UDLAP. Universidad de las Américas Puebla

Recent results in low x phenomenology and theory

Martin Hentschinski
martin.hentschinski@gmail.com

LHC working group on forward physics and diffraction 20-23 march 2018, Instituto Física Teórica UAM/CSIC Madrid

- Outline -

1. Photo-production of vector mesons as a probe of low x evolution: the case of excited states
(with Alfredo Arroyo Garcia, UDLAP)
2. Lipatov's high energy effective action and the Color Glass Condensate formalism
3. TMD splitting functions from $k T$ factorization
(with Krzysztof Kutak, Aleksander Kusina, Cracow;
Mirko Serino; Beer Sheva)
photo-production of J / Ψ and Υ : explore proton at ultra-small x

- measured at HERA (ep) and LHC ($p p$, ultra-peripheral $p P b$)
- charm and bottom mass provide hard scale \rightarrow pQCD
- exclusive process, but allows to relate to inclusive gluon
reach values down to $x=4 \times 10^{-6} \rightarrow$ (unique ?) opportunity to explore the low x gluon

- low x evolution with non-linear effects, dipole models: predict, compare to data, refit, ...
- DGLAP: evolution from $\mathrm{J} / \Psi\left(2.4 \mathrm{GeV}^{2}\right)$ to $\Upsilon\left(22.4 \mathrm{GeV}^{2}\right)$ \rightarrow constrain pdfs at small x, not really a benchmark for saturation effects (effects die away fast, instability)
- Better: BFKL (linear low x evolution)

How to do that?
relate exclusive XSec. to inclusive gluon distribution (imitate pdf studies) proceaure:
a) calculate diff. Xsec. at $t=0$
\rightarrow exclusive scattering amplitude can be expressed through inclusive gluon distribution
b) parametrize t dependence $\frac{d \sigma(t)}{d t}=\frac{d \sigma(t=0)}{d t} \cdot e^{-|t| B_{D}(W)}$,
slope $B_{D}(W)=b_{0}+4 \alpha^{\prime} \ln \frac{W}{W_{0}}+$ fix parameters by (HERA) data
(here: values proposed by [Jones, Martin, Ryskin, Teubner; 1307.7099, 1312.6795])

Studied so far: J/ $\boldsymbol{\Psi}$ and $\mathbf{~}(1 s)$

[Bautista, Fernando Tellez, MH; 1607.05203]

Procedure in a nut-shell

- take light-cone wave function used for dipole/ saturation models (from literature) and calculate their transform to Mellin space
- combine with fit of NLO BFKL gluon
[MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
- improve the calculation of the real part of the scattering amplitude

The underlying NLO BFKL fit to DIS data

	virt. photon impact factor	Q_{0} / GeV	δ	\mathcal{C}	$\Lambda_{\mathrm{QCD}} / \mathrm{GeV}$
fit 1	leading order (LO)	0.28	8.4	1.50	0.21
fit 2	LO with kinematic improvements	0.28	6.5	2.35	0.21

Good description of cominbed HERA [МН, Salas, Sabio Vera; 1209.1353; 1301.5283]

data: [H1 \& ZEUS collab. 0911.0884]

and good description J / Ψ and Y data

there are also excited states: $\boldsymbol{\Psi}(2 \mathrm{~s})$ and $\mathbf{Y}(2 \mathrm{~s})$

and theory predictions both based on DGLAP and saturation models

[Jones et. al.; 1312.6795]

[Nestor et. al.; 1402.4831]

Photoproduction of $\mathrm{Y}(2 \mathrm{~S})-\mathrm{LHC}-\mathrm{s}^{1 / 2}=8.2 \mathrm{TeV}$

