limited.

So there is a very wide gap between what we seem to be able to do
in field theory (anything goes), and what we can do in string theory
(a handful of choices).

In this talk I will describe some progress in narrowing this gap in
the d = 8 case (and thus also d = 9).

(In 6d local anomalies are powerful again. Here we have many
choices, both in the field theory and the string theory sides. The
status of 6d universality is not clear yet, but important progress is
being made regularly. [Kumar, Taylor ’09], [. . . ])
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String compactifications down to 9d
There are four known components of the N = 1 moduli space one
can construct this way (for a detailed analysis see [Aharony,
Komargodski, Patir ’07])

Rank 2 (a):

M-theory on the Klein bottle.

Rank 2 (b):

IIA with O8+ and O8−.

Rank 10:

M-theory on Möbius band.
CHL string. [Chaudhury, Hockney, Lykken ’95]

Rank 18:

M-theory on the cylinder.
Heterotic on S1.
IIA with two O8− planes and 16 D8s.
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String compactifications down to 8d

We obtain three possible N = 1 8d theories by putting the previous
N = 1 theories on an S1. The resulting theories are neatly
described in IIB language (on T 2/(IΩ(−1)FL)):

Rank 4: IIB with two O7− and two O7+.
Rank 12: IIB with three O7−, one O7+ and 8 D7s.
Rank 20: IIB with four O7− and 16 D7s.

All these cases can also be described in F-theory, possibly with
frozen singularities. (For a detailed discussion of the moduli spaces
and dual pictures, see [de Boer, Dijkgraaf, Hori, Keurentjes, Morgan,
Morrison, Sethi ’01] and [Taylor ’11].)

So we are really asking whether F-theory is universal in 8d.
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Non-abelian enhancements

N = 1 theories in 8d have a complex scalar in the vector multiplet.
Giving a generic vev to these scalars costs no energy, and breaks
the gauge algebra to u(1)rk. The set of all vacua accessed in this
way is the Coulomb branch.

At certain points in the Coulomb branch there can be non-abelian
enhancements. The enhancements in the known backgrounds are
to su(N), so(2N), sp(N), e6, e7, e8.

We will aim to explain why the other algebras

so(2N + 1) ; f4 and g2

do not appear.
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Summary of results

We find that 8d N = 1 theories with algebra f4 and so(2N + 1) for
N ≥ 3 do not exist quantum mechanically, due to an anomaly.

We find no anomaly for su(N), so(2N), e6, e7, e8 and g2.

We find no ordinary global anomaly for sp(N) (associated to π8),
but there is an anomaly of a more subtle kind. We conjecture that
it is cancelled by coupling to an appropriate TQFT (the topological
Green-Schwarz mechanism), but we have not been able to write the
TQFT down, so perhaps these theories are ultimately inconsistent.
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A motivating puzzle: so(2N + 1) in 8d?
In the IIB picture, in perturbation theory, we also have the
possibility of putting “half” a D7 on top of the O7− plane. This
would lead to a so(2N + 1) gauge algebra in 8d.

This seems problematic non-perturbatively:
There is no monodromy associated to so(2N + 1) in the
Kodaira classification.
There is no natural “frozen” flux in the F-theory realization
that could lead to this. [Hyakutake, Imamura, Sugimoto ’00]
[de Boer, Dijkgraaf, Hori, Keurentjes, Morgan, Morrison, Sethi ’01]
[Bergman, Gimon, Sugimoto ’01] [Tachikawa ’15]
A D3 probe has a global SU(2) anomaly. [Hyakutake, Imamura,
Sugimoto ’00] [Witten ’82].

The first two arguments are potentially a limitation of model
building tools. The last one is more serious, in that it can signal an
inconsistency.
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Review of anomalies
Consider a (Lagrangian) theory T with some global symmetry G.
We can introduce a background connection AG for G, and
compute the path integral

Z(AG) =

∫
[Dψ]e−S(AG,ψ) (2)

where ψ are some fundamental fields. (Only the fermionic fields,
and the connection they couple to, matter for my discussion.)

Denote byM the space of all physically inequivalent AG. We have
an anomaly whenever Z(AG) is not well defined as a function on
the manifoldM:

Non-invariance under small loops (curvature) inM: local
anomaly.
Non-invariance under parallel transport for non-trivial loops in
M: global anomalies.
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Review of anomalies
Ungappable fields only

If a field can get a mass without breaking the symmetry G (it is
gappable), then it can be integrated out without breaking the
symmetry, and can be ignored for the purposes of determining
anomalies.

