# LHCb Forward Physics Status and Plans





LHC Forward Physics and Diffraction 21-24 Mar 2018, Madrid.



#### 1. LHCb and Herschel Detector arXiv:1801.04281

#### 2. Analyses:

- pp at 13 TeV
- pPb and Pbp at 8 TeV
- PbPb at  $\sqrt{s_{NN}} = 5 \text{ TeV}$

# 3. Odderon and prospects for CEP in future



1. LHCb and Herschel Detector arXiv:1801.04281

- 2. Analyses:
  - pp at 13 TeV
  - pPb and Pbp at 8 TeV
  - PbPb at  $\sqrt{s_{NN}} = 5 \text{ TeV}$
- 3. Odderon and prospects for CEP in future

## The LHCb detector

Int. J. Mod. Phys. A 30 (2015) 1530022











### Scintillators, light-guides and PMTs





#### **Acceptance**



Showers induced by high-rapidity particles interacting with machine elements Ideally wish to veto on any activity: threshold depends on signal and noise.



Start of 2015: MIPs give 2-5 ADC counts, although some degradation with aging. Particles traversing Herschel give 'a few' ADC counts.





Pulse designed to be within 25ns 2015 running had 50ns gaps between p-p crossings 2016,17 running was at 25ns



### **Noise**

#### Detector Effects

- Common-mode noise (only in 2015) [10-20 ADC counts]
- Intrinsic noise [2-10 counts]
- Time dependence due to aging and voltage settings

#### Collider Effects

- Pile-up due to average number of collisions per bunch-crossing (0.1 – 2.5)
- Spill-over in high-luminosity running
- More spill-over in 25ns running compared to 50ns running.



LHCb Average Mu at p-p in 2015

# Average No. interactions <sup>1.6</sup>





## **Electronic spillover**

Assess using response in first empty-empty bunch-crossings after p-p bunch-crossing. These are a proxy for genuine CEP events.



### Combine calibrated empty signals into Herschel discriminant



Response of Herschel in 2015 running conditions, when no particles pass through

#### Sample 1: Response to CEP events (QED µµ)



#### Sample 1: Response to CEP events



First bin is > 95% pure CEP QED di-muons.



### Herschel discriminant for physics





#### 1. LHCb and Herschel Detector arXiv:1801.04281

• PbPb at 
$$\sqrt{s_{NN}} = 5 \text{ TeV}$$

# 3. Odderon and prospects for CEP in future

#### pp / pPb / Pbp / PbPb data-taking





#### **Collisions**



Lumi (µb<sup>-1</sup>

0.05

0.5

0.5

~3

~0.05

~0.05

1.7

~17

0.07

~1.0

~200



↓ 2017 Xe-Xe run @ 5.4 TeV (~0.4ub<sup>-1</sup>)

#### R. McNulty, CEP at LHCb

(indicative luminosities)





Consistent cross-section results with/without Herschel. Backgrounds roughly halved using Herschel (but not eliminated.....)

## Inelastic background J/ψ

Regge theory:

$$\frac{d\sigma}{dt} \sim e^{bt}$$

b-slope of signal is same with/without Herschel b-slope of bkg changes (because you veto higher-pT events)



New Technique:  $N_{HRC} = \epsilon N_{sig} + \beta(p_T)N_{bkg}$  $N_{anti-HRC} = [1-\epsilon]N_{sig} + [1-\beta(p_T)] N_{bkg}$ 

ε known from QED sample
Pure bkg sample obtained => Signal derived
(Will be detailed in paper, currently in collaboration review)

#### Differential cross-sections J/ψ and ψ(2S)



S. Jones, A. Martin, M. Ryskin, and T. Teubner, Probes of the small x gluon via exclusive  $J/\psi$  and  $\Upsilon$  production at HERA and the LHC, JHEP **1311** (2013) 085, arXiv:1307.7099.

S. P. Jones, A. D. Martin, M. G. Ryskin, and T. Teubner, *Predictions of exclusive*  $\psi(2S)$  production at the LHC, J. Phys. **G41** (2014) 055009, arXiv:1312.6795.



