

Elastic scattering and optics at the LHC

Frigyes Nemes on behalf of the CMS and TOTEM collaborations **CERN***

LHC WG on Forward Physics and Diffraction 2018 Madrid, Spain 2018, March 20. – 23.

*Also at Wigner RCP, Budapest, Hungary

LHC optics measurement with Roman Pots

Method developed in TOTEM:

- Use **measured** proton data from RPs
- Based on kinematics of elastic candidates
- Published in New Journal of Physics
- <u>http://iopscience.iop.org/1367-2630/16/10/103041/</u>

Sketch of the LHC magnet lattice at IP5:

s: distance from IP5 (*≡IP5)

Measured

$$\begin{pmatrix} x \\ \Theta_x \\ y \\ \Theta_y \\ \xi \end{pmatrix}_{RP} = \begin{pmatrix} v_x & L_x & m_{13} & m_{14} & D_x \\ v'_x & L'_x & m_{23} & m_{24} & D'_x \\ m_{31} & m_{32} & v_y & L_y & D_y \\ m_{41} & m_{42} & v'_y & L'_y & D'_y \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \xi^* \end{pmatrix}$$

$$\sigma(\Theta) = \sqrt{\varepsilon / \beta_x(s)}$$

Determines angular resolution.

Elastic proton candidates and optics estimators

Scoring plane:

- At 220 m
- All the reconstructed tracks
- Elastic candidates highlighted

Optics estimators:

Tag elastic events (unique "galactic disk" shape)

$\beta^* = 3.5$ m optics estimation

R₁

Frigyes Nemes, TOTEM

Proton kinematics reconstruction & optics imperfections

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1$ mrad
- Magnetic field harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx , $\Delta y \approx 100 \,\mu m$

Novel method from TOTEM:

- Use **measured** proton data from RPs
- Based on kinematics of elastic candidates
- Published in New Journal of Physics
- <u>http://iopscience.iop.org/1367-2630/16/10/103041/</u>

Reconstructed proton kinematics after optics estimation ($\beta^* = 90$ m)

Comments:

 10^{6}

 10^{5}

 10^{4}

 10^{3}

 10^{2}

 10^{1}

 10^{0}

-200

events per bin

- Optics imperfections → Would cause distortions of expected physical symmetries
- After optics estimation: clear symmetries

CMS

Left - right symmetry

0

cuts 2, 3, 4, 5:

100

 $\theta_{r}^{*R} - \theta_{r}^{*L}$

45 bot – 56 bot

45 top – 56 top

-, - -

-100

45 top – 56 bottom:

no cuts

cuts 2. 3

cuts 2, 3, 4 cuts 2, 3, 4, 5

cuts 2

200

[µrad]

CMS – TOTEM PPS optics $\sqrt{s} = 13$ TeV, $\alpha = 370$ µrad

• Link to optics note

Based on left-right scattering symmetry:

Reconstruction of ξ for $\mu^+\mu^-$ analysis

- CT-PPS optics methods developed
- Performs well on 2016, 2017 data
- Several crossing angles covered
- Increasing statistics and feedback from analysis (e.g. dimuon analysis)