Gamma-ray spectral modulations induced by photon-ALP-dark photon oscillations

Kiwoon Choi

MultiDark Consolider Workshop, Zaragoza, Apr 03, 2019

KC, S. Lee, H. Seong, S. Yun, arXiv:1806.09508

The IBS Center for Theoretical Physics of the Universe

Motivation

Spectral irregularity (or modulation) of gamma-rays from certain galactic pulsars and supernova remnants:

[Majumdar et al, 1801.08813; Xia et al, 1801.01646]

According to 1801.08813 & 1801.01646, Fermi-LAT data of certain galactic pulsars and supernova remnants indicate a depletion of gamma rays at E > GeV, which might be due to the conversions of gamma rays to some invisible particles.

An explanation proposed in 1801.08813 and 1801.01646

Assume an axion-like-particle (ALP) "a" with

 $m_a \sim \text{several} \times 10^{-9} \,\text{eV}$

$$\frac{1}{4}g_{a\gamma\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu} = -g_{a\gamma\gamma}a\vec{E}\cdot\vec{B} \qquad \left(g_{a\gamma\gamma}\sim \text{few}\times 10^{-10}\text{GeV}^{-1}\right)$$

In the presence of background galactic B-fields, there can be photon-ALP oscillations caused by the ALP-photon coupling: [Raffelt & Stodolsky '88]

$$\frac{1}{4}g_{a\gamma\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu} = -g_{a\gamma\gamma}a\vec{E}\cdot\vec{B} \quad \Rightarrow \quad g_{a\gamma\gamma}a\frac{\partial\vec{A}}{\partial t}\cdot\langle\vec{B}\rangle = g_{a\gamma\gamma}B_T\omega\times aA_{\parallel}$$
$$\left(\vec{B}_T = \langle\vec{B}\rangle - \hat{k}(\hat{k}\cdot\langle\vec{B}\rangle), \quad A_{\parallel} = \frac{\vec{B}_T\cdot\vec{A}}{B_T}\right)$$

$$\Rightarrow \left[w + i\partial_z - \frac{1}{2\omega}\mathcal{M}^2 \right] \begin{pmatrix} A_{\parallel} \\ a \end{pmatrix} = 0 \qquad \mathcal{M}^2 = \begin{pmatrix} m_{\gamma}^2 & g_{a\gamma\gamma'}B_T\omega \\ g_{a\gamma\gamma'}B_T\omega & m_a^2 \end{pmatrix} \left(m_{\gamma}^2 = \frac{e^2n_e}{m_e} + \dots \right)$$

For background B-field which is approximately constant over a distance "d":

$$(P_{\gamma \to a})_{g_{a\gamma\gamma}} = \left(\frac{\omega^2}{\omega^2 + \tilde{\omega}_c^2}\right) \sin^2 \frac{\tilde{\Delta}_{\rm osc} d}{2} \qquad \left(\tilde{\omega}_c = \frac{m_a^2}{2g_{a\gamma\gamma}B_T}, \quad \tilde{\Delta}_{\rm osc} = g_{a\gamma\gamma}B_T \sqrt{1 + \left(\frac{\tilde{\omega}_c}{\omega}\right)^2}\right)$$
$$\left(m_\gamma \ll m_a, \quad \omega/\tilde{\omega}_c = \tan 2\theta\right)$$

i) the conversion of low energy photons $(\omega \ll \tilde{\omega}_c)$ to ALP is negligible.

ii) for a sizable conversion of high energy photons with $\omega \gtrsim \tilde{\omega}_c$, we need $g_{a\gamma\gamma}B_T d \gtrsim \mathcal{O}(1)$.

Depletion of gamma-rays with E > 1 GeV at galactic distance scales:

$$\tilde{\omega}_c \sim 1 \text{ GeV}, \quad d \sim 1 \text{ kpc}, \quad B_T \sim 1 \,\mu\text{G}$$

 \Rightarrow $m_a \sim \text{several} \times 10^{-9} \,\text{eV}, \quad g_{a\gamma\gamma} \sim \text{few} \times 10^{-10} \,\text{GeV}^{-1}$

However, as noticed already in 1801.08813 and 1801.01646, this scenario is in conflict with a variety of observational constraints, including

(a) the CAST bound: $g_{a\gamma\gamma} < 6 \times 10^{-11} \,\text{GeV}^{-1}$ for $m_a < 1 \,\text{keV}$

- (b) non-observation of gamma-ray bursts associated with SN1987A,
- (c) Fermi-LAT+ MAGIC data on gamma-rays from Perseus cluster.

