F-theory and AdS₃/CFT₂

Craig Lawrie

1612.05640, 1612.06393 CL, S. Schäfer-Nameki, T. Weigand 1705.04679 C. Couzens, CL, D. Martelli, S. Schäfer-Nameki, J. Wong 1712.07631 C. Couzens, D. Martelli, S. Schäfer-Nameki 1803.xxxx CL, S. Schäfer-Nameki

AdS Solutions of F-theory

F-theory Solutions: construct Type IIB solutions where axio-dilaton, $\overline{\tau^{IIB}}$, varies over (a part of) spacetime, including monodromies in the $SL(2,\mathbb{Z})$ duality group[Couzens, CL, Martelli, Schäfer-Nameki, Wong]

 $SL(2,\mathbb{Z})$ monodromy of $\tau^{IIB} \Rightarrow$ 7-branes \Rightarrow F-theory!

Consider general solutions with an AdS_p factor preserving some supersymmetry – top-down approach to $\operatorname{AdS/CFT}$ \rightarrow no previously known solutions with full $SL(2,\mathbb{Z})$ monodromy \rightarrow for poles in τ^{IIB} see [Couzens], [D'Hoker, Gutperle, Uhlemann]

Dual CFTs can be difficult to understand (p,q) 7-branes \Rightarrow genuinely non-perturbative effects

In this talk: mainly $AdS_3 \Rightarrow dual \text{ to } 2d \text{ SCFTs}$

2d SCFTs arise in "string sector" of F-theory

In any F-theory compactification on elliptic $n\text{-fold }\pi:Y\to B$ there can exist strings in spectrum from

D3-branes on $C \subset B$

Worldvolume theory of string is SCFT with supersymmetry

Can pinpoint loci in the moduli space with interesting physics

Strings of 6d $\mathcal{N} = (1,0)$ SCFTs

[del Zotto, Lockhart]

- tensionless strings are hallmark of superconformal symmetry in 6d
- $\bullet\,$ instanton part of 6d Nekrasov PF $\leftrightarrow\,$ elliptic genera of strings

Strings of 6d $\mathcal{N} = (1,0)$ Supergravities [Haghighat, Murthy, Vafa, Vandoren]

- 5d BPS black holes arise from 6d BPS strings on S^1
- microstate counting of strings in 6d \rightarrow macroscopic entropy

In 4d $\mathcal{N} = 1$, strings are

 \rightarrow dual to instantons

 \rightarrow not BPS \Rightarrow tension not protected \Rightarrow quantum corrections [Mayr]

In 2d $\mathcal{N} = (0, 2)$, strings are

 \rightarrow spacefilling

 \rightarrow required to wrap specific curve class by tadpole cancellation

[Schäfer-Nameki, Weigand], [Apruzzi, Hassler, Heckman, Melnikov] [CL. Schäfer-Nameki, Weigand]

Roadmap

- Single D3-brane on C with varying τ [CL, Schäfer-Nameki, Weigand] \rightarrow study explicitly via topological duality twist
- **2** Multiple D3-branes on C with varying τ

[Couzens, CL, Martelli, Schäfer-Nameki, Wong]

 \rightarrow no explicit construction

- \rightarrow construct AdS₃ supergravity duals with (0,4)
- \rightarrow determine central charges from holography
- Solutions with different SUSY [Couzens, Martelli, Schäfer-Nameki] → (0,2) (2,2)
 - $\rightarrow (2,2)$
- An $\mathcal{N} = 4$ SYM Anomaly Polynomial [CL, Schäfer-Nameki]
 - \rightarrow Moduli space of couplings terms in anomaly polynomial
 - \rightarrow Integration and comparison to ${\rm AdS}_3$ central charges

Topological Duality Twist

Abelian
$$\mathcal{N} = 4$$
 SYM
 \Rightarrow "bonus" $U(1)_D$ symmetry [Intriligator], [Kapustin, Witten]
 $\gamma : \tau \rightarrow \frac{a\tau + b}{c\tau + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \quad \rightarrow \quad e^{i\alpha(\gamma)} \equiv \frac{c\tau + d}{|c\tau + d|} \in U(1)_D$

Objects have charge q_D if transforms by $e^{iq_D\alpha(\gamma)}$ under γ

We have a $U(1)_D$ connection

$$\mathcal{A}_D = \frac{\mathrm{d}\tau_1}{2\tau_2}$$

Topological duality twist (TDT): To preserve SUSY compensate non-trivial transformation of supercharges under holonomy of C and $U(1)_D$ by R-symmetry transformation. [Martucci]

Craig Lawrie (ITP Heidelberg)

