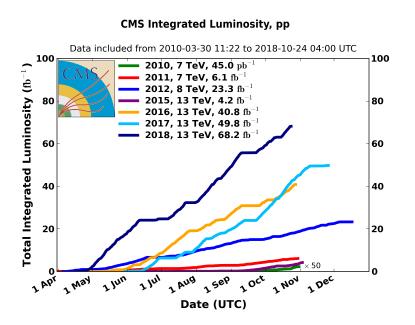
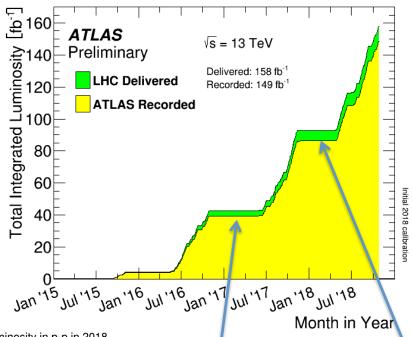
XXIX IFT Christmas Workshop 12-14 December 2018 Madrid

Highlights from LHC

Martine Bosman

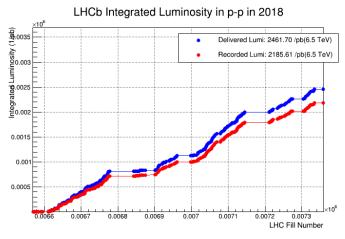




Reference talks – ICHEP2018

- ATLAS + ALICE highligths T. Carli
- CMS + LHCb highlights S. Rahatlou
- Higgs experimental summary G. Piacqadio
- EW/SM/Top summary L. Skinnari
- SUSY summary S. Strandberg
- EXOTICS at the LHC D. del Re
- CKM& CPV (Quark Flavour) Ph. Urquijo
- etc.

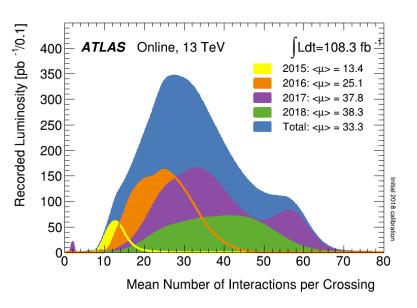
LHC performance and recorded data



Instantaneous luminosity reached 2.10³⁴cm⁻²s⁻¹ in ATLAS and CMS

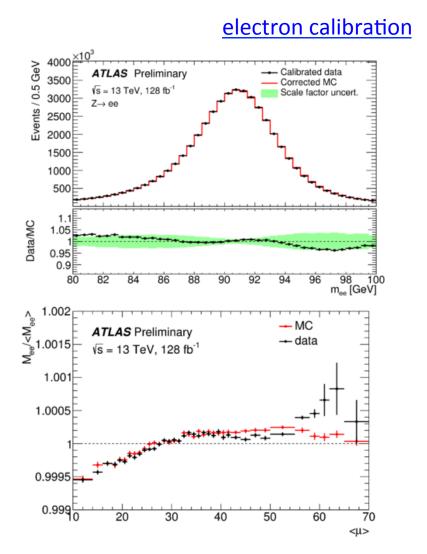
LHCb collected in

- Run1 3 fb⁻¹
- Run2 6 fb⁻¹

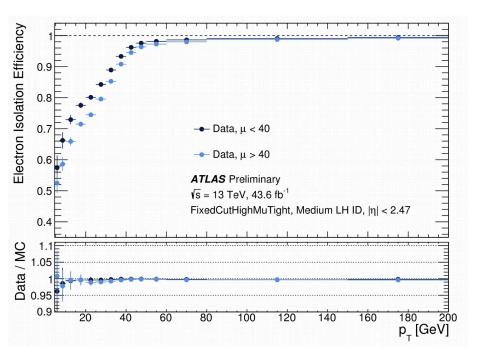


M.Bosman

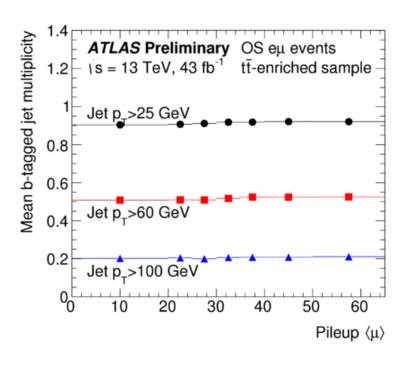
2015-17 data ~80 fb-1


2015-16 data ~36 fb-1

Running conditions & detector performance

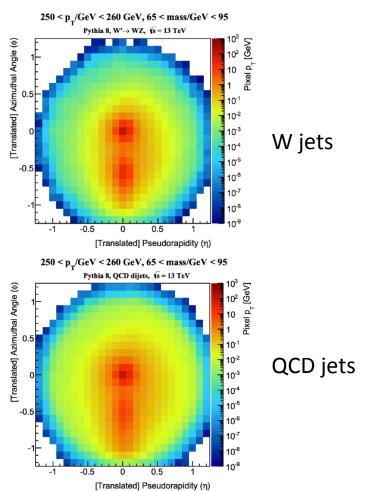

- mitigate the effect of pile-up
- MC should describe the impact on data with high precision

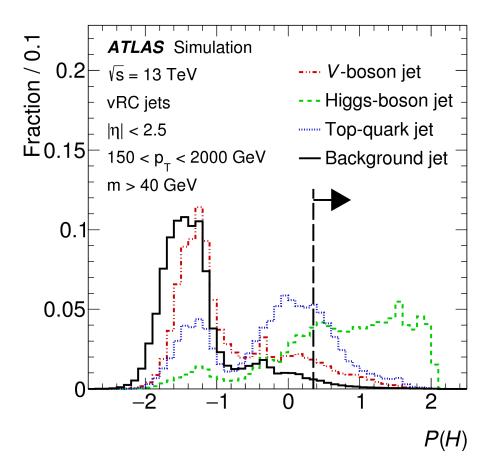
example: Z→e+e-



per mil effect well described by MC

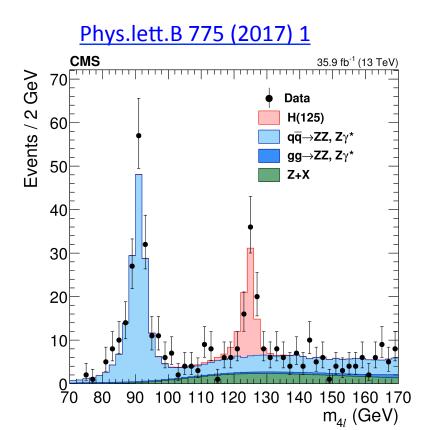
Running conditions & detector performance

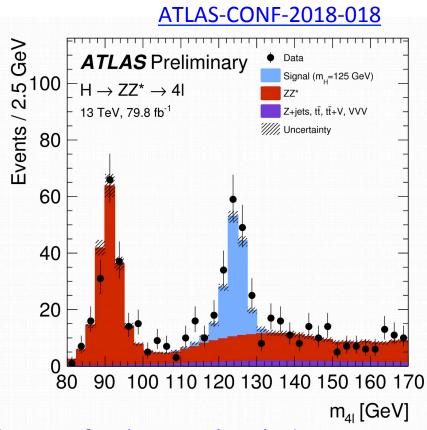

electron isolation


Number of b-tagged jets in a high purity ttbar sample

new analysis techniques, jet substructure

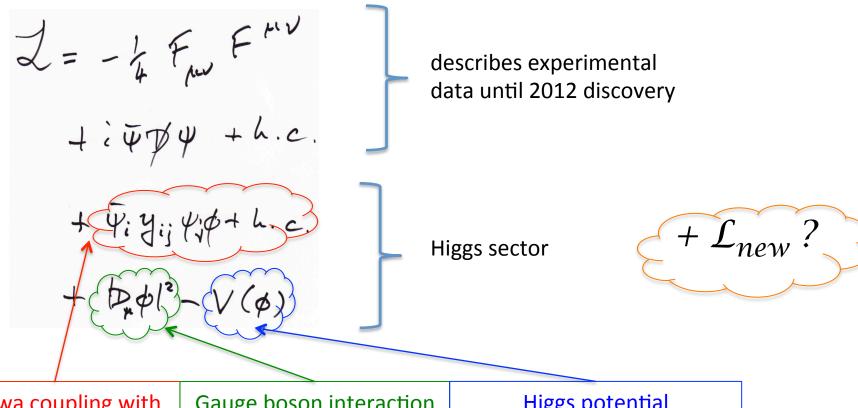
Boosted jet variables (substructures and flavor tagging) with images, deep learning and more detailed algorithms




some examples: Phys. Rev. D 98, 092005

Luke de Oliveira, et al, JHEP 07 (2016) 069

Higgs physics



Time to study the properties of the new fundamental scalar!

Is it a Standard Model Higgs boson?