[Gay Ducati et. al.; 1610.06647]
to study it within the BFKL framework, follow the same path as before
= calculate the Mellin transform of the light-front wave function of excited states

$$
\begin{align*}
\Phi_{V, T}(\gamma, z, M)= & 8 \pi^{2} e \hat{e}_{f} N_{T} \frac{\Gamma(\gamma) \Gamma(1-\gamma)}{m_{f}^{2}}\left(\frac{8 z(1-z)}{M^{2} R_{2 s}^{2}}\right)^{\gamma} e^{-\frac{m_{f}^{2} R_{2 s}^{2}}{8 z(1-z)}+\frac{m_{f}^{2} R_{2 s}^{2}}{2}}\left(\frac{m_{f}^{2} R_{2 s}^{2}}{8 z(1-z)}\right)^{2} . \\
& \cdot\left[\left(1+\alpha_{2 s}\left(2+\frac{m_{f}^{2} R_{2 s}^{2}}{4 z(1-z)}-m_{f}^{2} R_{2 s}^{2}\right)\right) U\left(2-\gamma, 1, \frac{\epsilon^{2} R_{2 s}^{2}}{8 z(1-z)}\right)-\ldots\right] \\
& {\left[\ldots-2(2-\gamma)^{2} U\left(3-\gamma, 1, \frac{\epsilon^{2} R_{2 s}^{2}}{8 z(1-z)}\right)+\ldots\right] } \\
& {\left[+\left[z^{2}+(1-z)^{2}\right] \epsilon^{2}\left((2-\gamma)\left(1+\alpha_{2 s}\left(\frac{m_{f}^{2} R_{2 s}^{2}}{4 z(1-z)}-m_{f}^{2} R_{2 s}^{2}\right)\right) U\left(3-\gamma, 2, \frac{\epsilon^{2} R_{2 s}^{2}}{8 z(1-z)}\right)\right)+\right] } \\
& {\left[\ldots+2(2-\gamma)^{2}(3-\gamma) \alpha_{2 s} \cdot U\left(4-\gamma, 2, \frac{\epsilon^{2} R_{2 s}^{2}}{8 z(1-z)}\right)\right] } \tag{7}
\end{align*}
$$

- vary renormalization scale to check stability
\rightarrow in general looks good
- don't trust normalization

Preliminary results: $\boldsymbol{\Psi}(2 \mathrm{~s})$

- data: H 1 and LHCb; need to adjust normalization \rightarrow problem already there for J / Ψ \& Y: most likely correction to impact factor
- two choices of the hard scale are shown

Summary vector boson

- perturbative low x evolution (=BFKL) appears to describe also excited states of vector mesons (within errors)
- need to fix normalization constant (\rightarrow similar to $\mathrm{J} / \boldsymbol{\Psi}$ and $\mathbf{\Upsilon (1 s)) ; ~}$
here problem: low energy points with huge error bars
- normalization issue: virtual photon impact factor used in the underlying DIS fit, is kinematically improved \rightarrow should do the same for vector bosons

2. Lipatov's high energy effective action and the Color Glass Condensate formalism
theoretical descriptions in the high energy limit: 2 alternatives

- unintegrated gluon densities
more formally: formalism based on reggeized gluons \& effective production vertices - t-channel picture
- vs. dipole picture
more formally: formalism based on propagators which resum strong background field
- s-channel picture
- to relate both approaches: difficult at the level of the formalism, mainly done for evolution equations and/ or observables
- examples: BFKL evolution, BKP evolution, triple Pomeron vertex from JIMWLK or BK evolution

```
[Bartels, Lipatov, Vacca,
hep-ph/0404110]
[Chirilli, Szymanowski,
Wallon,1010.0285]
[Ayala, Cazaroto,
Hernandez, Jalilian-
Marian; 1408.3080] ...
```

- in general: very similar structure, but direct one-toone correspondence not obvious

an action formalism for reggeized gluons:

- idea: factorize QCD amplitudes in the high energy limit through introducing a new kind of field: the reggeized gluon
- the reggeized gluon is globally charged under $\mathrm{SU}\left(\mathrm{N}_{\mathrm{C}}\right)$, but invariant under local gauge transformation \rightarrow gauge invariant factorization
- took a while, now we know Lipton's action can be used for NLO calculation within the BFKL framework
[MH, Sabio Vera;1110.6741]
[Chachamis, MH, Madrigal, Sabio Vera;
1202.064, 1212.4992, 1307.2591]
[MH, Madrigal, Murdaca, Sabio Vera;
1404.2937, 1406.5625, 1409.6704]
[Bartels, Fadin, Lipatov,Vacca;
1210.0797]
divide final state particles into clusters of particles "local in rapidity"
for each cluster
- integrate out specific details of fast $+/-$ fields
- dynamics in local cluster: QCD Lagrangian + universal eikonal factor (up to power suppressed corrections)

effective field theory for each cluster of particles local in rapidity

$$
S_{\mathrm{eff}}=S_{\mathrm{QCD}}+S_{\mathrm{ind}} \quad \text { non-local emissions from Sind }
$$

$$
S_{\text {ind. }}=\int \mathrm{d}^{4} x\left\{\operatorname{tr}\left[\left(W_{-}[v(x)]-A_{-}(x)\right) \partial_{\perp}^{2} A_{+}(x)\right]\right.
$$

eikonal

$$
\left.+\operatorname{tr}\left[\left(W_{+}[v(x)]-A_{+}(x)\right) \partial_{\perp}^{2} A_{-}(x)\right]\right\} .
$$

Lipatov's effective action \& the CGC formalism

- numerous attempts to compare both formalisms, mainly on the level of effective Lagrangians
[Jalilian-Marian, Kovner, Leonidov, Weigert; NPB504, 415 (1997)]
[Hatta; hep-ph/0607126]
[Bondarenko, Lipatov,Pozdnyakov,
Prygarin;1706.0027, 1708.05183]
[Bondarenko, Zubkov;1801.08066]
- here: pragmatic approach:
compare results for scattering amplitudes \& propagators
- to start: quasi-elastic i.e. dilute/ dense scattering in presence of strong reggeized gluon field

- quasi-elastic scattering = integrate out fields only from one side
- corresponds to: scattering of dilute projectile in strong gluon field of target
- effective action: resum interaction of QCD fields with ∞ \# of reggeized gluon fields (= transmit interaction with target)
quarks: relatively straightforward \rightarrow high energy kinematics allows to resum interaction into Wilson line gluon: at first difficult

a trick proposed by Lipatov in 1995

$$
V^{\mu}(x)=v^{\mu}(x)+\frac{1}{2}\left(n_{-}\right)^{\mu} B_{+}\left[v_{-}\right] \quad \begin{aligned}
& \text { use a special } \\
& \begin{array}{l}
\text { parametrization of the } \\
\text { gluon field }
\end{array}
\end{aligned}
$$

$$
B_{ \pm}\left[v_{\mp}\right]=U\left[v_{\mp}\right] A_{ \pm} U^{-1}\left[v_{\mp}\right] \quad \begin{aligned}
& \text { sort of: a gauge rotation of the } \\
& \text { reggeized gluon field } \mathrm{A}_{ \pm}
\end{aligned}
$$

Wilson line operator and its inverse ...

$$
U\left[v_{ \pm}\right]=\frac{1}{1+\frac{g}{\partial_{ \pm}} v_{ \pm}}
$$

$$
U^{-1}\left[v_{ \pm}\right]=1+\frac{g}{\partial_{ \pm}} v_{ \pm}
$$

why of interest?

transformation properties

$V^{\mu}(x)=v^{\mu}(x)+\frac{1}{2}\left(n_{-}\right)^{\mu} B_{+}\left[v_{-}\right]$
shifted field transforms like gauge field \rightarrow consistent transformation properties

$$
\delta V_{ \pm}=\left[D_{ \pm}, \chi\right]+\left[g B_{ \pm}, \chi\right]=\left[D_{ \pm}+g B_{ \pm}, \chi\right]
$$

this would NOT be true for $v_{ \pm} \rightarrow V_{ \pm}=v_{ \pm}+A_{ \pm}$ since

$$
\begin{aligned}
\delta_{\mathrm{L}} A_{ \pm} & =\frac{1}{g}\left[A_{ \pm}, \chi_{L}\right]=0 \\
\delta_{\mathrm{L}} V_{\mu} & =\frac{1}{g}\left[D_{\mu}, \chi_{L}\right]
\end{aligned}
$$

a new gluon-gluonreggeized gluon vertex

$$
\Gamma_{+}^{\nu \mu}(r, p)=p^{+} g^{\mu \nu}-\left(n^{+}\right)^{\mu} p^{\nu}-\left(n^{+}\right)^{\nu} r^{\mu}+\frac{r \cdot p}{p^{+}}\left(n^{+}\right)^{\mu}\left(n^{+}\right)^{\nu}
$$