F-theory and AdS_3/CFT_2

Anomaly Polynomials and Central Charges

Construct topological duality twisted dimensional reduction to 2d for strings in base of elliptic Calabi–Yau *n*-fold [CL, Schäfer-Nameki, Weigand]

Can compute the central charges in each case; for F-theory to 6d: $c_R = 3C \cdot C + 3c_1(B) \cdot C$ $c_L = 3C \cdot C + 9c_1(B) \cdot C$

[Haghighat, Murthy, Vafa, Vandoren], [CL, Schäfer-Nameki, Weigand]

Anomaly polynomial for (0, 4) theory

$$I_4 = -\frac{1}{24}p_1(T)\left[-6c_1(B) \cdot C\right] - c_2(R)\left[\frac{1}{2}C \cdot C + \frac{1}{2}c_1(B) \cdot C\right] + \cdots$$

Matches AP for strings in 6d

[Berman, Harvey], [Shimizu, Tachikawa]

How to generalize to multiple D3-branes on C?

Interaction term in fermionic variations does not respect $U(1)_D!$ \Rightarrow Topological duality twist does **not** (obviously) generalize

Instead can consider M5-branes [Assel, Schäfer-Nameki]

D3-brane on M_4 with TDT

\uparrow

M5-brane on Kähler elliptic threefold \widehat{M}_4 with geometric twist

Single M5 with geometric twist on $\widehat{M_4}$ and "non-abelianize" [Cordova, Jafferis] to determine non-abelian N = 4 SYM with varying τ

[Assel, Schäfer-Nameki]

 \rightarrow Subtlety: 4d theory has duality defects (3–7 strings)

How to generalize to multiple D3-branes on C?

Interaction term in fermionic variations does not respect $U(1)_D!$ \Rightarrow Topological duality twist does **not** (obviously) generalize

 \rightarrow instead can consider M5-branes [Assel, Schäfer-Nameki]

 $\begin{array}{ll} \mbox{Can consider AdS/CFT} \\ \Rightarrow \mbox{ large } N \\ \Rightarrow \mbox{ large numbers of D3-branes} \end{array}$

General Solutions for IIB with AdS_3 Factor and (0, 2) SUSY

IIB content:

$$F_5 \quad \longleftrightarrow \text{D3-branes}$$

$$G_3 \begin{cases} F_3 \quad \longleftrightarrow \text{D1/D5-branes} \\ H_3 \quad \longleftrightarrow \text{F-strings/NS5-branes} \end{cases}$$

$$P_1 = \frac{i}{2\tau_2} d\tau \quad \longleftrightarrow \text{7-branes}$$

$$\text{Set } G_3 = 0$$

General starting point:

$$ds^{2} = e^{2A} ds^{2} (AdS_{3}) + ds^{2} (M_{7})$$

$$F_{5} = (1 + *) vol(AdS_{3}) \wedge F^{(2)}$$

To preserve (0,2) SUSY solve Killing spinor equation

$$\nabla_M \epsilon + \frac{i}{192} \Gamma^{P_1 P_2 P_3 P_4} F_{M P_1 P_2 P_3 P_4} \epsilon = 0$$

F-theory and AdS₃/CFT₅

General Solutions for IIB with AdS_3 Factor and (0, 2) SUSY

General solution

[Couzens, CL, Martelli, Schäfer-Nameki, Wong] [Couzens, Martelli, Schäfer-Nameki]

$$\begin{array}{cccc} S^1 & \hookrightarrow & M_7 \\ & \downarrow \\ & M_6 \end{array}$$

 S^1 fibration provides $U(1)_r$ R-symmetry of (0,2)

 τ variation combines into an auxilliary Kähler elliptic fibration M_8 over M_6 with non-trivial constraint

$$\Box_8 R_8 - \frac{1}{2}R_8^2 + R_{8ij}R_8^{ij} = 0$$

First consider more SUSY

 \rightarrow (0, 4) SUSY \Rightarrow dual to strings in 6d \rightarrow (2, 2) SUSY \Rightarrow see later

Craig Lawrie (ITP Heidelberg)

Requiring (0,4) is highly constrained, A = const and

Killing spinors transform in $(\mathbf{2}, \mathbf{1})$ of S^3 isometry

 $SO(4) = SU(2)_r \times SU(2)_L$ $SU(2)_r \rightarrow$ superconformal R-symmetry $SU(2)_L \rightarrow$ additional flavour symmetry

Preserving (0, 4) SUSY

Requiring (0,4) is highly constrained A = const and

Killing spinors transform in (2, 1) of S^3 isometry

$$SO(4) = SU(2)_r \times SU(2)_L$$

 $SU(2)_r \rightarrow$ superconformal R-symmetry $SU(2)_L \rightarrow$ additional flavour symmetry when $\Gamma = 1$

