

HL-LHC Plans

LHC

HL_L

- Scenario 1+: All systematics remain constant with luminosity + some detector upgrade effects included
- Scenario 2+: Experimental nuisances scale with √L, theory uncertainties halved + some detector upgrade effects included

Projected e+e- Colliders: Luminosity vs Energy

ILC Measurements of H Couplings

Precision of Higgs Couplings [%]

and Synergy with HL-LHC

Fit)

CEPC-SPPC

Preliminary Conceptual Design Report

Future Circular Colliders

The vision:

explore 10 TeV scale directly (100 TeV pp) + indirectly (e^+e^-)

FCC-ee Parameters & Run Plan

parameter		Z		w	w	H	I (ZH)	ttbar
beam energy [GeV]		45	45		80		120	182.5
beam current [mA]		1390)	147			29	5.4
no. bunches/beam		1664	0	20	00		393	48
bunch intensity [1011	1	1.7		1.	5		1.5	2.3
SR energy loss / turn	[GeV]	0.03	6	0.3	34		1.72	9.21
total RF voltage [GV]		0.1		0.4	44		2.0	10.9
long. damping time [t	urns]	1281	1	23	35		70	20
horizontal beta* [m]		0.15	5	0.	2		0.3	1
vertical beta* [mm]		0.8		1	k.		1	1.6
horiz. geometric emittance [nm]		0.27	0.27		0.28		0.63	1.46
vert. geom. emittance [pm]		1.0		1.	7		1.3	2.9
bunch length with SR / BS [mm]		3.5 / 1	3.5 / 12.1		6.0	3.	3 / 5.3	2.0 / 2.5
luminosity per IP [103	⁴ cm ⁻² s ⁻¹]	>20()	>2	25		>7	>1.4
Working point	Z, years 1-2	Z, later	v	ww	HZ		tt threshold	365 GeV
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200		31	7.5		0.85	1.5
Lumi/year (2 IP)	26 ab-1	52 ab-1	8.1	ι ab-¹	1.95 a	b⁻¹	0.22 ab-1	0.39 ab-1
Physics goal	1	.50		10	5		0.2	1.5
Run time (year)	2	2		1	3		1	4

russible FCC-ee Precision Measurements

	Observable	Measurement	Current precision	FØC-ee st.t.	FCL-ee syst .	Dominant exp. error
1	m _z (keV)	Z Lineshape	91187500 ± 2100	5	< 100	Beam energy
	Γ _z (M V)		2495200 ± 2300	8	< 100	Beam energy
	R _I (×נס)		20767 ± 25	0.06	0.2-1	Detector acceptance
pole	R _b (×1c ⁱ)	⊧4 GeV	216290 ± 660	0.3	< 60	$g \rightarrow bb$
– Z	$N_v(imes extsf{i} extsf{i}^{\beta})$	for $\alpha_{\rm EM}$,	2984 ± 8	0.005	1	Lumi measurement
	sin²θ _W ^{eff} (κ10 ⁶)	ne chane	231480 ± 160	3	2-5	Beam energy
	/α _{QED} (m-) (×10 ³)		128952 ± 14	4	<1	Beam energy
\checkmark	α _s (m _Z) (×10 ⁴)	R ₁	1196 ± 30	0.1	0.4 - 1.6	Same as R _I
sh.	m _w (MeV)	WW Threshold scan	80385 ± 15	0.6	0.3	Beam energy
hre	$\Gamma_{ m W}$ (Me /)	WW ⁿ	2085 ± 42	1.5	0.3	Beam energy
W t	N _v (×1(³)		2920 ± 50	o.8	small	?
Ň	$\alpha_{s}(m_{W})$ (×10 ⁴)	nresnold	1170 ± 420	2	small	CKM Matrix
Ŀ.	m _{top} (MeV)	Top Threshold scan	173340 ± 760 ± 500	17	< 40	QCD corr.
resl	$\Gamma_{ ext{top}}$ (Me /)	t tbar	?	45	< 40	QCD corr.
t t	λ_{top}	areshold ⁿ	μ = 1.28 ± 0.25	0.10	< 0.05	QCD corr.
Ŧ	ttZ countings	neshord	± 30%	0.5-1.7%	< 2%	QCD corr