Standard Model Higgs boson

Yukawa coupling with new scalar

new type of interaction

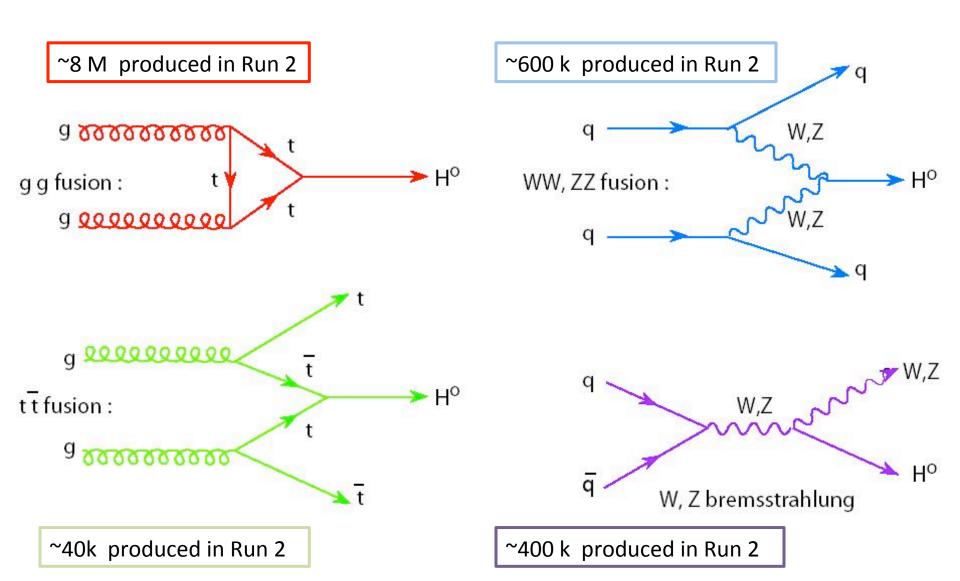
Gauge boson interaction with new scalar (known for fermions)

Higgs potential $\mu^2\varphi^2 + \lambda^2\varphi^2$ to be explored at HL-LHC

LHC Run 1 legacy

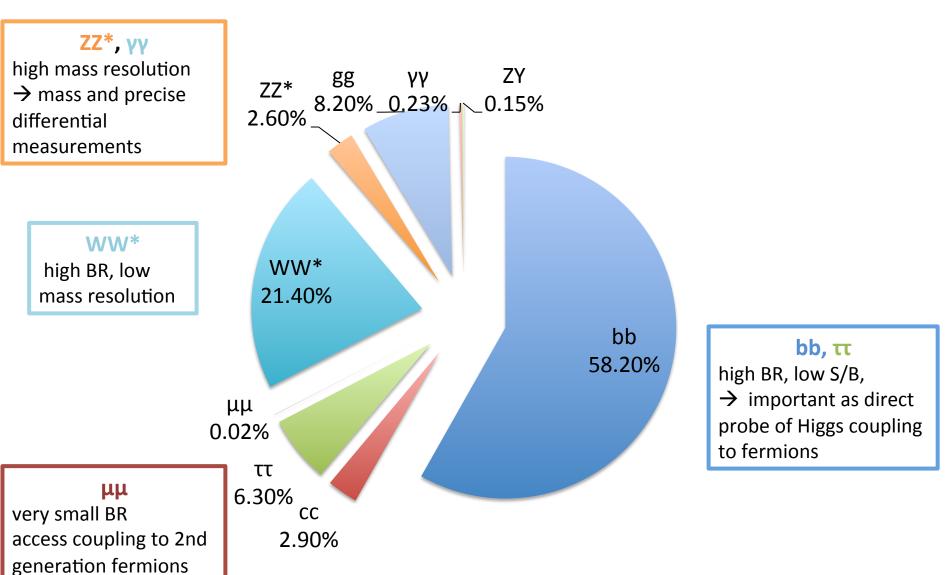
- Higgs boson mass measured to ~0.2% (fixes the SM predictions!)
- Higgs boson couplings measured to ~10-25%
 (H → invisible constrained to < 25-30%)
- First studies of spin, CP eigenstate/ admixtures, differential distributions, all compatible with the SM

More precision is needed

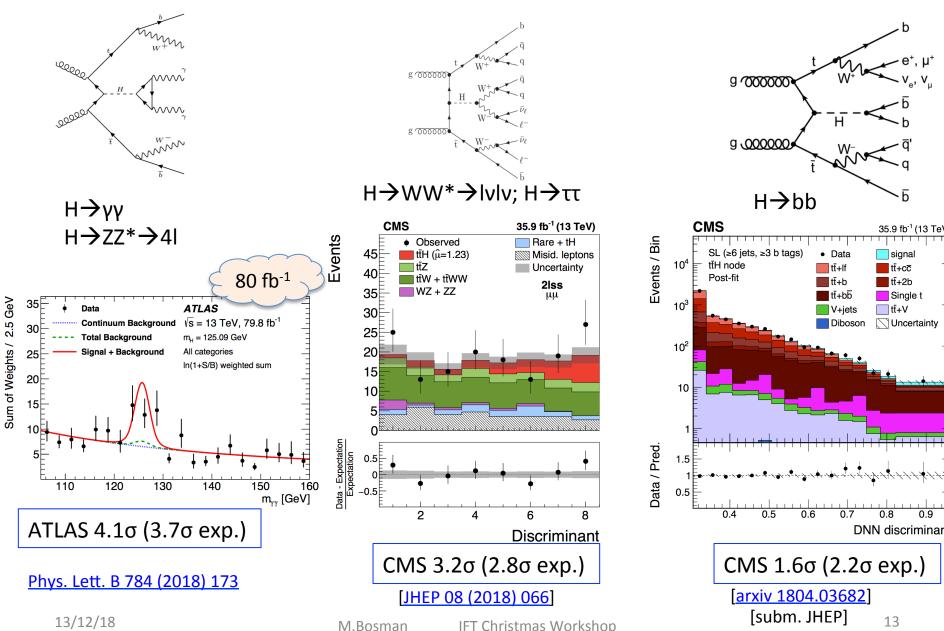

- Coupling to fermions not fully established yet in Run-1 coupling to top and bottom quarks not directly observed
- Generic size of (inclusive) Higgs couplings modifiers expected for new physics (BSM) at ~O(TeV)

Model	κ_V	κ_b	κ_{γ}
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2\mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

[Snowmass 2013 study, https://arxiv.org/pdf/
1310.8361.pdf]

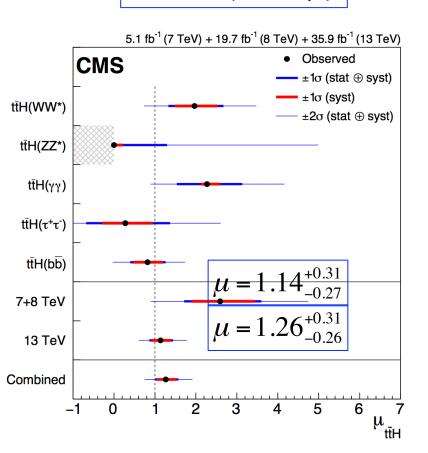

N.B. BSM effects may be enhanced at high transverse momentum, in tails of distribution

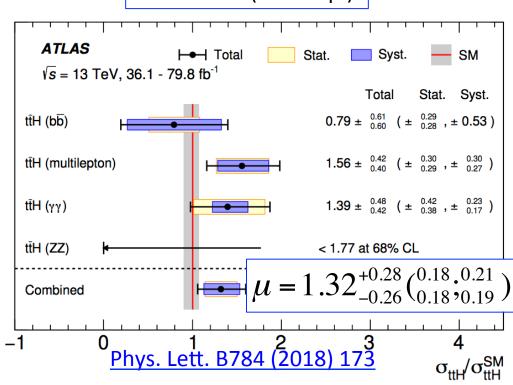
Higgs production modes



13/12/18

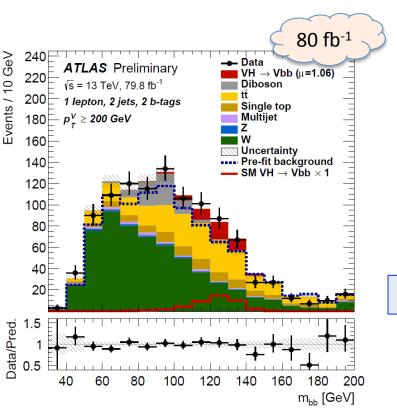
Higgs decay modes


measurement of ttH production



Combination of ttH measurements

CMS 5.2σ (4.2 σ exp.)



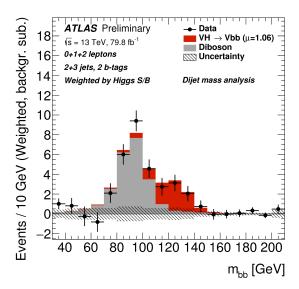
Phys. Lett. B 779 (2017) 283 Phys. Lett. B 780 (2017) 501 ATLAS 6.5σ (5.3σ exp.)

Direct observation of top Higgs coupling. Confirmation of Yukawa coupling to fermions

Associated VH production and H >> bb

H→bb highest branching ratio: Br=58% Associated WH or ZH production (VH)

- Br(H→bb) constrains invisible Higgs decays
- Tests Higgs Yukawa coupling to fermions


Analysis with large background:

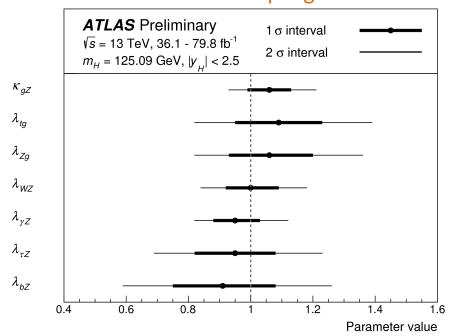
- Use high-pT boson region
- Multi-variate analysis in 0, 1 and 2 lepton channels

ATLAS 5.4σ (5.5σ exp.)

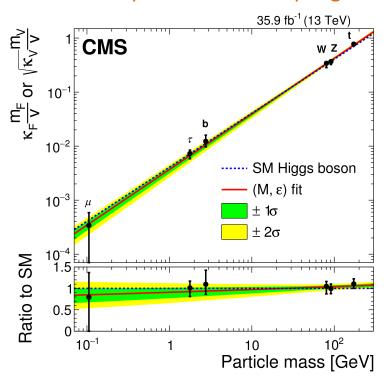
Example: One input to di-jet mass analysis global fit – 1 lepton channel

ATLAS-CONF-2018-036

Dijet mass analysis as cross-check


Higgs couplings &

ATLAS-CONF-2018-031


decays

CMS-PAS-HIG-17-031

ratio of couplings

mass dependence of couplings

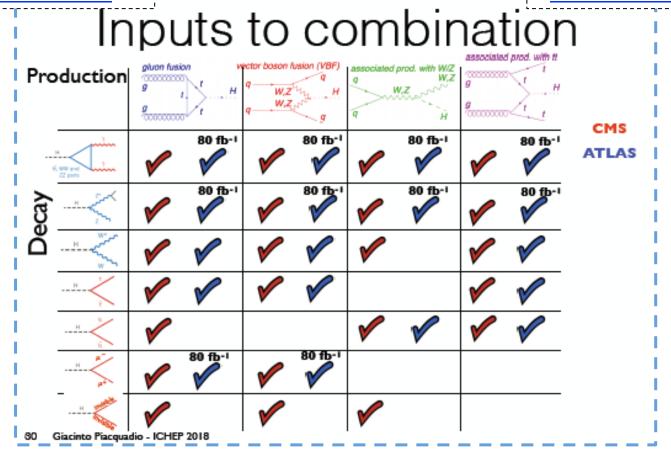
- All couplings to high mass particles measured.
- Next challenge, second generation: muon, c-quark...