We preserve the same SUSY for $\Gamma \subset SU(2)_L$ finite subgroup \rightarrow consider $\Gamma = \mathbb{Z}_M$ in this talk

(0,4) Solution

<u>General</u> F-theory solution of Type IIB SUGRA dual to 2d(0,4) is

$$\mathbb{E}_{\tau} \hookrightarrow Y_3$$

$$\downarrow$$

$$\mathrm{AdS}_3 \times S^3 / \Gamma \times B_2$$

with F_5 flux

$$F_5 = (1 + *) \operatorname{vol}(\operatorname{AdS}_3) \wedge J_B$$

 J_B is Kähler form on *B* Poincaré dual to a curve $C \Rightarrow C$, wrapped by D3-brane, ample in *B*

Generalisation of previously known solutions:

$$AdS_3 \times S^3 \times T^4$$
 and $AdS_3 \times S^3 \times K3$

Craig Lawrie (ITP Heidelberg)

Brown–Henneaux

$$c_{\rm SUGRA}^{\rm IIB} = \frac{3R_{\rm AdS}}{2G_N^{(3)}} = N^2 \frac{3\text{vol}(S^3/\mathbb{Z}_M)\text{vol}(B)32\pi^2}{\text{vol}(S^3/\mathbb{Z}_M)} = 6N^2 M \text{vol}(B)$$

Further

$$\operatorname{vol}(B) = \frac{1}{2} \int_B J_B \wedge J_B = \frac{1}{2} C \cdot C$$

 So

$$c_{\rm SUGRA}^{\rm IIB} = 3N^2 M C \cdot C$$

is the leading order contribution to the (left and right) central charge

Gravitational Chern–Simons couplings from 7-branes bulk

$$S_{CS}(\Gamma_{\mathrm{AdS}_3}) = rac{c_L - c_R}{96\pi} \int_{\mathrm{AdS}_3} \omega_{CS}(\Gamma_{\mathrm{AdS}_3})$$

$$c_L - c_R = 6Nc_1(B) \cdot C$$

Gauging $SO(4)$ isometry of S^3
 \Rightarrow
 $k_r^{(1)} = \frac{1}{2}Nc_1(B) \cdot C$

 \Rightarrow

Central Charges from Type IIB SUGRA

Leading and subleading central charges

$$\begin{split} c_R^{\text{IIB}} &= 3N^2C \cdot C + 3Nc_1(B) \cdot C \\ c_L^{\text{IIB}} &= 3N^2C \cdot C + 9Nc_1(B) \cdot C \end{split}$$

Matches with spectrum computation for N = 1:

$$c_R^{\text{spectrum}} = 3C \cdot C + 3c_1(B) \cdot C$$
$$c_L^{\text{spectrum}} = 3C \cdot C + 9c_1(B) \cdot C$$

Only for M = 1 \Rightarrow subleading contributions for M > 1 tricky \Rightarrow look at T-duality to M-theory • Constructed general solution of Type IIB supergravity with $\rightarrow (0,4)$ SUSY in dual SCFT $\rightarrow G_3 = 0$ and arbitrary τ

② Geometry:

 $\mathrm{AdS}_3 \times S^3 / \Gamma \times B_2$

③ Flux through (ample) curve in $B_2 \Rightarrow N$ D3-branes on C

Oual SCFT

 \rightarrow worldvolume theory of string in 6d F-theory compactification

F-theory on Y_3 T-dual to M-theory on Y_3

General solution:

$$\mathrm{AdS}_3 \times S^2 \times Y_3$$

with flux

$$G_4 = \operatorname{dvol}(S^2) \wedge J_{Y_3}$$

(See [Colgain, Wu, Yavartanoo])

 J_{Y_3} is Kahler form on Y_3 Poincaré dual to divisor

 $MB+N\hat{C}$

T-duality to M-theory and MSW Strings

 $N \text{ D3-branes on } C \longleftrightarrow N \text{ M5-branes on } \widehat{C}$ $M \text{ KK monopoles } \longleftrightarrow M \text{ M5-branes on } B$

See also [Bena, Diaconescu, Florea]

$$\begin{split} & \widehat{C} \cdot \widehat{C} \cdot \widehat{C} = 0 \\ & \Rightarrow \text{divisor } \widehat{C} \text{ not ample, not Poincaré dual to Kähler form} \\ & \Rightarrow \text{ no AdS dual to string from M5-branes wrapping } \widehat{C} \end{split}$$

Craig Lawrie (ITP Heidelberg)