Alternative explanation [KC, S. Lee, H. Seong, S. Yun, 1806.09508] (which can be compatible with the observational constraints)

Introduce a massless dark photon X_{μ} together with an ALP which couples to the ordinary photon & dark photon as

$$\frac{1}{2}g_{a\gamma\gamma'}aX_{\mu\nu}\tilde{F}^{\mu\nu} = -g_{a\gamma\gamma'}a\left(\vec{E}\cdot\vec{B}_X + \vec{B}\cdot\vec{E}_X\right)$$

Photon-ALP-dark photon oscillations induced by $g_{a\gamma\gamma'}$ in background ordinary B-fields and dark photon fields (B_{χ}, E_{χ}):

$$\begin{bmatrix} w + i\partial_z - \frac{1}{2\omega}\mathcal{M}^2 \end{bmatrix} \begin{pmatrix} A_{\parallel} \\ X_{\parallel} \\ a \end{pmatrix} = 0 \quad \mathcal{M}^2 = \begin{pmatrix} m_{\gamma}^2 & 0 & g_{a\gamma\gamma'}B_{XT}\omega \\ 0 & 0 & g_{a\gamma\gamma'}B_{T}\omega \\ g_{a\gamma\gamma'}B_{XT}\omega & g_{a\gamma\gamma'}B_{T}\omega & m_a^2 \end{pmatrix} \begin{pmatrix} m_{\gamma}^2 = \frac{e^2n_e}{m_e} + \dots \end{pmatrix}$$

$$A_{\parallel} = \frac{\vec{B}_{XT} \cdot \vec{A}}{B_{XT}}, \quad X_{\parallel} = \frac{\vec{B}_T \cdot \vec{X}}{B_T} \qquad \qquad \vec{B}_T = \langle \vec{B} \rangle - \hat{k} (\hat{k} \cdot \langle \vec{B} \rangle) \\ \vec{B}_{XT} = \left(\langle \vec{B}_X \rangle - \hat{k} (\hat{k} \cdot \langle \vec{B}_X \rangle \right) - \hat{k} \times \langle \vec{E}_X \rangle$$

Conversion of photon to ALP or dark photon in **background B and (B_x,E_x)** which are approximately constant over a distance "d":

$$\begin{split} P_{\gamma \to a} &= P_{a \to \gamma} = \left(\frac{B_{XT}^2}{B_{XT}^2 + B_T^2}\right) \left(\frac{\omega^2}{\omega^2 + \omega_c^2}\right) \sin^2 \frac{\Delta_{\rm osc} d}{2}, \\ P_{\gamma \to \gamma'} &= P_{\gamma' \to \gamma} = \frac{2B_{XT}^2 B_T^2}{(B_{XT}^2 + B_T^2)^2} \left(1 - \cos \frac{\Delta_a d}{2} \cos \frac{\Delta_{\rm osc} d}{2}\right) \\ &- \frac{\omega_c}{\sqrt{\omega^2 + \omega_c^2}} \sin \frac{\Delta_a d}{2} \sin \frac{\Delta_{\rm osc} d}{2} - \frac{\omega^2}{2(\omega^2 + \omega_c^2)} \sin^2 \frac{\Delta_{\rm osc} d}{2} \right) \end{split}$$

$$\omega_c = \frac{m_a^2}{2g_{a\gamma\gamma'}B_{\text{eff}}}, \quad \Delta_a = \frac{m_a^2}{2\omega}, \quad \Delta_{\text{osc}} = \frac{g_{a\gamma\gamma'}B_{\text{eff}}\sqrt{\omega^2 + \omega_c^2}}{\omega}$$

$$B_{\text{eff}} \equiv \sqrt{B_{XT}^2 + B_T^2} \qquad \vec{B}_T = \langle \vec{B} \rangle - \hat{k} (\hat{k} \cdot \langle \vec{B} \rangle) \vec{B}_{XT} = \left(\langle \vec{B}_X \rangle - \hat{k} (\hat{k} \cdot \langle \vec{B}_X \rangle \right) - \hat{k} \times \langle \vec{E}_X \rangle$$