HERA measured power-law:  $\sigma_{\gamma p \to J/\psi p}(W) = 81(W/90 \,\text{GeV})^{0.67} \,\text{nb}$ Use this for W- solution (in previously measured region). LHCb measures W+ Photo-production cross-section



#### Pb-Pb collisions



 $m_{\mu^+\mu^-}$  [MeV/ $c^2$ ]

#### Pb-Pb collisions





Photon flux proportional to  $Z^2$ . Removes two-fold ambiguity



Photon flux proportional to  $Z^2$ . Removes two-fold ambiguity



# **Dipions in pA/Ap**

- pp->p(ππ)p has contributions from DPE (f0, f2 etc) and photoproduction (ρ).
- Difficult to disentangle (e.g. f0 appearing as shoulder on ρ)
- Difficult to separate exclusive from dissociation
- pA->p(ππ)A has enhanced photoproduction
- Remarkably clean resonance
- x down to 10<sup>-6</sup>, W up to 1 TeV



# Dipions in pA/Ap

- Use pA to study photoproduction
- Use pp for DPE
- Use PbPb for gammagamma



### Double J/ψ production



Final state theoretically studied in diphoton production (linear collider) but not through double pomeron exchange (hadron collider)

Sensitivity to higher mass states (tetraquarks,  $\eta_b$ ) Inclusive production has attracted much interest (DPS effects)

#### Select 4-muon exclusive events



Selection requirement:

Require precisely 4 tracks, at least three identified as muons

# **Comparison to theory**

LHCb estimate exclusive cross-section. **24+-9 pb** 

Harland-Lang, Khoze, Ryskin: (arXiv: 1409.4785) **2-7 pb** 





#### 1. LHCb and Herschel Detector arXiv:1801.04281

#### 2. Analyses:

- pp at 13 TeV
- pPb and Pbp at 8 TeV
- PbPb at  $\sqrt{s_{NN}} = 5 \text{ TeV}$

# 3. Odderon and prospects for CEP in future

# Did TOTEM experiment discover the Odderon?

# Can LHCb experiment discover the Odderon?

# Can LHCb experiment discover the Odderon?

- 1) Photoproduction -> Odderoproduction
- 2) Pomeron-Odderon Interference
- 3) Two photon physics -> Two odderon physics
- 4) Other ideas?



| $d\sigma^{ m corr}/dy$ | $J/\psi$     |                            | Υ                |                 |
|------------------------|--------------|----------------------------|------------------|-----------------|
|                        | odderon      | photon                     | odderon          | photon          |
| Tevatron               | 0.3–1.3–5 nb | 0.8–5–9 nb                 | 0.7 - 4 - 15  pb | 0.8-5-9  pb     |
| LHC                    | 0.3–0.9–4 nb | $2.4{-}15{-}27 \text{ nb}$ | 1.7-5-21  pb     | 5 - 31 - 55  pb |

## 1. Odderoproduction



Proton dissociation or Odderoproduction ? !

### 1. Odderoproduction



<sup>a</sup>Bogolyubov Institute for Theoretical Physics, Metrologichna 14b, Kiev, 03680 Ukraine <sup>b</sup>Faculty of European Studies, Babes-Bolyai University, Emmanuel de Martonne Street 1, 400090 Cluj-Napoca, Romania

#### 2. Odderon-Pomeron Interference



#### 2. Odderon Pomeron Interference



#### Can LHCb Did TOTEM experiment discover the Odderon?

Evgenij Martynov<sup>a</sup>, Basarab Nicolescu<sup>b</sup>

<sup>a</sup>Bogolyubov Institute for Theoretical Physics, Metrologichna 14b, Kiev, 03680 Ukraine <sup>b</sup>Faculty of European Studies, Babes-Bolyai University, Emmanuel de Martonne Street 1, 400090 Cluj-Napoca, Romania

### 3. Gamma-Odderon Production

 $\gamma p - \gamma p, \gamma p - \gamma \pi^{0} p, \gamma \gamma - \gamma \pi^{0} \pi^{0}$ 

Czyzewski et al., PLB398 (1997) 400. Berger et al., EPJ C9 (1999) 491.



In pp colisions, photon flux small so γγ cross-section small (and calculable) Photon-Odderon production 'small'/unknown Pomeron-Pomeron production suppressed.

## **Future Analyses**

#### рр

- Low mass and charm spectroscopy
- New hadronic triggers selecting pions with pT>100 MeV
- Electromagnetic trigger for photons/electrons pT>1GeV
- μμ, ππ, KK, pp, γγ, ee.
   π0, η ω etc
- Ability of Herschel to suppress
   non-exclusive backgrounds
- odderon / glueball / exotics / tetraquark searches

#### pPb/Pbp

- Photoproduction: Jpsi, Phi, rho
- Very clean signals with Herschel since little pile-up or spill-over
- Search for saturation
- Quantify nuclear supressions factors

#### **PbPb**

- Two-photon physics
- Light-by-light scattering

# <u>Summary</u>

- Several CEP pp measurements at 7 and 8 TeV using muons.
  - Limited by understanding exclusivity.
- New Herschel detector for Run 2.
  - Calibration and performance shown
  - Affected by beam conditions
  - Significant impact on physics
- First measurement at 13 TeV with lower backgrounds.
- Excellent prospects for future, including hadronic modes.