F-theory and AdS₃/CFT₂

KK monopoles now M5-branes on ${\cal B}$

 \rightarrow Brown–Henneaux for holographic central charges for all M

$$c_R^{\text{M-th}} = 3N^2 M C \cdot C + 3N(2 - M^2)c_1(B) \cdot C$$

$$c_L^{\text{M-th}} = 3N^2 M C \cdot C + 3N(4 - M^2)c_1(B) \cdot C$$

Matches $c_{R,L}^{\text{IIB}}$ for M = 1

Includes both leading and subleading orders in N \rightarrow also subsubleading \rightarrow center of mass contributions \rightarrow not discussed today (but agrees with microscopic constructions) Construct general AdS₃ solution of IIB SUGRA with dual (0, 4) SCFT Computed holographic central charges (M = 1)

$$c_R = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$

$$c_L = 3N^2C \cdot C + 9Nc_1(B) \cdot C$$

Agrees with central charge computation from

- 11d supergravity
- ② Self-dual strings in 6d
- **③** M5-brane anomaly inflow
- Spectrum (for N = 1)

AdS₃ Solutions Preserving SUSY $\neq (0, 4)$

Recall that the general solution preserving (0,2) was

 $AdS_3 \times (S^1 \to Y_4)$

with $\pi: Y_4 \to B_3$ is an elliptically fibered fourfold satisfying

$$\Box_8 R_8 - \frac{1}{2}R_8^2 + R_{8ij}R_8^{ij} = 0$$

Recall: Y_4 is not necessarily Calabi–Yau

Formidable to solve in general

 \rightarrow look at special solutions, eg, where [Couzens, Martelli, Schäfer-Nameki]

$$B_3 = \Sigma_1 \times M_2$$

(0,2) Universal Twist Solutions and (2,2) Solutions

Neither elliptic surface S_2 nor elliptic threefold \mathcal{T}_3 are Calabi–Yau.

 \rightarrow Dual SCFTs

 \rightarrow topological duality twisted compactifications of 4d $\mathcal{N}=1$ SCFTs

If (2, 2) SUSY is imposed and $S^1 \to Y_4$ is compact $\Rightarrow Y_4$ is trivial elliptic fibration \Rightarrow axio-dilaton does not vary

Moduli Space of Couplings and the Anomaly Polynomial

AP can contain terms \propto forms on moduli space of couplings Example: 4d $\mathcal{N} = 2$ class \mathcal{S} theories [Tachikawa, Yonekura], [Bah, Nardoni]

Theories of class S arise from M5-brane on C_g \rightarrow integrate M5 AP over C_g to get class S AP

$$I_6 = \int_C I_8 = -\left(\frac{h_G^{\vee} d_G}{6} c_2(R) + \frac{r_G}{12} \left(c_2(R) + \frac{1}{4} p_1(T_4)\right)\right) \int_{C_g} t^2 + \cdots$$

t is c_1 of relative tangent bundle of C over \mathcal{M}_g , and [Wolpert]

$$\int_C t^2 \propto \omega^{WP}$$

where ω^{WP} is Weil–Petersson metric on \mathcal{M}_g

$\mathcal{N} = 4$ SYM Anomaly Polynomial

Add coupling terms to
$$\mathcal{N} = 4$$
 SYM AP [CL, Schäfer-Nameki]
 $I_6 = \frac{1}{2}N^2c_3(S_6^+) - \frac{1}{2}Nc_2(S_6^+)c_1(\mathcal{L}_D) + \frac{1}{12}Nc_1(\mathcal{L}_D)^3 - \frac{1}{12}Nc_1(\mathcal{L}_D)p_1(T_4)$

Topological twist along C:

$$I_4 = \int_C I_6 = c_2(R) \left[-\frac{1}{2} N^2 C \cdot C - \frac{1}{2} N c_1(B) \cdot C \right] + \cdots$$

Central charge:

$$c_R = 6k_R = 3N^2C \cdot C + 3Nc_1(B) \cdot C$$

Matches AdS₃ supergravity dual

Conclusions and Future Directions

- Started systematically exploring holographic constructions in F-theory varying axio-dilaton.
- Constructed AdS₃ solutions preserving (0, 2), (0, 4), and (2, 2) SUSY in dual CFT₂
- For (0, 4) we obtained a microscopic understanding of the holographic constructions
 - \rightarrow what about $G_3 \neq 0 \rightarrow$ all AdS₃ solutions dual to (0, 4)
- AdS duals to strings of minimial 6d SCFTs [del Zotto, Lockhart] \rightarrow curve wrapped by D3-branes not ample
- Anomaly polynomials with $U(1)_D$ related terms
 - \Rightarrow information about field theories with varying coupling
 - \rightarrow extension to 4d $\mathcal{N}=1$ SCFTs with F-theory duals

[Couzens, Martelli, Schäfer-Nameki], [CL, Schäfer-Nameki]