- already written down by Lipatov in 1995
- good properties: current conservation

$$
r_{\nu} \cdot \Gamma_{+}^{\nu \mu}(r, p)=0=\Gamma_{+}^{\nu \mu}(r, p) \cdot p_{\mu}
$$

- properties Lipatov didn't like: violates for individual Feynman diagrams Steinmann relations
argue: shifted version of a theory which respects Steinmann relations \rightarrow OK for physical observables

another important property

$$
\begin{aligned}
& n_{\nu}^{+} \cdot \Gamma_{+}^{\nu \mu}(r, p)=0=\Gamma_{+}^{\nu \mu}(r, p) \cdot n_{\mu}^{+} \\
& \Gamma_{+}^{\nu \alpha}(r, k) \cdot\left(-g_{\alpha \alpha^{\prime}}\right) \cdot \Gamma_{+}^{\alpha^{\prime} \mu}(k, p)=-p^{+} \Gamma_{+}^{\nu \mu}(r, p)
\end{aligned}
$$

- reggeization as defined by Bartels, Wüsthoff and Bartels, Ewerz $\rightarrow \mathrm{n}$ reggeized gluons $=1$ reggeized gluon \times factor
- technical details aside: allows to sum up ∞ \# of reggeized gluons into a Wilson line of reggeized gluons

the reggeized gluon field as a shock wave

can argue:

$$
A_{+}(x)=2 \cdot \alpha(\boldsymbol{x}) \delta\left(x^{+}\right)
$$

- used all the time in CGC calculation
- Lipatov's action: reggeized gluon field = classical field for given cluster
- dynamics: reggeized gluon propagator = connect clusters \rightarrow imposes such a parametrization
vertices which resum interaction with an arbitrary \# of reggeized gluon fields

$$
=\tau_{F}(q,-r)=2 \pi \delta\left(p^{+}-r^{+}\right) \not \hbar^{+} \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{r})}
$$

$$
\left[\theta\left(p^{+}\right)[W(\boldsymbol{z})-1]-\theta\left(-p^{+}\right)\left[[W(\boldsymbol{z})]^{\dagger}-1\right]\right]
$$

$$
=\tau_{G, \nu \mu}^{a b}(p,-r)=-4 \pi \delta\left(p^{+}-r^{+}\right) \Gamma_{\nu \mu}(r, p) \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{r})}
$$

$$
\cdot\left[\theta\left(p^{+}\right)\left[U^{b a}(\boldsymbol{z})-\delta^{a b}\right]-\theta\left(-p^{+}\right)\left[\left[U^{b a}(\boldsymbol{z})\right]^{\dagger}-\delta^{a b}\right]\right]
$$

interaction resumed into Wilson lines

$$
U^{a b}(\boldsymbol{z})=\mathrm{P} \exp \left(-\frac{g}{2} \int_{-\infty}^{\infty} d z^{+} \tilde{A}_{+}\right) \quad W(\boldsymbol{z})=\mathrm{P} \exp \left(-\frac{g}{2} \int_{-\infty}^{\infty} d z^{+} A_{+}\right)
$$

- vertices agree with CGC expressions for light-cone gauge \rightarrow Lipatov's action: any gauge possible
- differs in content of Wilson line: reggeized gluon field vs. background field in light-cone gauge
- can show: $W[A](x)=e^{i g \alpha^{a}(\boldsymbol{x}) t^{a}}$. not possible for light-cone gauge background field
- for experts: induced vertices allow to reproduce the complete color structure (also anti-symmetric terms)