Precision Electroweak Measurements with FCC-ee

Blondel et al. arXiv:1809.01830

BU-HEPP-18-04, CERN-TH-2018-145, IFJ-PAN-IV-2018-09, KW 18-003 MITP/18-052, MPP-2018-143, SI-HEP-2018-21

Standard Model Theory for the FCC-ee: The Tera-Z

Report on the 1st Mini workshop: Precision EW and QCD calculations for the FCC studies: methods and tools, 12-13 January 2018, CERN, Geneva

https://indico.cern.ch/event/669224/

A. Blondel¹, J. Gluza^{*,2}, S. Jadach³, P. Janot⁴, T. Riemann^{2,5} (editors), A. Akhundov⁶, A. Arbuzov⁷, R. Boels⁸,
S. Bondarenko⁷, S. Borowka⁴, C.M. Carloni Calame⁹, I. Dubovyk^{8,5},
Ya. Dydyshka¹⁰, W. Flieger², A. Freitas¹¹, K. Grzanka², T. Hahn¹², T. Huber¹³,
L. Kalinovskaya¹⁰, R. Lee¹⁴, P. Marquard⁵, G. Montagna¹⁵, O. Nicrosini⁹,
C. G. Papadopoulos¹⁶, F. Piccinini⁹, R. Pittau¹⁷, W. Płaczek¹⁸, M. Prausa¹⁹,
S. Riemann⁵, G. Rodrigo²⁰, R. Sadykov¹⁰, M. Skrzypek³, D. Stöckinger²¹, J. Usovitsch²²,
B.F.L. Ward^{23,12}, S. Weinzierl²⁴, G. Yang²⁵, S.A. Yost²⁶

¹DPNC University of Geneva, Switzerland, ²Institute of Physics, University of Silesia, 40-007 Katowice, Poland, 3Institute of Nuclear Physics, PAN, 31-342 Krakow, Poland, 4CERN, CH-1211 Genéve 23, Switzerland, 5 Deutsches Elektronen-Synchrotron, DESY, 15738 Zeuthen, Germany, 6 Departamento de Física Teorica, Universidad de València, 46100 València, Spain and Azerbaijan National Academy of Sciences, ANAS, Baku, Azerbaijan, 7 Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 Russia, ⁸II. Institut f
ür Theoretische Physik, Universit
ät Hamburg, 22761 Hamburg, Germany, ⁹Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy, 10 Dzhelepov Laboratory of Nuclear Problems, JINR, Dubna, 141980 Russia, 11 Pittsburgh Particle physics, Astrophysics & Cosmology Center (PITT PACC) and Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA, ¹²Max-Planck-Institut für Physik, 80805 München, Germany, ¹³Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany, 14 The Budker Institute of Nuclear Physics, 630090, Novosibirsk, ¹⁵Dipartimento di Fisica, Università di Pavia, Pavia, Italy, ¹⁶Institute of Nuclear and Particle Physics, NCSR Demokritos, 15310, Greece, 17 Dep. de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada, Spain, 18 Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Kraków, Poland, 19 Albert-Ludwigs-Universität, Physikalisches Institut, Freiburg, Germany, 20 Instituto de Física Corpuscular, Universitat de València - CSIC, 46980 Paterna, València, Spain, 21 Institut für Kernund Teilchenphysik, TU Dresden, 01069 Dresden, Germany, 22 Trinity College Dublin - School of Mathematics, Dublin 2, Ireland, 23 Baylor University, Waco, TX, USA, 24 PRISMA Cluster of Excellence. Inst. für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany, 25 CAS Key Laboratory of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China, 26 The Citadel, Charleston, SC, USA

* Corresponding editor, E-mail: janusz.gluza@cern.ch.

×)117

Sep 2018

0

[hep-ph]

01830v1

809

arXiv:1

© owned by the authors. Copyright statement see page iii.