This means that for Lagrangian theories anomalies are at most
phases: for any field ψ in a representation R, we can include an
extra field ψ̃ in a rep R (and with an action which is the conjugate
of that for ψ), and then the full matter content can be made
massive. So

Z(AG) = Zψ(AG)Zψ̃(AG) = Zψ(AG)Zψ(AG) =
∣∣Zψ(AG)

∣∣2 . (3)

Since the ψ + ψ̃ theory is gappable, we have that
∣∣Zψ(AG)

∣∣ is a
well defined function onM.
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Review of anomalies

In general, Z(AG) is a section of some bundle overM. If the
bundle is non-trivial the theory is still consistent; we say that we
have a ’t Hooft anomaly. For example, the SU(4)R symmetry of
N = 4 SU(N) SYM has such an anomaly in 4d (Tr(F 3

R) 6= 0), but
the theory is fine, and the symmetry is unbroken.

What an anomaly means is that the symmetry G cannot be
gauged, since gauging involves integration of Z(AG) overM.

We will consider the case in which there are no local anomalies.
How do we detect a possible global anomaly?
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The “traditional” global anomaly
Consider a symmetry transformation g : Rd → G. We impose that
g → 1 at infinity, so it leads to a proper gauge symmetry. The
resulting set of transformations are topologically classified by maps
Sd → G up to continuous deformations, i.e. by πd(G).

Now, for any choice of [g] ∈ πd(G), pick a representative g and
consider the family of (not pure gauge) connections

AG(g; t) = f(t)g−1dg (4)

for some smooth f(t) such that f(−∞) = 0 and f(+∞) = 1. This
defines a loop in the space of connections (modulo gauge
transformations). So there is a global anomaly if

Z(AG(g; +∞))

Z(AgG(g;−∞))
=
Z(0g)

Z(0)
= eiA 6= 1 . (5)
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The “traditional” global anomaly

We will be interested in the case in which the fermions are real.
This means that the mass coupling

mψψ = 0 (6)

does not break G, but it identically vanishes. But we can add an
extra copy of the fermions, and introduce a mass coupling

mψ1ψ2 6= 0 (7)

This implies that Z(AG)2 is well defined, so the anomaly is
Z2-valued (i.e. eiA = ±1 at most).
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The “traditional” global anomaly

Consider an example: 4d Weyl fermion ψ1 in the fundamental of
SU(2). This is a real fermion (the mass term is allowed, but it
identically vanishes).

Famously [Witten ’82], this system has a global anomaly:

Z(0) = −Z(0g) (8)

for [g] the non-trivial generator of π4(SU(2)) = Z2.
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The Elitzur and Nair approach

In his original argument, Witten relates the anomaly to the mod 2
index in the five dimensional mapping torus for (S4, g), by viewing
AG(t) as a connection on the mapping torus. This is hard to
generalize. An easier to generalize argument is due to Elitzur and
Nair. [Witten ’83] [Elitzur, Nair ’84]

The basic trick is embedding SU(2) into SU(3), and deform (using the
fact that π4(SU(3)) = 0) AG(t) into an interpolating pure gauge
connection in SU(3)

BG(t) = 0ft = f−1
t dft (9)

for ft some homotopy in SU(3) between 1 and g ∈ SU(2).

To go to SU(3) we need to add a SU(2) singlet, since under
SU(3) ⊃ SU(2) we have 3→ 2⊕ 1. Note that

Z3 = Z(AG)Z1 (10)

has the same SU(2) anomaly as our original partition function.
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The Elitzur and Nair approach

We now view the anomaly

Z3(0g) = eiAZ3(0) (11)

as coming from the local anomaly we obtain by a series of SU(3)
transformations. By the usual descent arguments (δω = dA, with
dω = Id+2), we have

A = π

∫
Bd+1

ω(0g)− ω(0) = π

∫
Bd+1

ω(0g) (12)

with Bd+1 the d+ 1 ball with boundary Sd (for us, d+ 4), and
ω(A) is the Chern-Simons density for a connection A.
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The Elitzur and Nair approach

For groups without local anomalies (such as SU(2)) the
Chern-Simons functional ω is invariant, so we can contract the
boundary to a point in order to compute the anomaly

A =

∫
Bd+1

ω(0g)→ A =

∫
Sd+1

ω(0g) . (13)

So we can view the above anomaly as a homomorphism from
appropriate homotopy classes to R:

A : πd+1(SU(3)/SU(2))→ R . (14)
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The Elitzur and Nair approach
The issue is finding the normalization for the homomorphism.
Consider the short exact sequence

0→ SU(2)→ SU(3)→ SU(3)/SU(2)→ 0 (15)

which induces (since π4(SU(3)) = 0)

. . .→ π5(SU(3))︸ ︷︷ ︸
Z

α−→ π5

(
SU(3)

SU(2)

)
︸ ︷︷ ︸

Z

β−→ π4(SU(2))︸ ︷︷ ︸
Z2

→ 0 . (16)

By exactness, α is multiplication by 2, and β is reduction modulo 2.