Can we re-obtain Balitsky-JIMWLK evolution form Lipatov's action?
 \rightarrow Yes

- quantum fluctuations of Wilson lines within Lipatov's action \rightarrow Balitsky-JIMWLK evolution (so far LL)
- effective action for central production processes \rightarrow color decomposition imposed of effective action gives complication (similar problems in deriving the Triple Pomeron vertex [мн, 0908.2576])
- essential take away point: both formalisms are 100\% consistent; Lipatov's action provides an additional tool

3. TMD splitting functions from $\mathbf{k T}$ factorization

2 versions of partonic evolution

- DGLAP: ordering in $\mathrm{kT} \leftrightarrow \mathrm{kT}$ not conserved
- BFKL: ordering in momentum fraction z \rightarrow z/"energy" not conserved
- evolution which conserve both possible?

Why to try such a thing?

plot taken from Hannes Jung's talk at RBRC
workshop, June 2017
$K^{P S}=\frac{N_{N L O-M C}^{(p s)}}{N_{N L O-M C}^{(0)}}$

- ratio: NLO with parton shower over NLO without parton shower
- theory: their the same, practice: not quite true
- message: kinematic effects are important

Why to try such a thing?

- practical need for low x phenomenologist: many (forward) observables require integration over gluon $x \rightarrow$ sensitivity to large x region
(e.g. fragmentation function, not completely exclusive final state, applications to MPI ...)
- need to model BFKL/BK gluon in large \times region (error!) or introduce matching scheme (how?)
- BEST: low x pdf that works for all x
short history:

1. TMD Pgq by Catani-Hautmann (low resummed splitting kernels) [Catani, Hautmann, NPB427 (1994)]
2. reproduced using effective vertices (reggeized quarks) adapted to finite momentum fraction
[Hautmann, MH, Jung; 1205.1759]
3. Curci-Furmanski-Petrozini formalism for DGLAP (light-cone gauge!) + gauge invariance in presence of off-shell initial reggeized quarks (generalized Lipatov vertices) \rightarrow quark splittings
[Gituliar, MH, Kutak, 1511.08439]
4. now: real part of TMD $\mathrm{P}_{\text {gg }}$ (gluon-to-gluon)
[MH, Kusina, Kutak, Serino; 1711.04587]

$P_{\text {gg }}$ satisfies important constrains

\checkmark from $2 \rightarrow 3$ scattering amplitude or Lipatov's action in light-cone gauge + generalized CFP projectors
\checkmark current conservation
\checkmark collinear limit: DGLAP splitting
\checkmark low \times limit: BFKL kernel

\checkmark soft limit $\mathrm{p}_{\boldsymbol{T}} \rightarrow 0$: CCFM kernel byproduct from requesting the first 3 points

just the beginning not the end ...

- complete set of 4 real TMD splitting kernels \rightarrow satisfies all necessary constraints so far
- virtual corrections = work in progress
- in general: need to properly develop the whole framework \rightarrow what are we actually doing?
- at the very least: a consistent way to combine DGLAP and BFKL;
- hope: get a handle on kinematic corrections

Conclusions \& Summary

- BFKL can be tested in exclusive vector meson production \rightarrow the most appropriate theoretical framework
- Lipatov's action allows to obtain CGC propagators + Baltisky-JIMWLK evolution
- a definition of (real)TMD splitting kernels which obey correct DGLAP + BFKL + CCFM limits is possible

Appendix

Solve BFKL equation in conjugate (γ) Mellin space

$$
G\left(x, \boldsymbol{k}^{2}, M\right)=\frac{1}{\boldsymbol{k}^{2}} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{d \gamma}{2 \pi i} \hat{g}\left(x, \frac{M^{2}}{Q_{0}^{2}}, \frac{\bar{M}^{2}}{M^{2}}, \gamma\right)\left(\frac{\boldsymbol{k}^{2}}{Q_{0}^{2}}\right)^{\gamma}
$$

re-introduce two scales: hard scale of process (M) and scale of running coupling (\bar{M})
\hat{g} : operator in γ space!