 $H \rightarrow \mu\mu$ getting close to SM

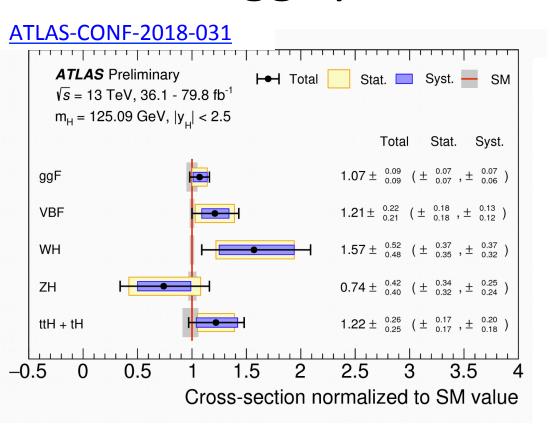
CMS-HIG-17-019 (Acc. Phys.Rev.Lett.)

CMS (36fb⁻¹) :
$$\mu_{\mu\mu}$$
=0.7±1.0 μ_{uu} <2.6 (2.1 exp.)

ATLAS-CONF-2018-026

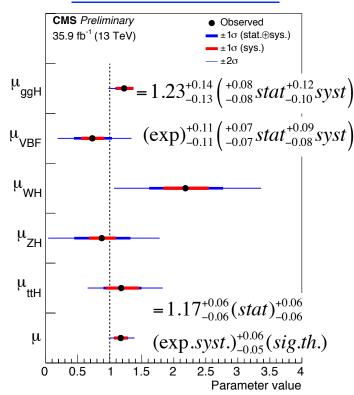

ATLAS (80fb⁻¹) ;
$$\mu_{\mu\mu}$$
=0.1+1.0-1.1 μ_{uu} <2.1 (2.0 exp.)

M.Bosman


Combining measurements

ATLAS-CONF-2018-031

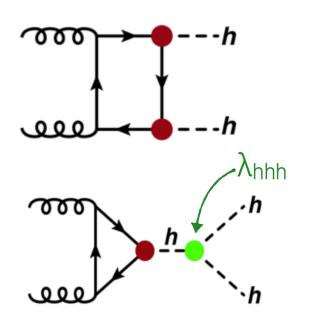
CMS-PAS-HIG-17-031



Higgs production modes

- 9-11% precision on gg fusion per experiment
- ~5% uncertainty state-of-the-art theory prediction (N3LO QCD+NLO EW [JHEP 1605 (2016) 058]),

CMS-PAS-HIG-17-031



265 categories5500 nuisance parameters in the fit

$$BF(H \to \text{inv.}) < 22\% @ 95\% \text{ C.L.}$$

combination of indirect and direct measurement

Di-Higgs production

$$\sigma (gg \rightarrow h) = 48.5 \text{ pb}$$

$$1/1500$$

$$\sigma (gg \rightarrow hh) = 33.4\pm5.9 \text{ fb}$$
[Higgs Xsec WG Report 4]

- ATLAS bbtt: $\sigma_{HH} \rightarrow bbtt < 13 \times SM (15 exp.)$
- CMS full combination : 95%CL σ_{HH} comb < 22 x SM (13 exp.)

 $K_{\lambda} = \lambda/\lambda_{SM}$ -11.8< K_{λ} <18.8 (-7.1< K_{λ} <13.6 exp.)

Phys. Rev. Lett.121 (2018) 191801

CERN-EP-2018-269

CERN-EP-2018-292

Getting close to 10 x SM rate for Di-Higgs production Should reach SM sensitivity by the end of HL-LHC

Higgs mass

Run 1 Combination ATLAS + CMS:

Phys.Rev.Lett. 114 (2015) 191803

 $m_H = 125.09 \pm 0.24 \text{ GeV } (0.19\%)$

Run 2

ATLAS 36 fb⁻¹ H $\rightarrow \gamma \gamma$, ZZ* $\rightarrow 4$ I

Phys. Lett. B 784 (2018) 345

 $m_H = 124.86 \pm 0.27 \text{ GeV } (0.21\%) \text{ (stat. limited)}$

CMS 36 fb⁻¹ H \rightarrow ZZ* \rightarrow 4I

JHEP 11 (2017) 047

 $m_H = 125.26 \pm 0.21 \text{ GeV}(0.17\%) \text{ (stat. limited)}$

Will improve with full Run 2

Higgs width

SM Higgs boson width: 4 MeV

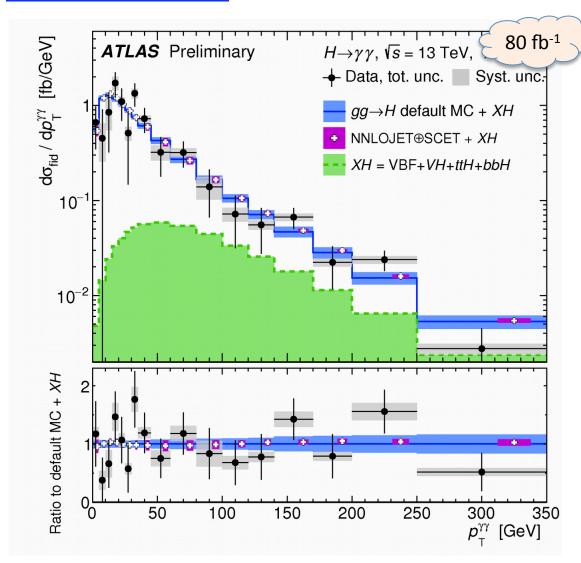
→ too small for a precise direct measurement

• best direct limit CMS H \rightarrow ZZ* \rightarrow 4I Γ_{H} < 1.10 GeV @ 95% CL

JHEP 1711 (2017) 047

• ratio of on-shell to off-shell cross section

Phys.Lett. B786 (2018) 223


recent ATLAS measurement H \rightarrow ZZ* \rightarrow 4I,2I2v 13 TeV 36 fb⁻¹ Γ_{H} < 14.4 MeV (15.2 MeV exp.)

(NLO K_g,K_Z factor with some assumptions K_{on-shell} = K_{off-shell})

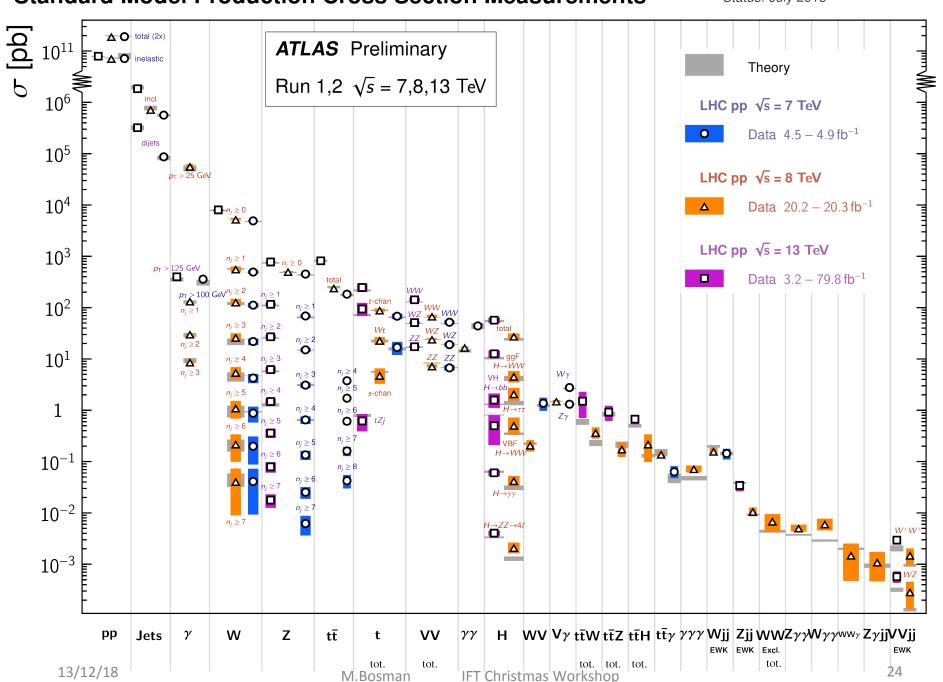
x2 better than ATLAS, CMS Run 1 results further improvements expected with full Run 2

Differential cross-section with gauge bosons decays

ATLAS-CONF-2018-028

Data well described by recent SM predictions.