Precision Electroweak Measurements

Present and future EWPO errors				Blondel	et al, arXiv:1809.0183
	$\delta\Gamma_Z$ [MeV]	$\delta R_l \ [10^{-4}]$	$\delta R_b \ [10^{-5}]$	$\delta \sin^2 heta_{ m eff}^{ m l} \; [10^{-6}]$	$\delta \sin^2 heta_{ m eff}^{ m b} \left[10^{-5} ight]$
		Present EV	WPO errors		
EXP1	2.3	250	66	160	1600
TH1	0.5	50	15	45	5
FCC-ee-Z EWPO error estimations					
EXP2	0.1	10	$2\div 6$	6	70

Comparison of future EWPO errors with TH estimates

FCC-ee-Z EWPO error estimations							
$\delta \Gamma_Z \left[{ m MeV} ight] \; \delta R_l \left[10^{-4} ight] \; \delta R_b \left[10^{-5} ight] \; \delta \sin^2 heta_{ m eff}^{ m l} \left[10^{-5} ight]$							
EXP2 [40]	0.1	10	$2\div 6$	6			
TH1-new	0.4	60	10	45			
TH2	0.15	15	5	15			
TH3	< 0.07	< 7	< 3	< 7			

Numbers of Diagrams to be Calculated

		$Z ightarrow b \overline{b}$	Blondel et al, arXi	v:1809.01830
Number of	1 loop	2 loops	3 loops	
topologies	1	$14 \stackrel{(A)}{ ightarrow} 7 \stackrel{(B)}{ ightarrow} 5$	$211 \stackrel{(A)}{ ightarrow} 84 \stackrel{(B)}{ ightarrow} 51$	
Number of diagrams	15	$\textbf{2383} \stackrel{(A,B)}{\rightarrow} 1074$	490387 ^(A,B) → 120472	(State
Fermionic loops	0	150	17580	
Bosonic loops	15	924	102892	
Planar / Non-planar	15/0	981/133	84059/36413	Alexand Providence
QCD / EW	1/14	98 / 1016	10386/110086	- t - C 1-
	Z	$r ightarrow e^+e^-, \ldots$		ol OI WOIK theorists
Number of	1 loop	2 loops	3 loops bu	t feasible!
topologies	1	$14 \stackrel{(A)}{ ightarrow} 7 \stackrel{(B)}{ ightarrow} 5$	$211 \stackrel{(A)}{ ightarrow} 84 \stackrel{(B)}{ ightarrow} 51$	
Number of diagrams	14	2012 $\stackrel{(A,B)}{\rightarrow}$ 880	397690 ^(A,B) → 91472	
Fermionic loops	0	114	13104	Reals
Bosonic loops	14	766	78368	
Planar / Non-planar	14/0	782/98	65487/25985	
QCD / EW	0/14	0 / 880	144/91328	

- Need to reduce theoretical uncertainties to match experimental errors
 High precision at F
 - Needed for BSM interpretations

High precision at FCC-ee Big statistics at FCC-hh

Sensitivity to HHH Coupling

-ee CDR

Sensitivity through radiative corrections

Combining all FCC-ee centre-of-mass energies: precision in κ_{λ} of ±40% Improved to ±35% in combination with HL-LHC Further improved to ±25% when c_z fixed to SM value.

Sensitivity to e⁺e⁻H Coupling

Parameters of FCC-hh & HL/HE-LHC

parameter	F	CC-hh	HE-LHC	(HL) LHC
collision energy cms [TeV]		100	27	14
dipole field [T]		16	16	8.3
circumference [km]		100	27	27
beam current [A]		0.5	1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	,	1 (0.5)	2.2	(2.2) 1.15
bunch spacing [ns]	25 (12.5)		25 (12.5)	25
norm. emittance γε _{x,y} [μm]	2.	.2 (1.1)	2.5 (1.25)	(2.5) 3.75
Ι Ρ β [*] _{x,y} [m]	1.1	0.3	0.25	(0.15) 0.55
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	30	28	(5) 1
peak #events / bunch Xing	170	1000 (500)	800 (400)	(135) 27
stored energy / beam [GJ]	8.4		1.4	(0.7) 0.36
SR power / beam [kW]	2400		100	(7.3) 3.6
transv. emit. damping time [h]		1.1	3.6	25.8
initial proton burn off time [h]	17.0	3.4	3.0	(15) 40