$$
\begin{aligned}
\hat{g}\left(x, \frac{M^{2}}{Q_{0}^{2}}, \frac{\bar{M}^{2}}{M^{2}}, \gamma\right) & =\frac{\mathcal{C} \cdot \Gamma(\delta-\gamma)}{\pi \Gamma(\delta)} \cdot\left(\frac{1}{x}\right)^{\chi\left(\gamma, \frac{\bar{M}^{2}}{M^{2}}\right)} \\
& \left\{1+\frac{\bar{\alpha}_{s}^{2} \beta_{0} \chi_{0}(\gamma)}{8 N_{c}} \log \left(\frac{1}{x}\right)\left[-\psi(\delta-\gamma)+\log \frac{M^{2}}{Q_{0}^{2}}-\partial_{\gamma}\right]\right\},
\end{aligned}
$$

resummed NLO BFKL eigenvalue with optimal scale setting $\left(\rightarrow\right.$ modifies $\left.\chi_{1}(\gamma)\right)$:

$$
\begin{aligned}
\chi\left(\gamma, \frac{\bar{M}^{2}}{M^{2}}\right)=\bar{\alpha}_{s} \chi_{0}(\gamma)+ & \bar{\alpha}_{s}^{2} \tilde{\chi}_{1}(\gamma)-\frac{1}{2} \bar{\alpha}_{s}^{2} \chi_{0}^{\prime}(\gamma) \chi_{0}(\gamma) \\
& +\chi_{R G}\left(\bar{\alpha}_{s}, \gamma, \tilde{a}, \tilde{b}\right)-\frac{\bar{\alpha}_{s}^{2} \beta_{0}}{8 N_{c}} \chi_{0}(\gamma) \log \frac{\bar{M}^{2}}{M^{2}}
\end{aligned}
$$

Theory: Propagators in background field

use light-cone gauge, with $\mathrm{k}^{-}=\mathrm{n}^{+} \cdot \mathrm{k},\left(\mathrm{n}^{+}\right)^{2}=0, \mathrm{n}^{+} \sim$ target momentum

[Balitsky, Belitsky; NPB 629 (2002) 290], [Ayala, Jalilian-Marian, McLerran, Venugopalan, PRD 52 (1995) 2935-2943], ...
interaction with the background field:

$$
\begin{aligned}
& V(\boldsymbol{z}) \equiv V_{i j}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{+} A^{-, c}\left(x^{+}, \boldsymbol{z}\right) t^{c} \\
& U(\boldsymbol{z}) \equiv U^{a b}(\boldsymbol{z}) \equiv \mathrm{P} \exp i g \int_{-\infty}^{\infty} d x^{+} A^{-, c}\left(x^{+}, \boldsymbol{z}\right) T^{c}
\end{aligned}
$$

strong background field resummed into path ordered
$\xrightarrow{p} \rightarrow{ }^{q}=\tau_{F, i j}(p, q)=2 \pi \delta\left(p^{+}-q^{+}\right) \not 凤$ exponentials (Wilson lines)
$\times \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}\left\{\theta\left(p^{+}\right)\left[V_{i j}(\boldsymbol{z})-1_{i j}\right]-\theta\left(-p^{+}\right)\left[V_{i j}^{\dagger}(\boldsymbol{z})-1_{i j}\right]\right\}$

$$
A^{-}\left(x^{+}, x_{t}\right)=\delta\left(x^{+}\right) \alpha\left(x_{t}\right)
$$

$$
=\tau_{G}^{a b}(p, q)=2 \pi \delta\left(p^{+}-q^{+}\right)\left(-2 p^{+}\right)
$$

$$
\times \int d^{2} \boldsymbol{z} e^{i \boldsymbol{z} \cdot(\boldsymbol{p}-\boldsymbol{q})}\left\{\theta\left(p^{+}\right)\left[U^{a b}(\boldsymbol{z})-1\right]-\theta\left(-p^{+}\right)\left[\left(U^{a b}\right)^{\dagger}(\boldsymbol{z})-1\right]\right\}
$$

reggeized gluon as log of Wilson line

- proposal made by S. Caron-Huot ${ }_{[1309.6521]:}$: 2-dim reggeized gluon from Balitsky-JIMWLK evolution

$$
R^{a}(\boldsymbol{z}) \equiv \frac{1}{g N_{c}} f^{a b c} \log U^{b c}(\boldsymbol{z}) \quad \begin{gathered}
U \text { satisfies the } \\
\text { evolution }
\end{gathered}
$$