Precision SM measurements


- Standard Model widely studied but need to
 - probe in so far inaccessible regions
 - High energy, rare processes
 - Difficult modeling: high-order/EW corrections
 - tune MC generators, constrain PDFs,
- Run 2 data = opportunity to look for BSM
 - Rare production processes
 - Processes sensitive to anomalous couplings
- Measure backgrounds for Higgs measurements and direct BSM searches

ICHEP2018 overview

EW/SM/Top summary L. Skinnari

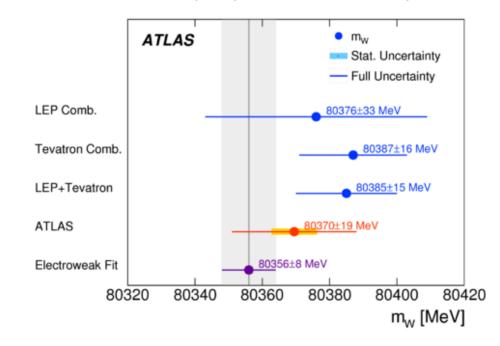
Standard Model Production Cross Section Measurements

Status: July 2018

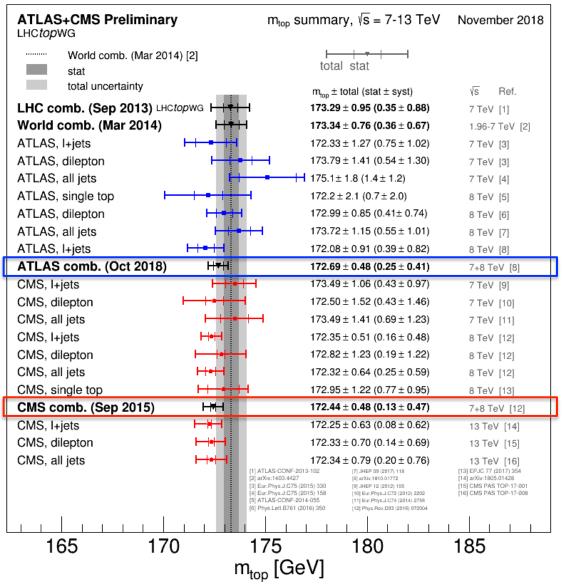
Electroweak measurements

- W/Z/γ high-statistics samples extract SM parameters & test self-consistency:
 - W boson mass
 - Weak mixing angle
- Multi-bosons
 - sensitive probe of BSM gauge interactions:
 - cross-section measurements
 - probe anomalous triple/quartic gauge couplings: aTGC, QGC
 - vector boson scattering (VBS)

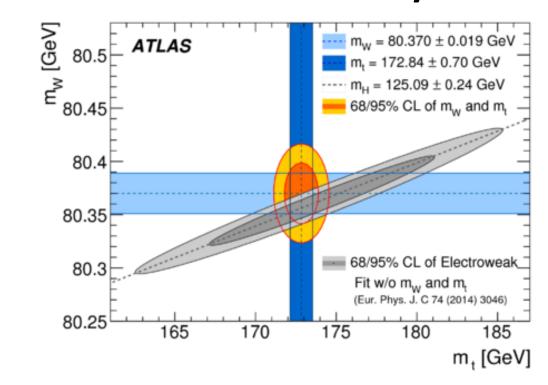
W boson mass


Key test of SM consistency

- Extract m_W using fits to lepton p_T & transverse mass
- Requires precise lepton energy/ momentum calibration
- about 12 MeV systematic uncertainty from W boson kinematic (PDF) new LHC low pile-up data sample recently recorded


Eur. Phys. J. C 78 (2018) 110

 $m_W = 80370 \pm 19 \text{ MeV}$


±7 (stat) ±11 (exp. syst) ±14 (mod. syst) MeV

Top quark mass

Consistency of SM

W-mass: 80370 +- 19 MeV ~0.02% Eur. Phys. J. C 78 (2018) 110

Higgs mass: 124970 +- 240 MeV ~0.2% Phys. Lett. B 784 (2018) 345

(will improve with Run 2)

Top-mass: 172510 +- 500 MeV ~0.3% <u>ATLAS-CONF-2017-071</u>

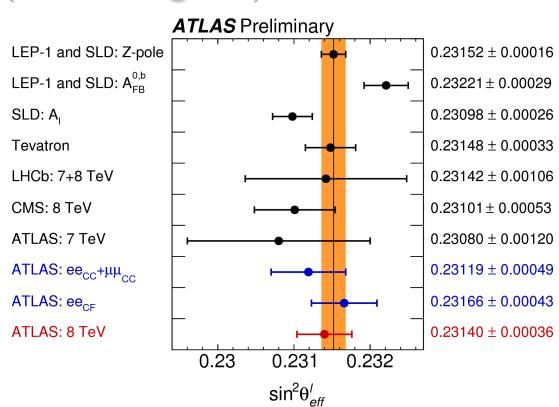
similar results by CMS

Weak-mixing angle

Drell-Yan cross section $qq \rightarrow Z \rightarrow II$: spin correlation between the initial-state spin-1/2 partons and the final-state spin-1/2 leptons mediated by a spin-1 intermediate state (mostly Z). In LO QCD:

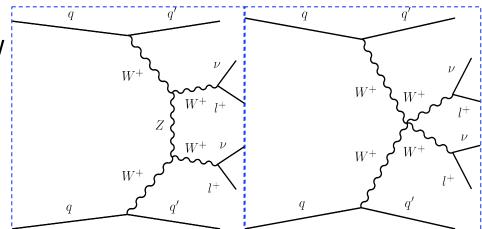
$$\frac{\mathrm{d}\sigma}{\mathrm{d}v^{\ell\ell}\,\mathrm{d}m^{\ell\ell}\,\mathrm{d}\cos\theta} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}v^{\ell\ell}\,\mathrm{d}m^{\ell\ell}}\Big\{(1+\cos^2\theta) + \boxed{44}\cos\theta\Big\}. \qquad \underline{\text{ATLAS-CONF-2018-037}}$$

8 TeV data: A4 measured

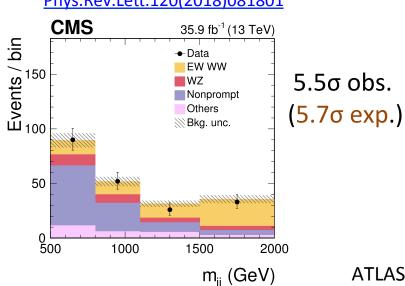

- two leptons $|\eta|$ <2.4 (cc)
- at least one forward electron $2.5 < |\eta| < 4.6$ (cf).

$$\sin^2 \theta_{eff}^l = 0.23140 \pm 0.00036$$

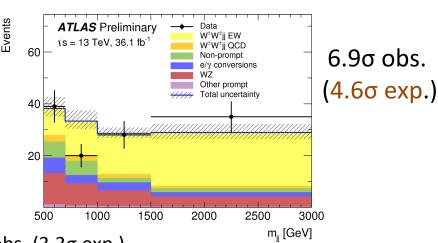
Uncertainty break-down:


$$0.00021(stat) \pm 0.00024(PDF) \pm 0.00036$$

Main limitation PDF knowledge initial quark direction.


Vector Boson Scattering: same-sign WWjj

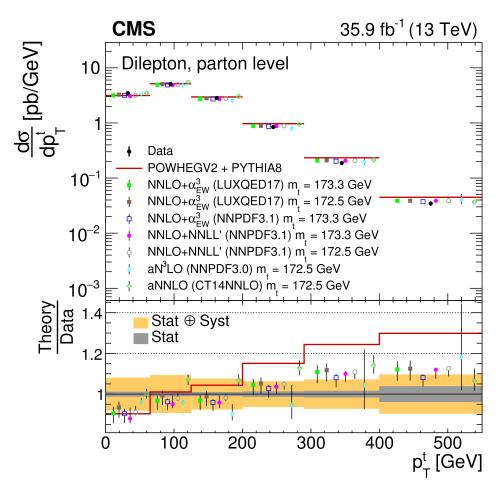
- Key test of EWSB restoration of unitarity of the WW scattering cross-section
- Sensitive to anomalous QGC
- Enhanced in BSM scenarios (e.g. modified Higgs sector or new resonances)


1st observation CMS 2017

Phys.Rev.Lett.120(2018)081801

observation ATLAS 2018

ATLAS-CONF-2018-030/

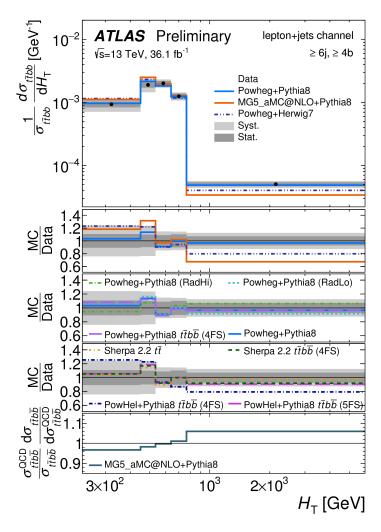

ATLAS WZ 5.6 σ obs. (3.3 σ exp.)

CMS WZ 1.9 σ obs. (2.7 σ exp.) ZZ 2.7 σ obs. (1.6 σ exp.) M.Bosman

tt differential cross-section

- large effort in measuring multidifferential cross-sections
- Overall good modeling of the production provided by NLO generators but tend to produce p_T top spectra harder than the measured one
- Signal modeling among the largest systematic uncertainties
- new era of NNLO calculations & EW corrections: mis-modeling in top p_T spectrum improved, but not solved

arXiv:1811.06625 subm. JHEP

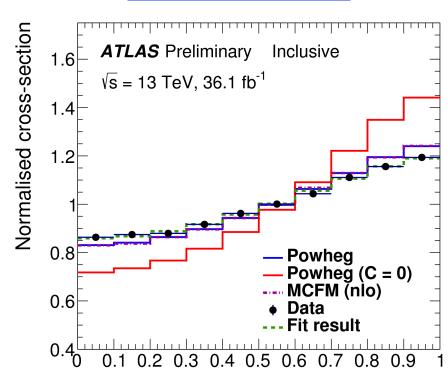


tt⁻ + bb⁻ differential cross-section

Modeling of tt+HF essential for ttH, H→bb measurements (dominant uncertainty!)

- Challenging for QCD calculations due to massive b's
- Some discrepancies observed -valuable input for MC tuning
- Dominant uncertainties from b-tagging & signal modeling

CERN-EP-2018-276


top spin correlation

Correlation of spin for pp \rightarrow tt \rightarrow eµbb measured between the top decay products and a spin axis with a sensitive variable $\Delta\Phi$ (eµ)

Stronger spin correlations observed than expected by NLO QCD.