Higgs Cross Sections

Examples of Higgs Measurements

FCC Accuracy in H Couplings

HLLH+	FCC-ee/FCC-eh	HLLHC + FCC		
Coupling	Relative precision	Coupling	Relative precision	
κ_b	0.39%	κ_b	0.38%	
κ_t	5.16%	κ_t	0.51%	
$\kappa_{ au}$	0.59%	$\kappa_{ au}$	0.58%	
κ_{c}	0.79%	κ_c	0.79%	
κ_{μ}	5.17%	κ_{μ}	0.42%	
κ_Z	0.14%	κ_Z	0.14%	
κ_W	0.17%	κ_W	0.17%	
κ_g	0.74%	κ_g	0.74%	
κ_{γ}	1.19%	κ_{γ}	0.40%	
$\kappa_{Z\gamma}$	14.3%	$\kappa_{Z\gamma}$	0.52%	

kv

SM Effective Field Theory: Tool to Search for BSM

Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data

- Global fit to dimension-6 operators using precision electroweak data, W⁺W⁻ at LEP, Higgs and diboson data from LHC Runs 1 and 2
- Results in Warsaw and SILH bases
- Improvements in the constraints from Run 2
- Constraints on BSM models
 - Some contribute to operators at tree level
 - Stops that contribute at loop level

Murphy, JE, Sanz & You, arXiv:1803.03252

Higgs		CMS		ATLA	AS	
80-	Production	Decay	Sig. Stren.	Production	Decay	S' ren.
ements	1-jet, $p_T > 450$	bb	$2.3^{+1.8}_{-1.6}$	pp	μμ	
	Zh	$b\bar{b}$	0.9 ± 0.5	Zh		γ
1 in	Wh	$b\bar{b}$	1.7 ± 0.7	Wh		
4 111	$t\bar{t}h$	$b\overline{b}$	$-0.19\substack{+0.80\\-0.81}$	tīh		$4^{+0.64}_{-0.61}$
	$t\bar{t}h$	$1\ell + 2\tau_h$	$-1.20^{+1.50}_{-1.47}$.	tth	0/	$1.7^{+2.1}_{-1.9}$
ΓΙΓΙ	$t\bar{t}h$	$2\ell ss + 1\tau_h$	$0.86^{+0.79}_{-0.66}$	$- \lambda v$	17h	-0.6-1.5
	$t\bar{t}h$	$3\ell + 1\tau_h$	$1.22^{+1.34}_{-1.00}$		$2\ell_{ss} \pm 1\pi$	3.5 ^{+1.7}
	tth	2lss	$1.7^{+0.6}_{-0.5}$		31	1.8 ^{+0.9}
lude all		3ℓ	1.0		2lss	$1.5^{+0.7}_{-0.6}$
	tth	4		ggF	WW	$1.21^{+0.22}_{-0.21}$
ailable –	0-jet		CN'	VBF	WW	$0.62^{+0.37}_{-0.36}$
	2-jet			$B(h \rightarrow \gamma \gamma)/B(h)$	$\rightarrow 4\ell$)	$0.69^{+0.15}_{-0.13}$
ematical	VBF 2-ie		4 ± 0.8	0-jet	41	$1.07^{+0.27}_{-0.25}$
rmation	Vb	0, 1	$2.1^{+2.3}$	1-jet, $p_T < 60$	41	0.67+0.72
			-1.4 ± 1.5	1-jet, $p_T \in (60, 120)$	41	$1.00^{+0.63}_{-0.55}$
W+W- <	~~0`	$\gamma\gamma$	$1.11^{+0.19}_{-0.18}$	1-jet, $p_T \in (120, 200)$	41	$2.1^{+1.3}_{-1.3}$
	VV	$\gamma\gamma$	$0.5^{+0.6}_{-0.5}$	"BSM_like"	48	2.2_1.0
surement		$\gamma\gamma$	2.2 ± 0.9	VBF. $p_T < 200$	41	2.14+0.94
• 1	Vh	$\gamma\gamma$	$2.3^{+1.1}_{-1.0}$	Vh lep	4ℓ	$0.3^{+1.3}_{-1.2}$
nigh p _T	$gg\mathrm{F}$	4ℓ	$1.20\substack{+0.22\\-0.21}$	tīh	4ℓ	$0.51^{+0.86}_{-0.70}$
and the second second	0-jet	ττ	0.84 ± 0.89	Wh	WW	$3.2^{+4.4}_{-4.2}$
and the second se	boosted	au au	$1.17^{+0.47}_{-0.40}$			
Mainter 12	\mathbf{VBF}	$\tau \tau$	$1.11^{+0.34}_{-0.35}$		X 7 X 7	4000 00050