The homomorphism in the SU(3) case is well understood. We have
that

∫
Bd+1 ω(0g) =

∫
Bd+1 tr

(
(g−1dg)d+1

)
. So A(f) = 2π with f

the generator of π5(SU(3)).

Which implies A(g) = π, so there is an anomaly in this case.
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The Elitzur and Nair approach

All this was a fairly roundabout argument, but it generalizes easily
when we know enough about homotopy groups of Lie groups.

We have π8(G) 6= 0 for

G ∈ {SU(2), SU(3), SU(4), SO(7) . . . SO(10), SO(N), G2, F4} .

So only these groups can have global anomalies of the kind we are
computing.
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Example: N = 1 f4 in 8d

For instance, in 8d for F4 [Conlon ’66]

0→ π9(E6)︸ ︷︷ ︸
Z

α−→ π9

(
E6

F4

)
︸ ︷︷ ︸

Z

β−→ π8(F4)︸ ︷︷ ︸
Z2

→ 0 . (17)

Since 27→ 26⊕ 1 for E6 ⊃ F4, we find that the fundamental (26) of
F4 has a Z2 discrete anomaly, by the same arguments as before.

The adjoint 78 of E6 is free of local anomalies, and decomposes as
26⊕ 52, so the adjoint of F4 also has a Z2 discrete anomaly!
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Results

The other cases are also tractable. For the cases with π8(G) 6= 0
we find:

G ∈ {SU(2), SU(3), SU(4), SO(2N + 1), SO(2N + 2), G2, F4}

with N ≥ 3. Red means that we have proven the theory
inconsistent, blue that we found no inconsistency from this
particular check.
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Beyond the traditional anomaly
In principle, it is not enough to show that the theory is
anomaly-free in R8 ≈ S8. We need to show that the theory makes
sense on any manifold, with any gauge bundle.

An important loophole: we could potentially couple to a TQFT
that forbids the problematic gauge bundles, as in [Seiberg ’10].

For example, we could have a theory with gauge group G/C, with an
anomaly coming from bundles with non-trivial Stiefel-Whitney class. We
can “fix” this by coupling to a TQFT that effectively removes the
problematic bundles [Kapustin, Seiberg ’14].

This mechanism cannot cancel the traditional anomaly.

We give an explicit 3d example of such “fixing” by coupling to a
TQFT in the paper (SU(N)/ZN with an adjoint).

We have not been able to construct the right TQFT in the
problematic 8d cases. Maybe our own mathematical limitations, or
maybe it does not exist.
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Anomalies on S4 × Rd−4 with an instanton
We consider a spacetime of the form S4 × Rd−4. Choose a
decomposition of G ⊃ (SU(2)×H)/C. Now put a single instanton
of the SU(2) factor on the S4.

Assume that the original theory had a fermion in a representation

RG →
⊕
n≥1

(nSU(2) ⊗RnH) . (18)

A fermion in the representation nSU(2) gives rise to
Nn = 1

6(n3 − n) zero modes, so there is an effective theory in
Rd−4, with gauge group H, and fermions in the representation

rH =
⊕
n≥1

NnR
n
H . (19)

The original theory is anomalous if this effective theory in Rd−4 is.
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The original theory is anomalous if this effective theory in Rd−4 is.
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Results of the analysis on R4 × S4

The analysis is straightforward, and for the most part reproduces
the results of the analysis in R8.

There is one exception. Consider the decomposition
USp(2N) ⊃ USp(2)× USp(2N − 2). The adjoint decomposes as

Adj→ (2⊗ (2N− 2))⊕ (Adj⊗ 1)⊕ (1⊕ Adj) .

so the effective USp(2N − 2) theory in R4 has fermions in the
representation

rH = ⊕ (singlets) . (20)

So there is a Witten anomaly!
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Conclusions

We reduced (a little bit) the gap between what you seemed to be
able to do in d = 8 N = 1 QFT (everything!) to what you seem to
be able to do in string theory (very little!).

Local anomalies are absent, but global anomalies are powerful
enough to say some things.

We find that:
so(2N + 1) and f4 are anomalous, as you might have
suspected.
N = 1 g2 seems to be omalous in 8d, to the extent that we
checked. But no known construction!
An unexpected anomaly for sp(2N), i.e. the O7+! Potentially
fixable, but we don’t quite know how.
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Future directions
Patterns unexplained:

The very specific choices of rank: rk(G) ∈ {4, 12, 20}.
Correlation of rank with available algebras.

Roads not taken:
One should impose the necessity of being able to couple
consistently to gravity, including on non-orientable spacetimes.
In this context sometimes one can really prove absence of
global anomalies. We should do so.
The 9d analysis is important, and remains to be done.

These are all well defined tasks, if mathematically difficult.
Hopefully I can report on some of this soon.

And this was all about anomalies, what about the swampland?
[Vafa ’05]
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