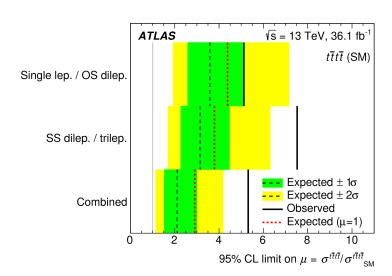
Fit result: f=1.250+-0.026+-0.0633.2 σ discrepancy with NLO QCD

ATLAS-CONF-2018-027

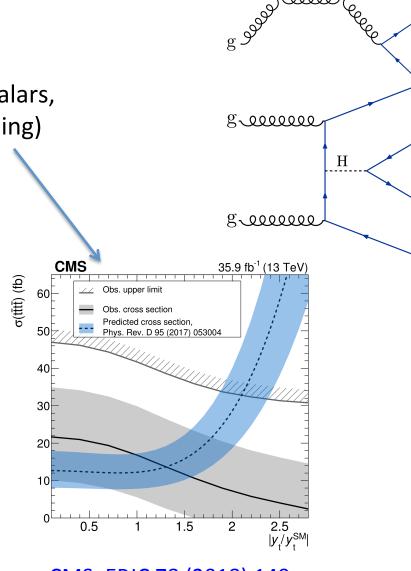
Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

But impact of NNLO calculations? Rene Poncelet et al.

TOP2018 Rene Poncelet NNLO QCD top quark production & decay

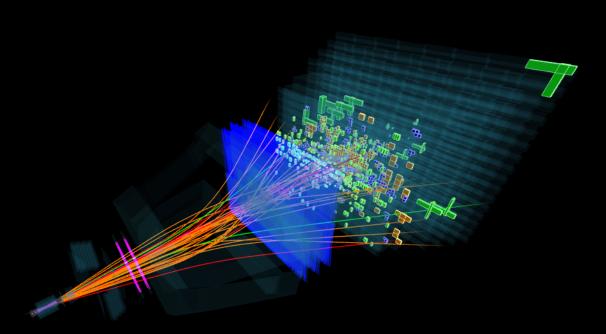

4 tops production

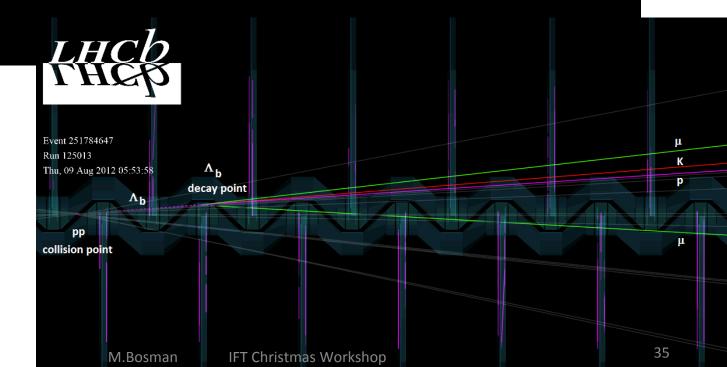
• $\sigma_{\text{tttt'SM}} \approx 10^{-5} \, \text{x} \, \sigma_{\text{tt,SM}} \, @ \, 13 \, \text{TeV}$


 Sensitive to new physics (e.g. high mass scalars, top Yukawa coupling)

ATLAS: 2.8σ (2.0σ) SS/OS dileptons, l+jets

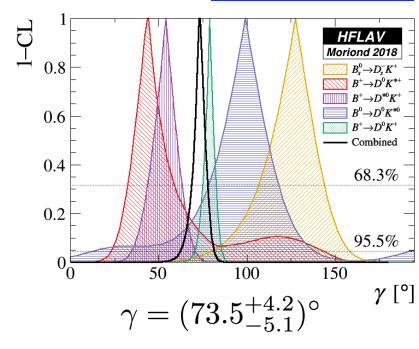
CMS: 1.6σ (1.0σ) SS/trileptons


ATLAS: arXiv:1811.02305, subm. Phys.Rev.



CMS: EPJC 78 (2018) 140

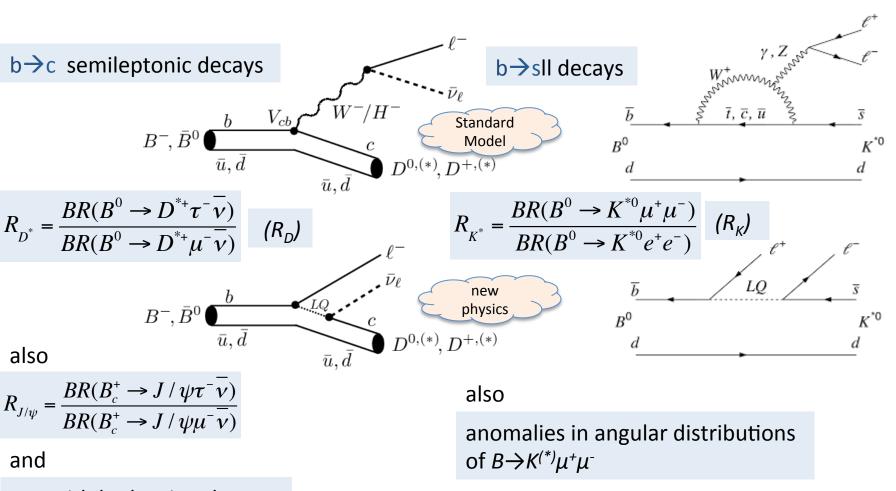
Event 158826354 Run 206854 Sat, 28 Apr 2018 21:48:17



LHCb angle γ

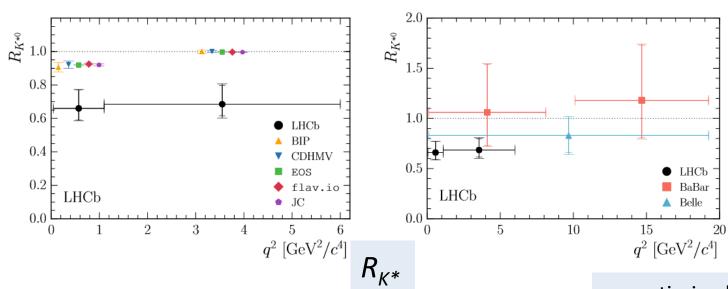
LHCB-CONF-2018-002

HFLAV Moriond2018

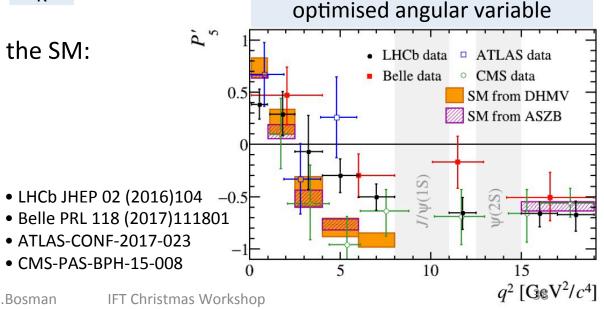


- B_s^0 decays
- B^0 decays
- B^+ decays
- Combination
- Combination of 16 measurements from LHCb
- 98 observables with 40 free parameters
- some tension between different decay modes

Lepton Flavor Universality


Differences in ratios of decays in leptons should originate only in different masses

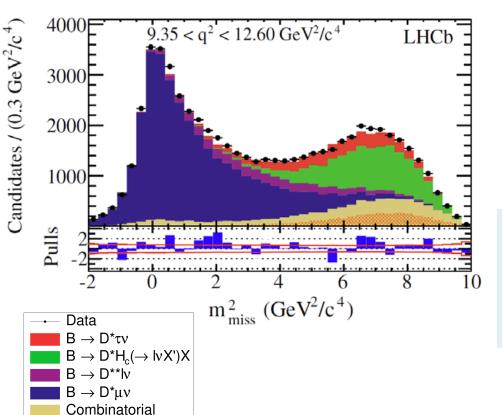
Clean probe for NP

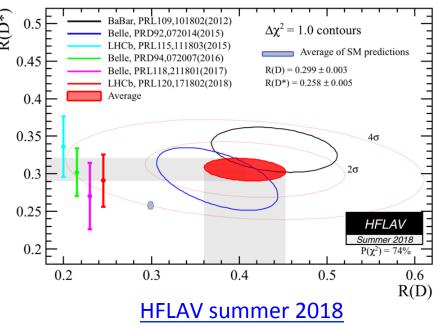

 R_{D^*} with hadronic τ decays

Lepton Flavor Universality b→sll decays

 $\mathbf{R}_{\mathbf{K}^*}$ consistent, but lower than the SM:

- **2.1-2.3** σ (low q^2)
- **2.4-2.5** σ (central q²)




Lepton Flavor Universality R_D , R_{D^*}

Signal separated in ML fit with 3D templates in kinematic variables:

- missing mass: mmiss2= $(P_B-P_{D*}-P_{\mu})^2$
- muon energy

Misidentified μ

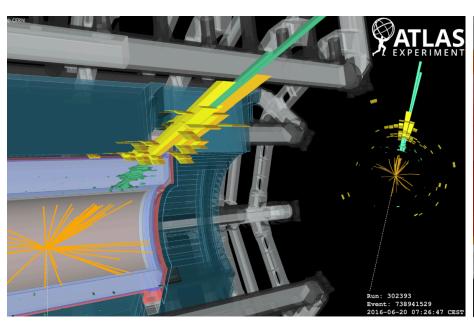
All measurements above SM prediction

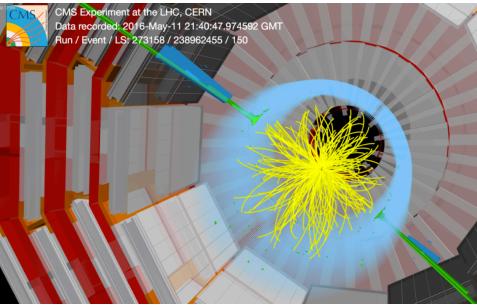
39

- R_{D*} exceeds SM by 3.4 σ
- R_D by 2.3 σ
- Combination: close to 4σ

13/12/18 M.Bosman IFT Christmas Workshop

B anomalies - future

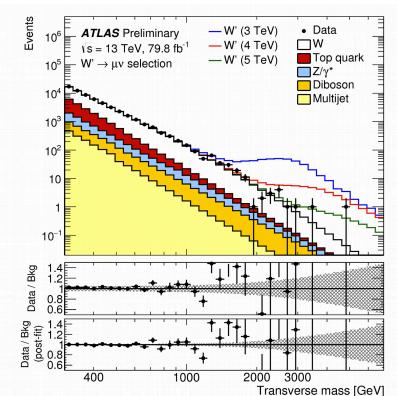

measurements still statistically limited and not always experimentally or theoretically "clean" BUT


- Factor 3 of statistics of LHCb already on tape, being analysed
- Belle 2 starting to take data
- Run 3 new improved software trigger: much more similar between electron and muon more channels, more cross-checks, etc.