 $1.11_{-0.35}$ Murphy, JE, Sanz & You, arXiv:1803

Measur used SMEF

Run 2

Inc av kine infc +meas at

Extrapolating Global Fit in Warsaw Basis

EMSY, based on arXiv:1803.03252

Extrapolating Global Fit in Warsaw Basis

HL/HE-LHC fits to all operators simultaneously

EMSY, based on arXiv:1803.03252

Remark on Primordial Gravitational Waves

Generated by first-order electroweak phase transition Observable if $|\Phi|^{6}/\Lambda^{2}$, Λ small, also at HL-LHC

Reach of HL-LHC: 625 GeV @ 3σ, 766 GeV 2σ Reach of LISA: 580 GeV

JE, Lewicki & No, arXiv:1809.08242

JE & Tevong You, arXiv:1510.04561

e⁺e⁻ H, Electroweak & TGC Measurements

uncertainties

Effect of including
 TGCs at ILC

Should extend to include prospective FCC-hh measurements of TGCs, ...

CLIC Sensitivities to Dimension-6 Operators

Sensitivity enhanced by higher centre-of-mass

ene

CLIC Sensitivities to Dimension-6 Operators

We still believe in supersymmetry

You must be joking

What lies beyond the Standard Model?

Supersymmetry

• Stabilize electroweak vacuum

New motivations From LHC Run 1

- Successful prediction for Higgs mass
 Should be < 130 GeV in simple models
- Successful predictions for couplings
 Should be within few % of SM values
- Naturalness, GUTs, string, ..., dark matter