- Lipatov's effective action: agrees in this sense with this definition

$$
R^{a}(\boldsymbol{z})=\frac{1}{g N_{c}} f^{a b c}\left[i g \alpha^{d}(\boldsymbol{z}) T_{b c}^{d}\right]=\alpha^{a}(\boldsymbol{z})=\frac{1}{2} \int d x^{+} A_{+}^{a}\left(x^{+}, \boldsymbol{z}\right)
$$

angular averaged TMD splitting functions

$$
\begin{aligned}
\bar{P}_{q g}^{(0)}= & T_{R}\left(\frac{\tilde{\boldsymbol{q}}^{2}}{\tilde{\boldsymbol{q}}^{2}+z(1-z) \boldsymbol{k}^{2}}\right)^{2}\left[z^{2}+(1-z)^{2}+4 z^{2}(1-z)^{2} \frac{\boldsymbol{k}^{2}}{\tilde{\boldsymbol{q}}^{2}}\right] \\
\bar{P}_{g q}^{(0)}= & C_{F}\left[\frac{2 \tilde{\boldsymbol{q}}^{2}}{z\left|\tilde{\boldsymbol{q}}^{2}-(1-z)^{2} \boldsymbol{k}^{2}\right|}-\frac{(2-z) \tilde{\boldsymbol{q}}^{4}+z\left(1-z^{2}\right) \boldsymbol{k}^{2} \tilde{\boldsymbol{q}}^{2}}{\left(\tilde{\boldsymbol{q}}^{2}+z(1-z) \boldsymbol{k}^{2}\right)^{2}}\right], \\
\bar{P}_{q q}^{(0)}= & C_{F} \frac{\tilde{\boldsymbol{q}}^{2}}{\tilde{\boldsymbol{q}}^{2}+z(1-z) \boldsymbol{k}^{2}} \\
\times & {\left[\frac{\tilde{\boldsymbol{q}}^{2}+\left(1-z^{2}\right) \boldsymbol{k}^{2}}{(1-z)\left|\tilde{\boldsymbol{q}}^{2}-(1-z)^{2} \boldsymbol{k}^{2}\right|}+\frac{z^{2} \tilde{\boldsymbol{q}}^{2}-z(1-z)\left(1-3 z+z^{2}\right) \boldsymbol{k}^{2}}{(1-z)\left(\tilde{\boldsymbol{q}}^{2}+z(1-z) \boldsymbol{k}^{2}\right)}\right] . } \\
\bar{P}_{g g}^{(0)}\left(z, \frac{\boldsymbol{k}^{2}}{\tilde{\boldsymbol{q}}^{2}}\right)= & C_{A} \frac{\tilde{\boldsymbol{q}}^{2}}{\tilde{\boldsymbol{q}}^{2}+z(1-z) \boldsymbol{k}^{2}}\left[\frac{(2-z) \tilde{\boldsymbol{q}}^{2}+\left(z^{3}-4 z^{2}+3 z\right) \boldsymbol{k}^{2}}{z(1-z)\left|\tilde{\boldsymbol{q}}^{2}-(1-z)^{2} \boldsymbol{k}^{2}\right|}\right. \\
& \left.+\frac{\left(2 z^{3}-4 z^{2}+6 z-3\right) \tilde{\boldsymbol{q}}^{2}+z\left(4 z^{4}-12 z^{3}+9 z^{2}+z-2\right) \boldsymbol{k}^{2}}{(1-z)\left(\tilde{\boldsymbol{q}}^{2}+z(1-z) \boldsymbol{k}^{2}\right)}\right]
\end{aligned}
$$