Direct searches for new physics

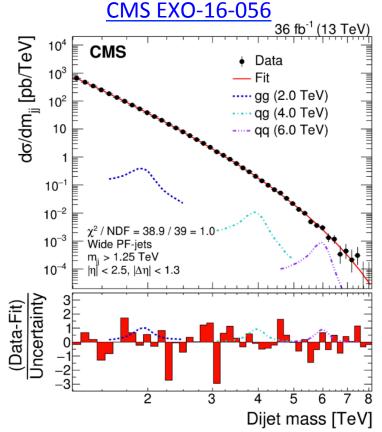
- broad spectrum of models
 - new gauge bosons, new heavy fermions
 - Leptoquarks, vector-like quarks
 - SUSY
 - etc...
- broad spectrum of signatures
 - very heavy resonances
 - unconventional signatures (long-lived particles)
 - weakly interacting particles, large Missing ET, monojet searches

high energy events at LHC


1.5 TeV monojet

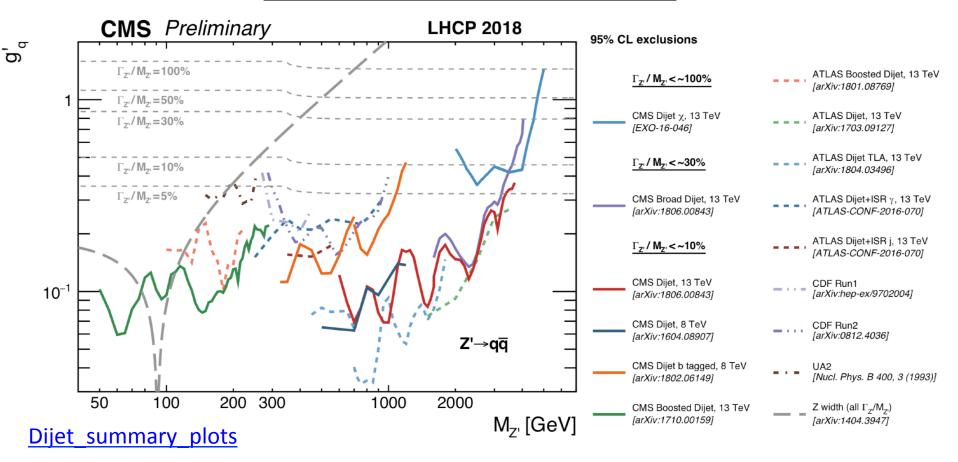
8 TeV dijet

Resonance search


In general 2-body final states, robust signal, many channels explored

New electro-weak gauge boson (W')

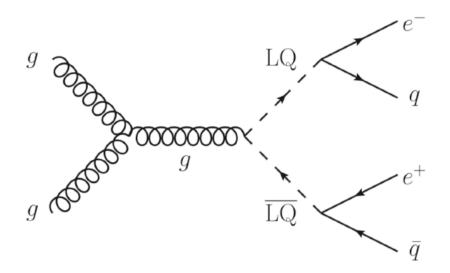
(80 fb⁻¹) assuming SM coupling: M < 5.6 TeV excluded at 95%CL


String resonance (jj) M< 8 TeV Excited quark (jj) < 6 TeV

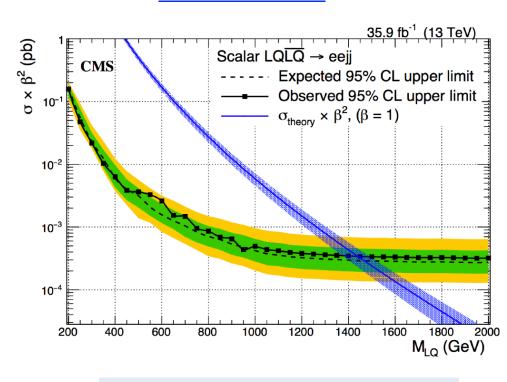
increase of statistics, slow improvement

Dijet resonance search

Also covering low and intermediate range: lower trigger with reduced event info; "ISR jet" trigger (for boosted jet with substructure)


ATLAS and CMS limits on g_q ($\sigma \propto g_q^4$)

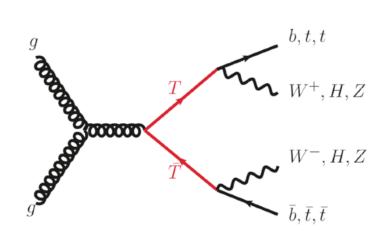
LeptoQuark


explain B anomalies: R_{D*}, R_{K*}

produced in pairs

2e2j, ev2j final states

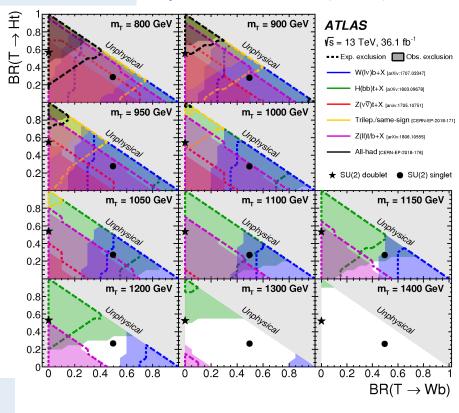
CMS-EXO-17-009

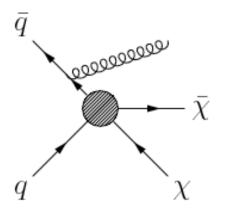

typical limits: 1.2 - 1.45 TeV

Vector Like Quark

Vector-like T quark models solve hierarchy problem

→ new heavy partner of top in loop

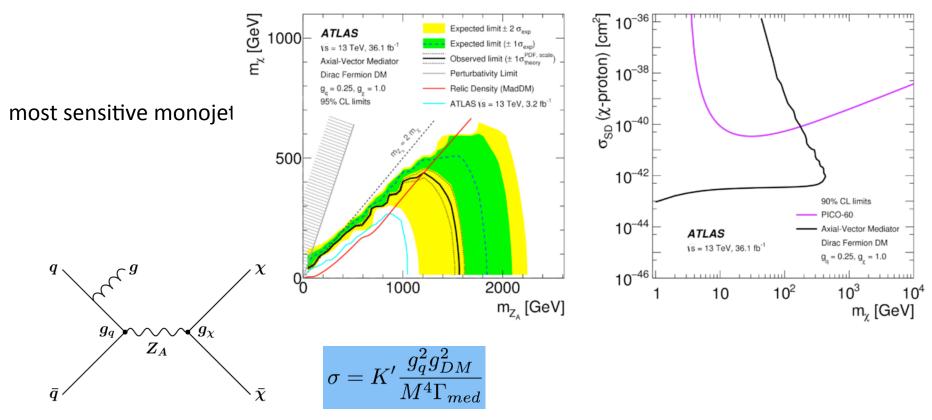

Phys.Rev.Lett. 121 (2018) 211801


Search of T (q=2/3) and B (q=-1/3) VLQ

- decaying to W,H,Z and t,b
- produced in pairs

Limits at the level of 1.3-1.4 TeV

Observed (filled area) and expected (dashed line) 95% CL exclusion in the plane of BR(T \rightarrow Ht) versus BR(T \rightarrow Wb), for different values of the vector-like T quark mass



Dark matter

EW bosons and gluons can be radiated by initial partons

search for mono-jet (-photon, -W, -Z, -H) + large ETmiss

JHEP 1801 (2018) 126

Dark matter

Fixing couplings limits on mediators cross section translated into DM production cross section

N.B. dependence on coupling & model CMS preliminary ICHEP 2018 CMS observed exclusion 90% CL **CMS** Preliminary **ICHEP 2018** Axial-vector med., Dirac DM; $g_{g} = 0.25$, $g_{g} = 1.0$ σ^{SD} σ_{DM-proton} [cm²] Boosted dijet (35.9 fb⁻¹) 10⁻³⁷ [arXiv:1710.00159] **Dijet** (35.9 fb⁻¹) 10⁻³⁸ [arXiv:1806.00843] DM + j/V(qq) (35.9 fb⁻¹) 10^{-39} [arXiv:1712.02345] **DM** + γ (35.9 fb⁻¹) 10⁻⁴⁰ [EXO-16-053] **DM + Z(II)** (35.9 fb^{-1}) 10⁻⁴¹ [arXiv:1711.00431] DD/ID observed exclusion 90% CL 10^{-42} **PICASSO** [arXiv:1611.01499] 10^{-43} PICO-60 [arXiv:1702.07666] Super-K (bb) 10^{-44} [arXiv:1503.04858] IceCube (bb) 10^{-45} [arXiv:1612.05949] Dark matter mass m_{DM} [GeV] IceCube (tt) 10 [arXiv:1601.00653]