Inputs to Global Fits for New Physics

Electroweak	Observable	Source Th./Ex.	Constraint
observables	M_W [GeV]	[30] / [57, 50]	$30.070 \pm 0.012 \pm 0.010_{MSSM}$
00501 1 40105	$a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM}$	[59] / [60]	$(30.2 \pm 8.8 \pm 2.0_{\text{MSSM}}) \times 10^{-10}$
	$R_{\mu\mu}$	[01-00]	2D likelihood, MFV
ΓΙάνομι	$\tau(B_s \to \mu^+ \mu^-)$	[63]	$2.04 \pm 0.44 (\text{stat.}) \pm 0.05 (\text{syst.}) \text{ ps}$
observables	$BR_{b \rightarrow s\gamma}^{EXP/SM}$	[65]/ [66]	$0.988 \pm 0.045_{\rm EXP} \pm 0.068_{\rm TH,SM} \pm 0.050_{\rm TH,SUSY}$
ouservaures.	BR _B	[00, 07]	$0.882 \pm 0.58_{\rm EXP} \pm 0.096_{\rm SM}$
Interpretation	$BR_{B \rightarrow X_{s} \ell \ell}^{\text{EXP/SM}}$	[68]/ [66]	$0.966 \pm 0.278_{\rm EXP} \pm 0.037_{\rm SM}$
Interpretation	ΔM_{B_g}	[04, co] / [cc]	$0.000 \pm 0.001_{\rm EXP} \pm 0.078_{\rm SM}$
requires	$\frac{\Delta M_{B_g}^{EXP/SM}}{\Delta M_{B_d}^{EXP/SM}}$	[34, 69] / [66]	$1.007\pm 0.004_{\rm EXP}\pm 0.116_{\rm SM}$
	$BR_{K \rightarrow \mu u}^{\text{EXP/SM}}$	[34,70] / [71]	$1.0005\pm0.0017_{\rm EXP}\pm0.0093_{\rm TH}$
lattice inputs	$BR_{K \to \pi \nu \bar{\nu}}^{\text{EXP/SM}}$	[72]/ [73]	$2.01 \pm 1.30_{\rm EXP} \pm 0.18_{\rm SM}$
Doult Matter	σ_p^{-}	[3, 5, 0]	Combined likelihood in the $(m_{\tilde{\chi}^0_1}, \sigma_p^+)$ plane
Dark Matter	$\sigma_p^{\rm SD}$	[4]	Likelihood in the $(m_{\tilde{z}^0}, \sigma_n^{ m SD})$ plane
ТИС	$ ilde{g} ightarrow q ar{q} ilde{\chi}_1^{ m o}, bb ilde{\chi}_1^{ m o}, tt ilde{\chi}_1^{ m o}$	[16, 17]	Combined likelihood in the $(m_{ ilde g}, m_{ ilde \chi_1^0})$ plane
LIIC	$ ilde q o q ilde \chi_1^0$	[16]	Likelihood in the $(m_{\tilde{q}}, m_{\tilde{\chi}_1^0})$ plane
observables	$ ilde{b} o b ilde{\chi}_1^0$	[16]	Likelihood in the $(m_{\tilde{b}}, m_{\tilde{\chi}_1^0})$, plane
00501 vabies	$ ilde{t}_1 o t ilde{\chi}_1^0, c ilde{\chi}_1^0, b ilde{\chi}_1^\pm$	[16]	Likelihood in the $(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0})$, plane
	$ ilde{\chi}_1^\pm o u \ell^\pm ilde{\chi}_1^0, u au^\pm ilde{\chi}_1^0, W^\pm ilde{\chi}_1^0$	[18]	Likelihood in the $(m_{ ilde{\chi}_1^\pm},m_{ ilde{\chi}_1^0})$ plane
	$ ilde{\chi}^0_2 ightarrow \ell^+ \ell^- ilde{\chi}^0_1, au^+ au^- ilde{\chi}^0_1, Z ilde{\chi}^0_1$	[18]	Likelihood in the $(m_{ ilde{\chi}^0_2}, m_{ ilde{\chi}^0_1})$ plane
	Heavy stable charged particles	[74]	Fast simulation based on [74, 75]
	$H/A \rightarrow \tau^+ \tau^-$	[28, 29, 76, 77]	Likelihood in the $(M_A, \tan \beta)$ plane

Quo Vadis g_u - 2?

• Strong discrepancy between BNL experiment and e⁺e⁻ data now ~ 3.7 σ $\Delta a_{\mu} = (27.05 \pm 7.26) \times 10^{-10}$

Keshavarrzi, Nomura & Teubner, arXiv:1802.02995

Analysis of pMSSM11

- Phenomenological MSSM with 11 parameters
- Sample parameter space using Multinest technique
- Sampling with/without g 2
- Dedicated sampling of Dark Matter regions
- Sample 2×10^9 points

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

ratio of vevs : $\tan \beta$,

and a second sec		and the second se
Parameter	Range	Number of
		segments
M_1	(-4,4) TeV	6
M_2	(0, 4) TeV	2
M_3	(-4, 4) TeV	4
$m_{\widetilde{q}}$	(0, 4) TeV	2
$m_{\widetilde{q}_3}$	(0, 4) TeV	2
$m_{\widetilde{\ell}}$	(0, 2) TeV	1
$m_{ ilde{ au}}$	(0, 2) TeV	1
M_A	(0, 4) TeV	2
A	(-5, 5) TeV	1
μ	(-5, 5) TeV	1
aneta	(1, 60)	1
Total number of boxes		384

SUSY Dark Matter Mechanisms

- Bringing relic density into cosmological range often requires **specific relation** between sparticle masses, such as:
 - Near-degeneracy, e.g..:

$$\tilde{\tau}$$
 coann. : $\left(\frac{m_{\tilde{\tau}_1}}{m_{\tilde{\chi}_1^0}} - 1\right) < 0.15$ Chargino coann. :

$$\left(rac{m_{ ilde{\chi}_1^\pm}}{m_{ ilde{\chi}_1^0}} - 1
ight) \, < \, 0.25$$

- Direct-channel resonance. e.g.:

H/A funnel :

$$\left| \frac{M_A}{m_{\tilde{\chi}_1^0}} - 2 \right| < 0.4$$

Indicate by following shadings

 $\tilde{\tau}$ coann.