Sizable depletion of gamma-rays with E > 1 GeV at galactic distance scales:

$$B_{XT} \gtrsim \frac{1}{2} B_X \sim 0.5 \,\mu\text{G}, \quad \omega_c \sim \frac{m_a^2}{g_{a\gamma\gamma'}B_{XT}} \sim 1 \,\text{GeV}, \quad g_{a\gamma\gamma'}B_{XT} \gtrsim 1 \,\text{kpc}^{-1}$$

For instance,

 $B_{XT} \sim 0.5 - 5 \ \mu \text{G}, \quad m_a \sim \text{several} \times 10^{-9} \,\text{eV}, \quad g_{a\gamma\gamma'} \sim \text{few} \times (10^{-11} - 10^{-10}) \,\text{GeV}^{-1}$

can result in the desired form of spectral modulations of galactic pulsars and supernova remnants, while being compatible with the observational constraints:

[KC, S. Lee, H. Seong, S. Yun, 1806.09508]

Two key questions

- i) Is this scenario compatible with the known observational constraints?
- ii) How to generate the necessary background dark photon gauge fields (B_{X}, E_{X}) in the early Universe?

Observational constraints on $\frac{1}{2}g_{a\gamma\gamma'}aX_{\mu\nu}\tilde{F}^{\mu\nu} = -g_{a\gamma\gamma'}a\left(\vec{E}\cdot\vec{B}_X + \vec{B}\cdot\vec{E}_X\right)$ [KC, S. Lee, H. Seong, S. Yun, 1806.09508]

i) Bound from CAST or similar axion search experiments? No constraint as there is no $a \to \gamma$ induced by background $\langle B \rangle$

ii) Stellar emission of ALP or dark photon:

Plasmon decays: γ (plasmon) $\rightarrow a + \gamma'$ (dark photon)

 \Rightarrow $g_{a\gamma\gamma'} \lesssim 5 \times 10^{-10} \text{ GeV}^{-1}$ for $m_a, m_X \lesssim 10 \text{ keV}$

iii) Gamma-ray bursts associated with SN1987A, resulting from

a or γ' emitted from SN1987A $\rightarrow \gamma$ (in background $\langle B_X \rangle$ and/or $\langle E_X \rangle$)

iv) CMB distortion due to CMB $\gamma \rightarrow a \text{ or } \gamma'$ (in background $\langle B_X \rangle$ and/or $\langle E_X \rangle$)

v) Spectral irregularity of other gamma-ray sources, e.g. NGC 1275 in the Perseus cluster

Absence of gamma-ray bursts associated with SN1987A

ALPs or dark photons emitted from SN1987A by plasmon decays and subsequent conversion to gamma-rays by background B_X/E_X

Compared to $g_{a\gamma\gamma}$, the bound on $g_{a\gamma\gamma'}$ is weaker as it is less efficient (plasmon decay vs Primakov process) in producing ALP from SN1987A.

Absence of CMB distortion

Reasonant conversion of CMB photon to ALP

Effective photon mass in the early Universe

 $g_{a\gamma\gamma'}\langle B_X\rangle < 10^{-11}\,\mathrm{GeV}^{-1}\cdot\mathrm{nG}$ if B_X were generated at z>3000→

On the other hand, we need $g_{a\gamma\gamma'}\langle B_X\rangle \sim 10^{-7} \text{GeV}^{-1} \cdot \text{nG}$ to explain the gammaray modulations, so should avoid this bound.

• Generate
$$B_X$$
 at $z < 3000$.

Spectral irregularity of gamma-rays from NGC 1275 in Perseus cluster?

Using the known features of B fields inside the Perseus cluster, one can study the spectral irregularities caused by $\frac{1}{4}g_{a\gamma\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu} = -g_{a\gamma\gamma}a\vec{E}\cdot\vec{B}$ and found the FERMI/LAT data disfavors certain region of ALP parameters:

One may try to constrain $\frac{1}{2}g_{a\gamma\gamma'}aX_{\mu\nu}\tilde{F}^{\mu\nu} = -g_{a\gamma\gamma'}a\left(\vec{E}\cdot\vec{B}_X+\vec{B}\cdot\vec{E}_X\right)$ also, but the corresponding spectral irregularity severely depends on the detailed profile of (**B**_X, **E**_X) and **B** along the line of sight between the Perseus cluster and the earth (d ~ 68 Mpc), about which we don't have any information.