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

ATLAS Preliminary

Status: July 2018 $\int \mathcal{L} dt = (3.2 - 79.8) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ Jets† $\mathsf{E}_{\mathtt{T}}^{\mathsf{miss}} \int \mathcal{L} \, \mathsf{dt}[\mathsf{fb}^{-1}]$ Model ℓ, γ Limit Reference ADD $G_{KK} + g/q$ $0e, \mu$ 1 - 4 j M_D Yes 36.1 7.7 TeV n = 21711.03301 Extra dimensions ADD non-resonant yy 2γ Ms 8.6 TeV 36.7 n = 3 HLZ NLO1707.04147 2 j Mth 8.9 TeV ADD QBH 37.0 n = 61703.09217 M_{th} ADD BH high $\sum p_T$ $\geq 1 e, \mu$ ≥ 2 j 3.2 8.2 TeV n=6, $M_D=3$ TeV, rot BH 1606.02265 M_{th} ADD BH multijet ≥ 3 j 3.6 9.55 TeV n=6, $M_D=3$ TeV, rot BH 1512.02586 RS1 $G_{KK} \rightarrow \gamma \gamma$ 2γ 36.7 G_{KK} mass 4.1 TeV $k/\overline{M}_{Pl} = 0.1$ 1707.04147 Bulk RS $G_{KK} \rightarrow WW/ZZ$ 36.1 G_{KK} mass 2.3 TeV $k/\overline{M}_{Pl} = 1.0$ multi-channel CERN-EP-2018-179 Bulk RS g_{KK} → tt ≥ 1 b, ≥ 1 J/2j Yes 36.1 gkk mass 3.8 TeV $\Gamma / m = 15\%$ $1e, \mu$ 1804.10823 $\geq 2 \text{ b}, \geq 3 \text{ j}$ Yes Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 2UED / RPP 1 e.u KK mass 1.8 TeV 1803.09678 SSM $Z' \to \ell \ell$ 36.1 Z' mass 4.5 TeV $2e, \mu$ 1707.02424 SSM $Z' \rightarrow \tau \tau$ 36.1 Z' mass 2.42 TeV 2τ 1709.07242 Gauge bosons Leptophobic $Z' \rightarrow bb$ 36.1 Z' mass 2.1 TeV 1805.09299 Leptophobic $Z' \rightarrow tt$ ≥ 1 b, ≥ 1 J/2j Yes 36.1 Z' mass 3.0 TeV $1e, \mu$ $\Gamma/m = 1\%$ 1804.10823 SSM $W' \rightarrow \ell \nu$ $1e, \mu$ 79.8 W' mass 5.6 TeV ATLAS-CONF-2018-017 SSM $W' \rightarrow \tau v$ 1τ Yes 36.1 W' mass 3.7 TeV 1801.06992 HVT $V' \rightarrow WV \rightarrow qqqq \mod B$ $0e, \mu$ 2 J 79.8 V' mass 4.15 TeV $g_V = 3$ ATLAS-CONF-2018-016 $HVT V' \rightarrow WH/ZH \text{ model B}$ multi-channel 36.1 V' mass 2.93 TeV $g_V = 3$ 1712.06518 LRSM $W'_R \rightarrow tb$ multi-channel 36.1 W' mass 3.25 TeV CERN-EP-2018-142 2 j CI gggg 37.0 21.8 TeV η₁₁ 1703.09217 Clllag 2 e. µ 36.1 **40.0 TeV** η_{LL} 1707.02424 2.57 TeV Cl tttt ≥1 e.u ≥ 1 b, ≥ 1 j Yes 36.1 $|C_{4t}| = 4\pi$ CERN-EP-2018-174 Axial-vector mediator (Dirac DM) 1 - 4i $0e, \mu$ Yes 36.1 1.55 TeV $g_a=0.25, g_{\chi}=1.0, m(\chi)=1 \text{ GeV}$ m_{med} 1711.03301 Colored scalar mediator (Dirac DM) 0 e, µ 1 - 4iYes 36.1 m_{med} 1.67 TeV $g=1.0, m(\chi) = 1 \text{ GeV}$ 1711.03301 VV x x EFT (Dirac DM) $0e, \mu$ 1 J, ≤ 1 j Yes 3.2 M. 700 GeV $m(\chi) < 150 \text{ GeV}$ 1608.02372 Scalar LQ 1st gen 2 e ≥ 2 i 3.2 Q mass 1.1 TeV $\beta = 1$ 1605.06035 Scalar LQ 2nd gen 2μ ≥ 2 i 3.2 _Q mass 1.05 TeV $\beta = 1$ 1605.06035 Scalar LQ 3rd gen $1e,\mu$ ≥1 b, ≥3 j 20.3 LQ mass 640 GeV $\beta = 0$ 1508.04735 VLQ $TT \rightarrow Ht/Zt/Wb + X$ multi-channel 36.1 1.37 TeV SU(2) doublet ATLAS-CONF-2018-XXX T mass $VLQ BB \rightarrow Wt/Zb + X$ 36.1 multi-channel B mass 1.34 TeV SU(2) doublet ATLAS-CONF-2018-XXX VLQ $T_{5/3}T_{5/3}|T_{5/3} \to Wt + X$ 2(SS)/ $\geq 3 e, \mu \geq 1 b, \geq 1 j$ 36.1 T_{5/3} mass 1.64 TeV $\mathcal{B}(T_{5/3} \to Wt) = 1$, $c(T_{5/3}Wt) = 1$ CERN-EP-2018-171 $VLQ Y \rightarrow Wb + X$ $\mathcal{B}(Y \to Wb) = 1$, $c(YWb) = 1/\sqrt{2}$ $1 e. \mu$ ≥ 1 b, ≥ 1 j 3.2 Y mass 1.44 TeV ATLAS-CONF-2016-072 $VLQ B \rightarrow Hb + X$ $0 e, \mu, 2 \gamma \geq 1 b, \geq 1j$ Yes 79.8 B mass 1.21 TeV $\kappa_B = 0.5$ ATLAS-CONF-2018-XXX $VLQ QQ \rightarrow WqWq$ $1e, \mu$ ≥ 4 j Yes 20.3 Q mass 1509.04261 2 j Excited quark a* → ag 37.0 q* mass 6.0 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1703.09127 Excited quark $a^* \rightarrow a\gamma$ 1γ 1 i 36.7 q* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1709.10440 Excited quark $b^* \rightarrow bg$ 2.6 TeV 1 b, 1 i 36.1 b* mass 1805.09299 Excited lepton ℓ* $3e, \mu$ 3.0 TeV 20.3 ℓ^* mass $\Lambda = 3.0 \text{ TeV}$ 1411.2921 Excited lepton v3 $3e, \mu, \tau$ 20.3 1.6 TeV $\Lambda = 1.6 \text{ TeV}$ 1411.2921 v* mass Type III Seesaw ≥ 2 i 560 GeV $1e, \mu$ Yes 79.8 N⁰ mass ATLAS-CONF-2018-020 LRSM Majorana v $m(W_R) = 2.4$ TeV, no mixing $2e, \mu$ 2 j 20.3 2.0 TeV 1506.06020 Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ H^{±±} mass 870 GeV DY production 2,3,4 e, µ (SS) 36.1 1710.09748 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ $3e, \mu, \tau$ 20.3 400 GeV DY production, $\mathcal{B}(H_{\iota}^{\pm\pm} \to \ell \tau) = 1$ 1411.2921 657 GeV Monotop (non-res prod) $1e, \mu$ 1 b Yes 20.3 $a_{\text{non-res}} = 0.2$ 1410.5404 Multi-charged particles DY production, |q| = 5e20.3 785 GeV 1504.04188 Magnetic monopoles 7.0 DY production, $|g| = 1g_D$, spin 1/21.34 TeV 1509.08059

 $\sqrt{s} = 8 \text{ TeV}$

 $\sqrt{s} = 13 \text{ TeV}$

 10^{-1}

10

Mass scale [TeV]

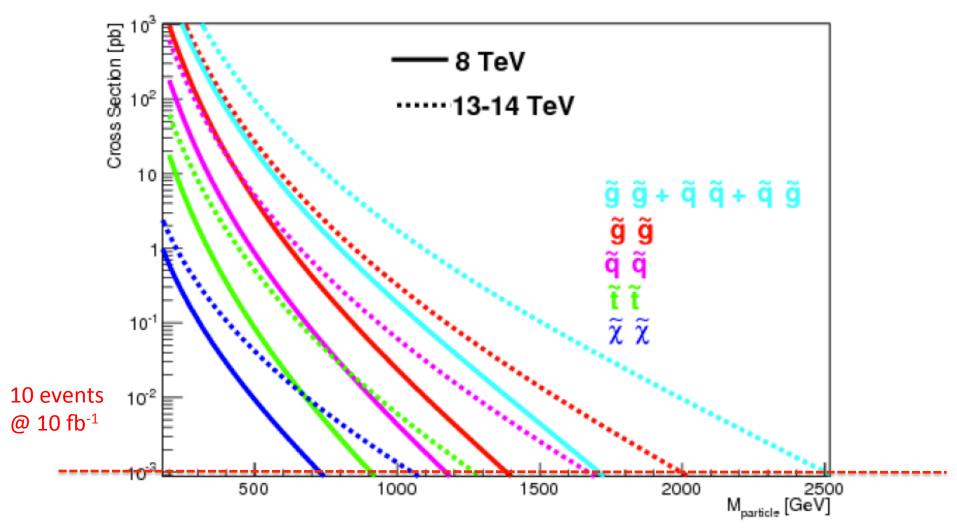
^{*}Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J). M.Bosman

Exotics summary

- Many signatures and models are tested
- Expect moderate improvements for extremely high mass with higher statistics
- Several new approaches and analysis techniques target low/intermediate mass region and new signatures

SUSY

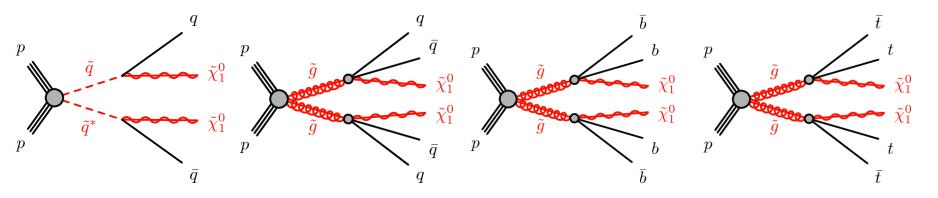
- Experiments have covered a huge set of scenarios and final states:
 - Strong production.
 - Electroweak production.
 - R-parity conserved and violated.
- Driven by simplified models.
 - Masses of non-relevant SUSY particles put very high.
 - 100% BR to single final state.
 used for model dependent exclusion limits.
- Produce large scans for pMSSM