 $\tilde{\tau}_1$ coann. + H/A

 $\tilde{\chi}_1^{\pm}$ coann.

A/H funnel

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

Squark & Gluino Mass Planes

Phenomenological MSSM

'Nose' regions where LHC sensitivity reduced because of compressed spectrum

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

How Light can Squarks & Gluinos be?

Phenomenological MSSM

Squarks, gluinos could weigh ~ 1 TeV if drop g_u -2

Bagnaschi, Sakurai, JE et al, arXiv:1710.11091

mas/TeRcope

Best-Fit Sparticle Spectrum

Fit without g_u-2

Phenomenological MSSM

Best-Fit Sparticle Spectrum

Phenomenological MSSM

Fit with g_{μ} -2

Likelihood for LSP Mass

mas/Tencope

The Lighter Stop may be Light

Bagnaschi, Bahl, JE et al, arXiv:1810.10905

Sparticle Masses in the pMSSM

mas/Tencope

- Best-fit values
- Accessible in pair production at ILC500, ILC1000, CLIC

Sparticle Masses in the pMSSM

mas/Tencope

- 68 & 95% CL ranges
- Best-fit values
- Accessible in pair production at ((ILC500)), (ILC1000), CLIC

Higgs properties in the pMSSM

0.0

0.5

Fit without g_u-2 Fit with g_u-2 LHC13, w/ (g - 2), ____ LHC13, w/o (g - 2), LHC13, w/ (g − 2)_µ ____ LHC13, w/o (g - 2). pMSSM11 pMSSM11 ---- LHC8, w/ (q - 2), _--- LHC8, w/o (q - 2), ---- LHC8, w/ (g - 2), ____ LHC8, w/o (g - 2), mastericoo $\Delta \chi^2$ No issue with measured Higgs mass Central values of decay 120 0.0 122 124 126 128 130 0.5 1.0 1.5 2.0 $M_h[\text{GeV}]$ $BR_{h \rightarrow \gamma\gamma}^{MSSM/SM}$ BRs similar to SM Substantial deviations possible LHC13, w/ (g - 2), LHC13, w/o (g - 2), LHC13, w/ (g - 2), LHC13, w/o (g - 2), pMSSM11 pMSSM11 ---- LHC8, w/ (q - 2), ---- LHC8, w/o (q - 2), ---- LHC8, w/ (q-2), ____ LHC8, w/o (g-2), Masterco Mastercook $\Delta \chi^2$ $\Delta \chi^2$ Bagnaschi, Sakurai, JE et al. arXiv:1710.11091

1.5

1.0

BD MSSM/SM

2.0

0.0

0.5

1.0

DD MSSM/SM

1.5

2.0

mas/TeRcope

EMSY, arXiv:1803.03252

SMEFT Constraints on Light Stops

Current bounds

Possible HE-LHC bounds

Direct Constraints on Light Stops

Depend on m_{LSP} not on tan β Comparison with SMEFT depends on mixing X_t Range of m_{stop} compatible with SMEFT and m_H

constraints

e he

Where could it be hiding?

- Near-degeneracy of LSP and heavier sparticle(s)?
- Coannihilation increases possible mass range

- HL-LHC is on its way
- ILC might be next
- CLIC's energy advantageous
- FCC most versatile

- « Empty » space is unstable
- Dark matter
- Origin of matter
- Hierarchy/naturalness

IS NO

- Masses of neutrinos
- Inflation
- Quantum gravity

The Standard Model

h ee he