How to generate the background dark photon fields?

Introduce additional ultra-light ALP ϕ with [KC, H. Kim, T. Sekiguchi, 1802.07269]

$$\mathcal{L}_{\phi} = \frac{1}{2} (\partial_{\mu}\phi)^2 - \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{1}{4} g_{\phi\gamma'\gamma'} X^{\mu\nu} \tilde{X}_{\mu\nu} \quad \left(g_{\phi\gamma'\gamma'} \equiv \frac{g_{XX}}{f}, \ f \equiv \phi_{\text{initial}}\right)$$

Coherent oscillation of ϕ beginning when $3H(\tau_{osc}) \simeq m_{\phi}$:

$$\theta(\tau) \equiv \frac{\phi(\tau)}{f} \approx \left(\frac{a(\tau)}{a(\tau_{\rm osc})}\right)^{-3/2} \cos\left(m_{\phi}(t - t_{\rm osc})\right) \qquad \left(\tau_{\rm osc} < \tau < \tau_{\rm prod}\right)$$
$$\left(ds^{2} = dt^{2} - a^{2}(t)dx^{2} = a^{2}(\tau)\left(d\tau^{2} - dx^{2}\right)\right)$$

Tachyonic instability of X caused by oscillating ϕ , resulting in exponential amplification of the vacuum fluctuations of X until τ_{prod} when X is amplified enough:

$$\ddot{\mathbf{X}}_{k\pm} + k(k \mp g_{XX}\dot{\theta})\mathbf{X}_{k\pm} \simeq 0$$
(tachyonic instability for $k \sim g_{XX}\dot{\theta} \sim g_{XX}m_{\phi}$)

Evolution of $\rho_{\phi}(\tau)a^{3}(\tau)$ and $\rho_{X}(\tau)a^{4}(\tau)$ for $g_{XX} = 100$

[KC, H. Kim, T. Sekiguchi, 1802.07269]

$$B_X \sim E_X \sim 0.3 \,\mu \mathrm{G}\left(\frac{f}{10^{17} \,\mathrm{GeV}}\right) \text{ produced at } z_{\mathrm{prod}} \equiv \frac{a(\tau_0)}{a(\tau_{\mathrm{prod}})} \sim 300 \left(\frac{m_{\phi}}{10^{-28} \,\mathrm{eV}}\right)^{1/2}$$
$$\Omega_{\phi} h^2 \equiv \frac{\rho_{\phi} h^2}{\rho_c} \sim 3.6 \times 10^{-6} \left(\frac{m_{\phi}}{10^{-28} \,\mathrm{eV}}\right)^{1/2} \left(\frac{f}{10^{17} \,\mathrm{GeV}}\right)^2$$

(Safe from the CMB constraints on the ultralight ALP if $\Omega_{\phi}h^2 \lesssim 10^{-4}$.) [Hlozek, Marsh, Grin, 1708.05681]

Conclusion

• Recently noticed gamma-ray spectral modulations of certain galactic pulsars and supernova remnants might be explained by the photon-ALP-dark photon oscillations induced by the ALP coupling $\frac{1}{2}g_{a\gamma\gamma'}aX_{\mu\nu}\tilde{F}^{\mu\nu}$ in background dark photon gauge fields, while being compatible with the known observational constraints:

 $B_{XT} \sim 0.5 - 5 \ \mu \text{G}, \quad m_a \sim \text{several} \times 10^{-9} \,\text{eV}, \quad g_{a\gamma\gamma'} \sim \text{few} \times (10^{-11} - 10^{-10}) \,\text{GeV}^{-1}$

• The required background dark photon gauge fields can be produced by another ultra-light ALP ϕ with $m_{\phi} \lesssim 10^{-26} \,\mathrm{eV}$ whose late oscillations cause a tachyonic instability of X, exponentially amplifying the vacuum fluctuations of X-fields at a time late enough to avoid the CMB distortion by $g_{a\gamma\gamma'}$.