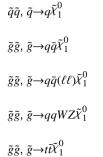

MSSM (Minimal new particle content; No assumption on SUSY breaking)

 \rightarrow 120 free parameters.

pMSSM (imposing phenomenological and experimental constrains)

→19 free parameters

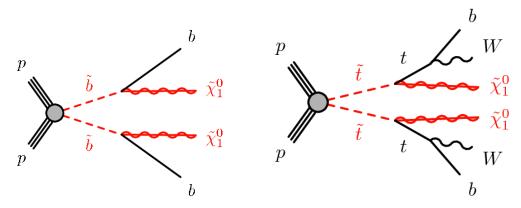

SUSY cross-section


PDG 2017 NLL-FAST, Prospino

E. Halkiadakis, G. Redlinger, and D. Shih, Ann. Rev. Nucl. and Part. Sci. 64, 319 (2014).

Searches for squarks and gluinos

ETmiss, (b) jets, (leptons)



0	2-6 jets	Yes	36.1
mono-jet	1-3 jets	Yes	36.1
0	2-6 jets	Yes	36.1
3 e, μ	4 jets	-	36.1
ee, μμ	2 jets	Yes	36.1
$\stackrel{ extsf{0}}{ extsf{3}}_{e,\mu}$	7-11 jets	Yes	36.1
	4 jets	-	36.1
0-1 <i>e, μ</i>	3 <i>b</i>	Yes	36.1
3 <i>e, μ</i>	4 jets	-	36.1

~	[Ov. Ov. Dogon]		0.0	
$ ilde{q}$	[2x, 8x Degen.]		0.9	1.55
\tilde{q}	[1x, 8x Degen.]	0.43	0.71	
ğ ğ				2.0
ğ			Forbidden	0.95-1.6
ğ				1.85
ğ ğ				1.2
ğ ğ				1.8
ã			0.98	
ğ ğ				2.0
õ				1.25
				0
•				

Searches for sbottom and stops

Light stops needed for natural SUSY 0/1/2 leptons, (b) jets and ET

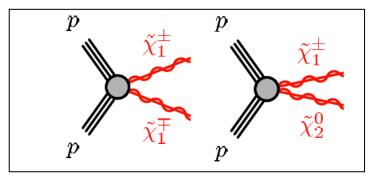
 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$ Multiple 36.1 Forbidden 0.9 0.58-0.82 Multiple 36.1 Forbidden Multiple 36.1 \tilde{b}_1 Forbidden 0.7 Multiple 0.7 $\tilde{b}_1\tilde{b}_1, \tilde{t}_1\tilde{t}_1, M_2 = 2 \times M_1$ 36.1 \tilde{t}_1 direct production 3rd gen. squarks Multiple Forbidden 0.9 36.1 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow Wb\tilde{\chi}_1^0 \text{ or } t\tilde{\chi}_1^0$ $0-2 e, \mu \quad 0-2 \text{ jets/1-2 } b \text{ Yes}$ \tilde{t}_1 36.1 1.0 $\tilde{t}_1 \tilde{t}_1, \tilde{H} \mathsf{LSP}$ Multiple \tilde{t}_1 36.1 0.4 - 0.9Multiple 36.1 Forbidden 0.6-0.8 $\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP Multiple 36.1 \tilde{t}_1 0.48-0.84 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$ 2c \tilde{t}_1 0.85 0 Yes 36.1 0.46 0 mono-jet Yes 36.1 0.43

13/12/18

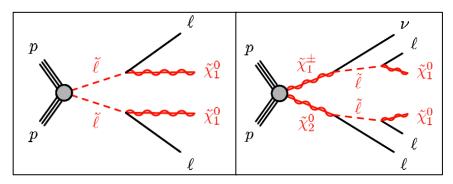
 $\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$

4 b

1-2 e, μ


36.1

Yes


 \tilde{t}_2

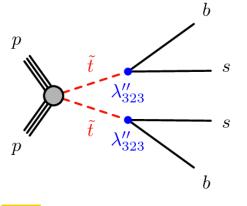
0.32-0.88

Searches for EW processes

Chargino/neutralino production

Slepton production

Lower cross sections → important search in case squarks and gluinos are heavy

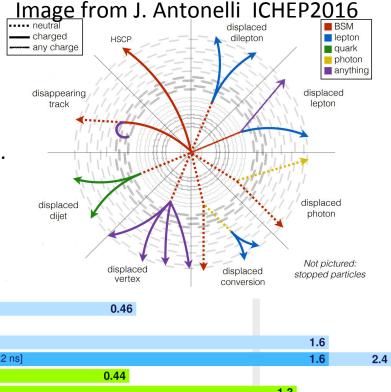


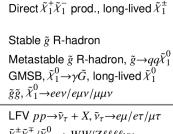
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	2-3 e, μ ee, μμ	- ≥ 1	Yes Yes	36.1 36.1	$\begin{array}{c} \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \\ \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 \end{array}$	0.17	0.6	
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via Wh	$\ell\ell/\ell\gamma\gamma/\ell bb$	-	Yes	20.3	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$	0.26		
3	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	2 au	-	Yes	36.1	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{3}^{0}$			0.76
ב						$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$	0.22		
2	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell}{ ightarrow}\ell\tilde{\chi}_1^0$	2 e, μ	0	Yes	36.1	$ ilde{m{\ell}}$		0.5	
		2 e, μ	≥ 1	Yes	36.1	$ ilde{m{\ell}}$	0.18		
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0	$\geq 3b$	Yes	36.1	$ ilde{H}$	0.13-0.23		0.29-0.88
	AILAS	4 e, μ	0	Yes	36.1	$ ilde{ extit{H}}$	0.	3	
	EXPERIMENT								

Searches for RPV SUSY and long-lived particles

Many viable RPV scenarios.

LSP decays \rightarrow no large ETmiss




Can also yield long lifetimes. Many topologies

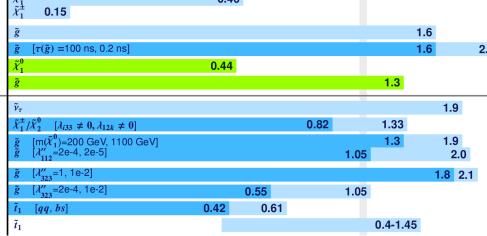
36.1

3.2

Yes

Long-lived particles

=: • pp · · · (· · · · · · · · · · · · · ·
$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \xrightarrow{\epsilon_{0}} WW/Z\ell\ell\ell\ell\nu\nu$
$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$
$\tilde{g}\tilde{g}, \tilde{g} \to tbs / \tilde{g} \to t\bar{t}\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$
$t\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$
$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$
$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow b\ell$

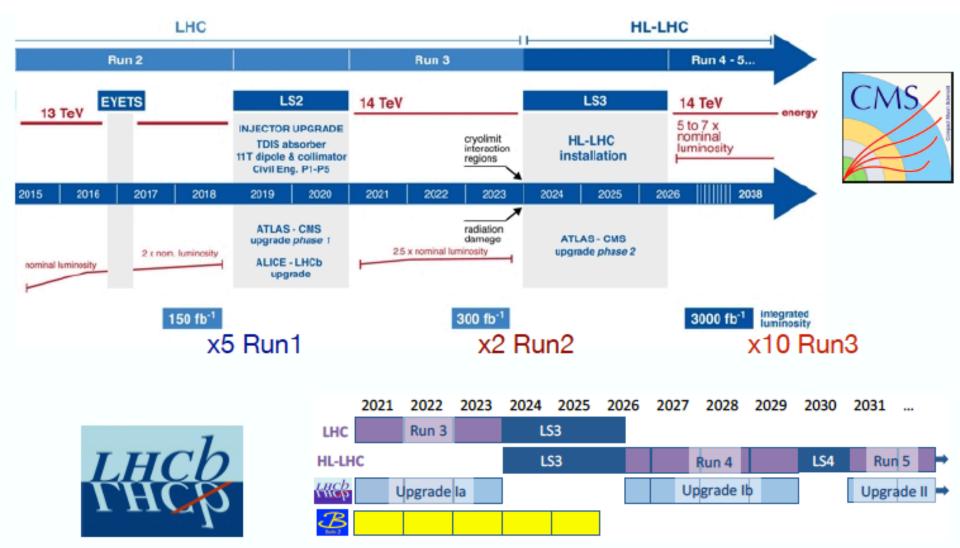

	32.8		
2 γ	-	Yes	20.3
displ. $ee/e\mu/\mu\mu$		-	20.3
еµ,ет,µт	-	-	3.2
4 e, μ	0	Yes	36.1
0 4-5	large- <i>R</i> je Multiple	ets -	36.1 36.1
	Multiple		36.1
	Multiple		36.1
0 2	2 jets + 2 b	-	36.7
2 <i>e</i> , <i>µ</i>	2 <i>b</i>	-	36.1

M.Bosman

1 jet

Disapp. trk

SMP


SUSY summary

- broad and diverse search program
 - Completing the program with 36 fb⁻¹ (2015+2016) dataset
 - first results with 80 fb⁻¹ dataset (2015+2016+2017)
- Simplified signatures covered to high masses but plenty of low mass unexplored model space.
- the improvement in sensitivity will largely have to come from
 - the larger statistics
 - evolution of trigger and analysis techniques
 since there will be no significant energy increase at the LHC anymore
- larger statistics will be most beneficial in case of electroweak processes, compressed scenarios, R-parity violating scenarios, etc.

SUSY summary S. Strandberg

LHC in the future

Credit Shahram Rahatlou CMS & LHCb Highlights ICHEP2018

Conclusion

- The LHC has worked fantastically
- The experiments took data with very high efficiency and detectors are well understood
- High precision measurements are possible at the LHC, even with high pile-up conditions
- Many measurements are still statistically limited and the full Run 2 data will bring them to an interesting level of precision
- New analysis techniques will also bring improvements
- We need increasingly precise theoretical predictions to keep up with the experimental precision
- Many estimates of future sensitivity are being prepared in the context of the European strategy process, based on our current better understanding of the performances

Stay tuned ...